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Localization and mass spectrum of bosonic and fermionic matter fields of some novel families of asymmetric thick brane
configurations generated by deformed defects are investigated. The localization profiles of spin 0, spin 1/2, and spin 1 bulk fields
are identified for novel matter field potentials supported by thick branes with internal structures. The condition for localization is
constrained by the brane thickness of eachmodel such that thickest branes strongly inducematter localization.The bulkmass terms
for both fermion and boson fields are included in the global action as to produce some imprints on mass-independent potentials of
the Kaluza-Klein modes associated with the corresponding Schrödinger equations. In particular, for spin 1/2 fermions, a complete
analytical profile of localization is obtained for the four classes of superpotentials here discussed. Regarding the localization of
fermion fields, our overall conclusion indicates that thick branes produce a left-right asymmetric chiral localization of spin 1/2
particles.

1. Introduction

The brane-world model is a prominent paradigm that has
been addressed to solve several questions in physics. Within
this framework, brane-worlds are required to render a con-
sistent 4𝐷 physics of our Universe, at least up to certain
sensible limits [1]. In the brane-world scenario all kinds of
matter fields should be localized on the brane. In the RS
brane-worldmodel [2], the brane is generated by a scalar field
coupled to gravity [3, 4], in a particular scenario which may
be interpreted as the thin brane limit of thick brane scenarios.
Generically, a prominent test that thick brane-world models
must pass, to be physically consistent, regards their stability,
with respect to tensor, vector, and scalar fluctuations of
the background fields that generate the field configurations,
namely, the thick brane itself. At least the zero modes of
Standard Model matter fields were shown to be localized on
several brane-worldmodels [5–10], suggesting that such kind
of models is physically viable in high energy physics. Several
alternative scenarios, including Gauss-Bonnet terms, 𝑓(𝑅)
gravity, tachyonic potentials, cyclic defects, and Bloch branes,

have been further studied [11–15], and analogous scenarios in
an expanding Universe have been approached [16, 17]. The
curvature nature of the brane-world, namely, to be a de Sitter,
Minkowski, or anti-de Sitter one, is in general obtained a
posteriori, by solving the 5𝐷 Einstein field equations. In fact,
the bulk and the brane cosmological constants depend upon
the brane and the bulk gravitational field content, governed
by curvature, and must obey the intrinsic fine-tuning, in the
Randall-Sundrum-like models limit.

The analytical study of stability can be uncontrollably
intricate, due to the involved structure of the scalar field
coupled to gravity. To circumvent the complicated and not
analytical approaches, linearized formulations have been
commonly worked out. In this context, supported by the
stability of deformed defect generated brane-world mod-
els, scalar, vector, and tensor perturbations are investigated
throughout this work.

Localization aspects of various matter fields with spin 0,
spin 1/2, and spin 1 on analytical thick brane-worldmodels are
indeed amain concern in deriving brane-worldmodels, since
they must describe our physical 4𝐷 world. The localization
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of the spin 1/2 fermions deserves a special attention, since
there is no scalar field to couple with in this model, in
contrast to thick branes generated by deforming defect
mechanisms [18]. Otherwise, Kalb-Ramond fields, although
already investigated [19], will not be the main aim here. The
spin 1/2 issue has been previously studied in some other
contexts [20], including further coupling of more scalar fields
in the action [21] and asymmetric brane-worlds generated by
a plenty of scalar field potentials [8, 22–25]. In particular,
asymmetric Bloch branes in the context of the hierarchy
problem have been addressed in [13].

Our aim is to investigate the localization of bulk matter
and gauge fields on the brane, in the context where the mass-
independent potentials of the corresponding Schrödinger-
like equations, regarding the 1𝐷 quantum mechanical ana-
logue problem, can be suitably acquired from a warped met-
ric. In particular, for a bulk mass proportional to the fermion
mass term enclosed by the global action, the possibility of
trapping spin 1/2 fermions on asymmetric branes is discussed
and quantified.

To accomplish this aim, this paper is organized as follows.
In Section 2, a brief review of brane-world scenarios sup-
ported by an effective action driven by a (dark sector) scalar
field is presented. Warp factors and the corresponding inter-
nal brane structure are described for four different analytical
models. In Section 3, the left-right-chiral asymmetric aspects
of matter localization for spin 1/2 fermion fields on thick
branes are investigated. Extensions to scalar boson and vector
boson fields are obtained in Sections 4 and 5, respectively.
Final conclusions are drawn in Section 6.

2. Brane-World Preliminaries and
Some Analytical Models

Let one start considering a 5𝐷 space-time warped into 4𝐷.
The most general 5𝐷 metric compatible with a brane-world
spatially flat cosmological background has the form given by

𝑑𝑠
2
= 𝑔
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𝑑𝑥
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]
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2
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where 𝑒
2𝐴(𝑦) denotes the warp factor, and the signature

(−++++) is employed, with 𝑀,𝑁 = 0, 1, 2, 3, 5. 𝑔
𝜇] stands

for the components of the 4𝐷metric tensor (𝜇, ] = 0, 1, 2, 3).
One can identify 𝑦 ≡ 𝑥

4
as the infinite extra dimension

coordinate (which runs from −∞ to∞) and notice that the
normal to surfaces of constant 𝑦 is orthogonal to the brane,
into the bulk (brane tension terms have been suppressed/
absorbed by themetric (c.f. Equations (24) and (25) from [10]
for real scalar field Lagrangians in the context of thick brane
solutions)).

The brane-world scenario examined here is set up by
an effective action, driven by a (dark sector) scalar field, 𝜁,
coupled to 5𝐷 gravity, given by
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where 𝑅 is the 5𝐷 scalar curvature, 𝑅
𝑁𝑄
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Ricci tensor, and 𝜅

5
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)
1/2 denotes the 5𝐷 gravitational

coupling constant, hereon set to be equal to unity, where 𝐺
5

is the 5𝐷 Newton constant. The Einstein equations read
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where 𝑇𝜁
𝑀𝑁

denotes the energy-momentum tensor corre-
sponding to thematter Lagrangian, regarding thematter field
𝜁. After solving the 5𝐷 Einstein field equations, the bulk
cosmological constant turns out, in general, to be positive
or negative, thus realising a de Sitter or anti-de Sitter brane-
world, respectively, generated by curvature. It realises and
emulates the interplay involving the 4𝐷 and 5𝐷 cosmological
constants. Some further possibilities are devised, for example,
in [14, 26]; however it is worth mentioning that an addi-
tional scalar field can be still added in the action, whose
isotropisation will precisely define the nature of the brane-
world. This latter case is however beyond the scope of our
analysis. Obviously, whatever the possibility to be considered,
the thin brane limit must obey the fine-tuning relation [27]
Λ
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5
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), among the effective 4𝐷 and

5𝐷 cosmological constants and the brane tension 𝜎 as well.
Considering the real scalar field action, (2), one can

compute the stress-energy tensor
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which, supposing that both the scalar field and the warp
factor dynamics depend only upon the extra coordinate, 𝑦,
leads to an explicit dependence of the energy density in terms
of the field, 𝜁, and of its first derivative, 𝑑𝜁/𝑑𝑦, as
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With the same constraints on 𝜁 about the dependence
on 𝑦, the equations of motion currently known from [3, 4],
which arise from the above action, are
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through a variational principle relative to the scalar field, 𝜁,
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through a variational principle relative to the metric, or
equivalently to 𝐴, manipulated to result into
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after an integration over 𝑦.
For the scalar field potential written in terms of a

superpotential, 𝑤, as
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the above equations are mapped into first-order equations [3,
4] as
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, (10)
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for which the solutions can be found straightforwardly
through immediate integrations [3] (see also [10] and refer-
ences therein). The energy density follows from (9) as
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Theanalysis of localization aspects of brane-world scenar-
ios will be constrained by some known examples, I, II, III, and
IV, for which the warp factor, 𝐴(𝑦), and the energy density,
𝑇
00
(𝑦), can be analytically computed. Model I is supported

by a sine-Gordon-like superpotential given by
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2
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3
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which reproduces the results from [4]. Model II corresponds
to a deformed 𝜆𝜁4 theory with the superpotential given by
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Models III and IV are deformed topological solutions from
[28] supported by superpotentials like
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where the parameter 𝑎 fixes the thickness of the brane
described by the warp factor, 𝑒2𝐴(𝑦). Besides exhibiting
analytically manipulable profiles, the above superpotentials
have already been discussed in the context of thick brane
localization [4, 5, 10]. Models I and II are, respectively,
motivated by sine-Gordon and 𝜆𝜁

4 theories, and models
III and IV are obtained (also analytically) from deformed
versions of the 𝜆𝜁4 model [12]. In particular, models III and
IV can also be mapped onto tachyonic Lagrangian versions
of scalar field brane models [6, 10, 28].

From the above superpotentials, the respective solutions
for 𝜁(𝑦) are set as
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where one has suppressed any additional (irrelevant) constant
of integration for convenience, and one has just considered
the positive solutions (in (16) there could be explicit constant
of integration that amounts to letting 𝑦 󳨃→ 𝑦+𝐶, correspond-
ing to the position of the brane in the extra dimension, for
which one has set 𝐶 = 0).

The obtained expressions for the warp factor as resulting
from (11) are, respectively, given by
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where integration constants are introduced as to set a normal-
ization criterion for which 𝐴(0) = 0.

The solutions for 𝐴I and 𝐴II are depicted in Figure 1. The
corresponding localized energy densities computed through
(12) are, respectively, given by
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Figure 1: (a) Warp factors, 𝑒2𝐴(𝑦) for models I (solid (black) lines) and II (dashed (red) lines). (b) Warp factors, 𝑒2𝐴(𝑦) for models III (solid
(black) lines) and IV (dashed (red) lines). One has considered integer values of the brane width parameter 𝑎, running from 1 (thinnest line)
to 4 (thickest line), corresponding to an increasing thickness.
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The brane scenarios for models from I to IV are depicted
in Figure 1 for the warp factors and in Figure 2 for the energy
densities, from which one can observe that models from I to
IV give rise to thick branes, most of them with no internal
structures. In fact, only the potential that controls the scalar
field frommodel II allows the emergence of thick branes that
host internal structures in the form of a layer of a novel phase
enclosed by two separate interfaces, inside which the energy
density of thematter field getsmore concentrated. It is related
to the extension/localization of thewarp factor; namely, when
the profiles depicted in Figure 1 approach a plateau form
in the region inside the brane, the corresponding internal
structure is observed through its energy profile.

The appearance of negative energy densities in the plots
for 𝑇
00

may be related to a predominance of the scalar field
potential over the kinetic-like term related to the coordinate
𝑦. Speculatively, it indicates that the vacuumminimal energy
can be adjusted by the inclusion of some additional term,
eventually related to the cosmological constant.

The localization of bulk matter fields on thick branes
generated by each one of these models will be identified in

the following sections. Spin 0, spin 1/2, and spin 1 fields will
evolve coupled to gravity and, as usual, the bulk matter field
contribution to the bulk energy will be neglected. It means
that the obtained solutions hold in the presence of the bulk
matter, without disturbing the bulk geometry.

3. Asymmetric Left-Right Matter Localization
for Spin 1/2 Fermion Fields

To investigate the localization of bulk matter on the brane,
one first considers that fermion localization on brane-worlds
is usually accomplished when the 5𝐷Dirac algebra is realised
by the objects Γ𝑀 = 𝑒
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and the 4𝐷 volume element, respectively. The Dirac action
for a spin 1/2 fermion with a mass term can be expressed as
[20, 25]
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and 𝐹(𝑧) is some general scalar function, providing a mass
term with a kink-like profile, which from this point is written
in terms of a conformal variable 𝑧 such that 𝑑𝑧 = 𝑒

−𝐴(𝑦)
𝑑𝑦

regards a transformation to conformal coordinates.This kind
of mass term is introduced in the action, for it has played
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Figure 2: Energy density, 𝑇
00
(𝑦), for models from I (a) to IV (d), where integer values of the brane width parameter 𝑎, running from 1

(thinnest line) to 4 (thickest line), corresponding to an increasing thickness.

a critical role on the localization of fermionic fields on a
Minkowski brane. The components of the spin connection
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with respect to (1) are 𝜔
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The 5𝐷 Dirac equation can be hence studied by taking
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)] is the right-

chiral [left-chiral] component of a 4𝐷 Dirac field, respec-
tively. In addition, the sum over 𝑛 can be both continuous
and discrete. Assuming that 𝛾𝜇(𝜕

𝜇
+ 𝜔̂
𝜇
)𝜓
(𝑅,𝐿)𝑛

= 𝑚
𝑛
𝜓
(𝐿,𝑅)𝑛

,

the 𝐿
𝑛
(𝑧) and 𝑅

𝑛
(𝑧) functions should then satisfy the subse-

quent coupled equations,

[𝜕
𝑧
− 𝑒
𝐴
𝑀𝐹(𝑧)] 𝑅

𝑛
(𝑧) = −𝑚

𝑛
𝐿
𝑛
(𝑧) , (23a)

[𝜕
𝑧
+ 𝑒
𝐴
𝑀𝐹(𝑧)] 𝐿

𝑛
(𝑧) = 𝑚

𝑛
𝑅
𝑛
(𝑧) . (23b)

The associated Schrödinger-like equations can be thus
acquired for the left- and right-chiral KKmodes of fermions,
respectively, as

(−𝜕
2

𝑧
+ 𝑉
𝐿
(𝑧)) 𝐿

𝑛
= 𝑚
2

𝐿
𝑛

𝐿
𝑛
,

(−𝜕
2

𝑧
+ 𝑉
𝑅
(𝑧)) 𝑅

𝑛
= 𝑚
2

𝑅
𝑛

𝑅
𝑛
,

(24)

where the mass-independent potentials are given by

𝑉
𝐿
(𝑧) = 𝑒

2𝐴
𝑀
2
𝐹
2
(𝑧) − 𝑒

𝐴
𝐴
󸀠
𝑀𝐹(𝑧)

− 𝑒
𝐴
𝑀𝜕
𝑧
𝐹 (𝑧) ,

(25a)

𝑉
𝑅
(𝑧) = 𝑒

2𝐴
𝑀
2
𝐹
2
(𝑧) + 𝑒

𝐴
𝐴
󸀠
𝑀𝐹(𝑧)

+ 𝑒
𝐴
𝑀𝜕
𝑧
𝐹 (𝑧) .

(25b)
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Note that the Schrödinger-like equations (24) can be trans-
formed into 𝑈

†
𝑈𝐿
𝑛

= 𝑚
2

𝑛
𝐿
𝑛
and 𝑈𝑈

†
𝑅
𝑛

= 𝑚
2

𝑛
𝑅
𝑛
,

where 𝑈 ≡ 𝜕
𝑧
+ 𝑒
𝐴
𝑀𝐹(𝑧). This observation is based upon

supersymmetric quantummechanics, implying that the mass
squared is nonnegative.

In order to lead these results to the standard 4𝐷 action for
amassless fermion and a series ofmassive chiral fermions, the
action 𝑆 = ∑

𝑛
∫𝑑
4
𝑥√−𝑔𝜓

𝑛
[𝛾
𝜇
(𝜕
𝜇
+𝜔̂
𝜇
)−𝑚
𝑛
]𝜓
𝑛
is employed,

for orthonormalization conditions

∫

+∞

−∞

𝐿
𝑚
𝐿
𝑛
𝑑𝑧 = 𝛿

𝑚𝑛
= ∫

+∞

−∞

𝑅
𝑚
𝑅
𝑛
𝑑𝑧,

∫

+∞

−∞

𝐿
𝑚
𝑅
𝑛
𝑑𝑧 = 0.

(26)

In formulae (23a) and (23b), by setting 𝑚
𝑛
= 0, thus it

yields

𝐿
0
∝ 𝑒
−𝑀∫𝑒

𝐴
𝐹𝑑𝑧

,

𝑅
0
∝ 𝑒
𝑀∫𝑒

𝐴
𝐹𝑑𝑧

.

(27)

Hence, either the massless left- or right-chiral KK fermion
modes can be localized on the brane, being the other one
nonnormalizable.

By taking 𝐹(𝑧) = 𝜁(𝑧), regarding (16), it yields

𝑉
𝐿
(𝑧 (𝑦)) = 𝑒

2𝐴(𝑦)
(𝑀
2
𝜁
2
(𝑦) −

𝑑𝐴 (𝑦)

𝑑𝑦
𝑀𝜁 (𝑦)

−𝑀
𝑑𝜁 (𝑦)

𝑑𝑦
) ,

(28a)

𝑉
𝑅
(𝑧 (𝑦)) = 𝑒

2𝐴(𝑦)
(𝑀
2
𝜁
2
(𝑦) +

𝑑𝐴 (𝑦)

𝑑𝑦
𝑀𝜁 (𝑦)

+𝑀
𝑑𝜁 (𝑦)

𝑑𝑦
) .

(28b)

Equations (28a) and (28b) evince that when the mass term
in the action (19) regards 𝑀 = 0, the potentials for left-
and right-chiral KK modes 𝑉

𝐿,𝑅
(𝑧) vanish. Then both chiral

fermions cannot be localized on the thick brane. Moreover, if
𝑉
𝐿
(𝑧) and 𝑉

𝑅
(𝑧) are demanded to beZ

2
-even with respect to

the extra dimension 𝑧, then the mass term𝑀𝐹(𝑧)must be an
odd function of 𝑧 [29]. In fact, some useful classes of brane-
world models have the extra dimension topology 𝑆1/Z

2
. If

the background scalar is an odd function of extra warped
dimension, the Yukawa coupling, between the fermion and
the background scalar field, assures the localization mech-
anism for fermions [29]. For the majority of brane-world
models, the scalar field 𝜁 is, usually, a kink, being an odd
function of the extra dimension. Here we do not necessarily
impose this condition, in order to not preclude asymmetric
solutions, with respect to the extra dimension.

In what follows the profile of the above left-right poten-
tials is depicted in Figure 3 for different values of the
localization parameter 𝑎. In fact, the potentials 𝑉

𝐿,𝑅
(𝑧) have

asymptotic behaviors that tend to zero from up, as 𝑦 → ±∞,
for all models from I to IV. In model I, at 𝑦 = 0 the potential
𝑉
𝑅
(𝑧) attains its maximumpositive value, a global maximum,

for 𝑎 = 1. The potential 𝑉
𝑅
(𝑧) changes to a volcano-type

profile along the interval of 1 < 𝑎 < 2, such that for
𝑎 = 2, 3, 4, . . . the point 𝑦 = 0 regards a local minimum,
which allows for producing unstable resonances, which can
be tunneled to the outside of the potential. Nevertheless,
the potential 𝑉

𝐿
(𝑧) has the associated minima at 𝑦 = 0

for all positive integer values of 𝑎, 𝑎 = 2, 3, 4, . . ., and it
creates the conditions for producing bound states. A very
similar behavior is exhibited by model III, in spite of showing
different amplitudes. Model IV is quite similar to these
models, with the only qualitative difference concerning the
fact that, at 𝑦 = 0, the potential 𝑉

𝑅
(𝑧) attains its maximum

positive value, a global maximum, for 𝑎 = 1 and 𝑎 = 2.
For model IV, the stability conditions created by the right-
and left-chiral volcano-type potentials are more sensible to
the increasing of the brane width (𝑎 ≳ 3), in comparison to
models I and II ones (𝑎 ≳ 2), inducing nomass gap to separate
the fermion zero mode from the excited KK massive modes.
In these cases, there exist continuous spectra for the Kaluza-
Klein modes of fermions of both chiralities. These volcano-
type potentials imply the existence of resonant or metastable
states of fermions which can tunnel from the brane to the
bulk [9]. The left-chiral KK mode has a continuous gapless
spectrum for models I, III, and IV, according to Figure 3.
Since the potential for left-chiral fermions presents a negative
value at the brane location for these models, the zero modes
of right- and left-chiral fermions, 𝑅

0
(𝑦) and 𝐿

0
(𝑦), are the

only necessary ingredient to be tested to be localized on
the brane. For model II, both potentials for the left- and
right-chiral fermions have positive values of the potential,
irrespective of𝑦. However for both cases𝑉

𝑅,𝐿
(𝑦), when 𝑎 ≲ 1,

an asymmetric behavior emerges and produces a totally odd
symmetric well-barrier profile in the limit of 𝑎 → 0. Except
for 0 < 𝑎 ≲ 1, the zeromode of left- and right-chiral fermions
can not be trapped. All potentials formodel II are asymmetric
(except for 𝑎 = 0, which is nonsense in the brane context),
havemaxima at𝑦 = 0, and tend to zero at𝑦 → ±∞, and there
is no bound state for right-chiral fermions. In particular, for
𝑉
𝑅,𝐿
(𝑦) when 𝑎 = 1, the minima occur at 𝑦 ∼ ±0.87.

4. Matter Localization for Spin 0 Scalar Fields

The localization of scalar fields on thick branes generated by
deformed defects can also be considered from this point. In
particular, an interesting approach on domain walls can be
also found in [30]. In fact, a massive scalar field coupled to
gravity can be described by the following action:

𝑆
0
= −

1

2
∫𝑑
5
𝑥√−𝑔 (𝑔

𝑀𝑁
𝜕
𝑀
Φ𝜕
𝑁
Φ + 𝑚

2

0
Φ
2
) , (29)

where 𝑚
0
denotes the effective mass of a bulk scalar field, Φ,

and from where one can check whether spin 0 matter fields
can be trapped on the thick brane. By employing the metric
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Figure 3: Associated Schrödinger-like quantum mechanical potentials, 𝑉
𝐿
(𝑦) and 𝑉

𝑅
(𝑦), respectively, for left-chiral (solid (black) lines) and

right-chiral (dashed (red) lines) KKmodes of fermions, for models from I (a) to IV (d). Again, one has considered integer values of the brane
width parameter 𝑎, running from 1 (thinnest line) to 4 (thickest line), corresponding to an increasing thickness.The fermion mass parameter
has been assumed to be equal to unit,𝑀 = 1.

(1), the associated equation of motion from the action in (29)
reads

1

√−𝑔
𝜕
𝜇
(√−𝑔𝑔

𝜇]
𝜕]Φ) + 𝑒

−3𝐴
𝜕
𝑧
(𝑒
3𝐴
𝜕
𝑧
Φ) − 𝑒

2𝐴
𝑚
2

0
Φ

= 0.

(30)

Hence, by the KK decomposition Φ(𝑥
𝜇
, 𝑧) =

∑
𝑛
𝜒
𝑛
(𝑥
𝜇
)𝜉
𝑛
(𝑧)𝑒
−3𝐴/2, where 𝜉

𝑛
is assumed to satisfy the 4𝐷

Klein-Gordon equation [𝜕
𝜇
(√−𝑔𝑔

𝜇]
𝜕])/√−𝑔 − 𝑚

2

𝑛
]𝜉
𝑛
(𝑥
𝜇
) =

0, 𝑚
𝑛
being the 4𝐷 mass of the KK excitation of the scalar

field.Then the scalar KKmode 𝜉
𝑛
(𝑧) is ruled by the following

equation:

[−𝜕
2

𝑧
+ 𝑉
0
(𝑧)] 𝜉
𝑛
(𝑧) = 𝑚

2

𝑛
𝜉
𝑛
(𝑧) . (31)

This equation is a Schrödinger one, with effective potential
given by

𝑉
0
(𝑧 (𝑦)) =

3

2
𝐴
󸀠󸀠
(𝑧) +

9

4
𝐴
󸀠2
(𝑧) + 𝑒

2𝐴(𝑧)
𝑚
2

0

= 𝑒
2𝐴(𝑧)

(
3

2

𝑑
2
𝐴 (𝑦)

𝑑𝑦
2

+
15

4
(
𝑑𝐴 (𝑦)

𝑑𝑦
)

2

+ 𝑚
2

0
) .

(32)

The profile of the above scalar boson potential is depicted
in Figure 4 (solid (black) lines) for different values of the
localization parameter 𝑎. For 𝑚

0
= 1, only brane scenarios

with 𝑎 ≲ 2 provide conditions to have a localized scalar field.
Even in this case, such localized states behave much more
as resonances than as bound states, given that they can be
tunneled out of the potential. Bound states appear only for
noninteger values of the brane width such that 𝑎 < 1, which
will correspond to typical volcano-type potentials.

5. Matter Localization for Spin 1 Vector Fields

One now turns to spin 1 vector fields and begins with the 5𝐷
action of a vector field:

𝑆
1
= −

1

4
∫𝑑
5
𝑥√−𝑔𝑔

𝑀𝑁
𝑔
𝑅𝑆
𝐹
𝑀𝑅
𝐹
𝑁𝑆
, (33)

where 𝐹
𝑀𝑁

= 𝜕[
𝑀
𝐴
𝑁
] denotes the field strength tensor. A

5𝐷 spin 1 field can be now studied via the KK decomposition
𝐴
𝑀
(𝑥
𝜌
, 𝑧) = ∑

𝑛
𝑎
(𝑛)

𝑀
(𝑥
𝜌
)𝜏
𝑛
(𝑧). The action of the 5𝐷massless
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Figure 4: Associated Schrödinger-like quantummechanical potentials,𝑉
0
(𝑦) and𝑉

0
(𝑦), respectively, for spin 0 (solid (black) lines) and spin

1 (dashed (red) lines) bosons for models from I (a) to IV (d). Again, one has considered integer values of the brane width parameter 𝑎 running
from 1 (thinnest line) to 4 (thickest line), corresponding to an increasing thickness. The spin 0 boson mass parameter has been assumed to
be equal to unit.

vector field (33) is invariant under the following gauge
transformation:

𝐴
𝑀
(𝑥
𝜌
, 𝑧) 󳨃󳨀→ 𝐴̃

𝑀
(𝑥
𝜌
, 𝑧)

= 𝐴
𝑀
(𝑥
𝜌
, 𝑧) + 𝜕

𝑀
𝐹 (𝑥
𝜌
, 𝑧) ,

(34)

where 𝐹(𝑥𝜌, 𝑧) denotes any arbitrary regular scalar function,
for𝑀 = 𝜇, 5.The field component𝐴

5
(𝑥
𝜌
, 𝑧) equals zero [25],

by this gauge. In fact, (34) yields

𝐴̃
5
(𝑥
𝜌
, 𝑧) = ∑

𝑛

𝑎
(𝑛)

5
(𝑥
𝜌
) 𝜏
𝑛
(𝑧) + 𝜕

𝑧
𝐹 (𝑥
𝜌
, 𝑧) . (35)

By choosing 𝐹(𝑥𝜌, 𝑧) = −∑
𝑛
𝑎
(𝑛)

5
(𝑥
𝜌
) ∫ 𝜏
𝑛
(𝑧)𝑑𝑧, [25] then

𝐴̃
5
= 0, and hence the action (33) leads to the space-time

action

𝑆
1
= −

1

4
∫𝑑
5
𝑥√−𝑔 (𝐹

𝜇]
𝐹
𝜇] + 2𝑒

−𝐴
𝑔
𝜇]
𝐴
󸀠

𝜇
𝐴
󸀠

]) , (36)

where ( )󸀠 = 𝜕
𝑧
. Given a set of orthonormal functions 𝜏

𝑛
(𝑧),

playing the role of spin 1Kaluza-Kleinmodes, and the decom-
position of the vector field𝐴

𝜇
(𝑥
𝜌
, 𝑧) = ∑

𝑛
𝑎
(𝑛)

𝜇
(𝑥
𝜇
)𝜏
𝑛
(𝑧)𝑒
−𝐴/2,

the action (36) reads

𝑆
1
= −

1

2
∑

𝑛

∫𝑑
4
𝑥√−𝑔(

1

2
𝑓
(𝑛)
𝜇]
𝑓
(𝑛)

𝜇] + 𝑚
2

𝑛
𝑎
(𝑛)
𝜇

𝑎
(𝑛)

𝜇
) , (37)

where 𝑓(𝑛)
𝜇] = 𝜕

[𝜇
𝑎
(𝑛)

]] stands for the 4𝐷 field strength tensor.
The KK modes 𝜏

𝑛
(𝑧) satisfy the Schrödinger equation

(−𝜕
2

𝑧
+ 𝑉
1
(𝑧)) 𝜏
𝑛
(𝑧) = 𝑚

2

𝑛
𝜏
𝑛
(𝑧) , (38)

where the mass-independent potential reads [31]

𝑉
1
(𝑧) =

1

4
𝐴
󸀠2
(𝑧) +

1

2
𝐴
󸀠󸀠
(𝑧)

= 𝑒
2𝐴(𝑧)

[
1

2

𝑑
2
𝐴 (𝑦)

𝑑𝑦
2

+
3

4
(
𝑑𝐴 (𝑦)

𝑑𝑦
)

2

] .

(39)

The profile of the above vector boson potential is depicted
in Figure 4 (dashed (red) lines) for different values of
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the localization parameter 𝑎. All the thick brane scenarios
with 𝑎 ≳ 1 provide localization conditions to have vector field
bound states. Increasing values of 𝑎 lead tomore stable bound
states.

6. Conclusions and Discussion

Thick branes driven by superpotentials supported by
deformed defects (c.f. (13)–(15)) for various bulkmatter fields
of spin 0, spin 1/2, and spin 1 have been investigated. For
spin 1 gauge fields, the profile of the associated vector boson
potential showed that, in the thick brane models for 𝑎 ≳ 1,
localization conditions hold as to guarantee the existence of
vector field bound states. Quantitatively, increasing values of
the brane thickness parameter, 𝑎, lead to more stable bound
states.

Concerning spin 0 (scalar) fields, the profile of the
potential evinces that only thick brane scenarios with 𝑎 ≳

4 provide localization conditions compatible to scalar field
bound states.

The most intricate result is related to spin 1/2 fields. In
fact, for fermionic fields, left-right potentials were deeply
studied and for the four models considered here, the issue of
localization has been scrutinized. It is worth pointing out that
models I, III, and IV admit volcano-type potentials, inducing
no mass gap to separate the fermion zero mode from the
excited KK massive modes. Hence continuous spectra for
the Kaluza-Klein modes of fermions of both chiralities are
allowed. A refined analysis of the values of the 𝑎 parameter
in these models, influencing the localization of fermionic
fields, was provided. Model II, induced by the superpotential
(14), reveals a peculiar behavior. In this model, right-chiral
fermions have positive values of the potential irrespective of
the extra dimension when 𝑎 = 1. Hence, except for this value,
the zero mode of left- and right-chiral fermions can not be
trapped. All potentials for model II are asymmetric and have
maxima at 𝑦 = 0 and minima at 𝑦 → ±∞, and there is no
bound state for right-chiral fermions, but, again, for 𝑉

𝑅,𝐿
(𝑦)

when 𝑎 = 1.
It is worth mentioning that, for the localization of a

fermion zeromode, themass term𝑀𝐹(𝑧)ΨΨwas considered
in the 5𝐷 action. An interesting approach concerning such
mass term in (19) has been studied, corresponding to the
so-called singular dark spinors [32, 33]. Such massive mass
dimension one quantum fields are prime candidates for the
dark matter problem, also presenting possible signatures at
LHC [34]. It generates a slightly different action responsible
for spin 1/2 matter fields localization [35, 36]. Such approach
can be also extended in the context of deformed defects here
presented.
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