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This paper investigates optimal decisions in a two-stage fashion product supply chain under two specified contracts: revenue-
sharing contract and wholesale price contract, where demand is dependent on retailing price and sales effort level. Optimal
decisions and related profits are analyzed and further compared among the cases where the effort investment fee is determined
and undertaken either by the retailer or the manufacturer. Results reveal that if the retailer determines the effort investment level,
she would be better off under the wholesale price contract and would invest more effort. However, if the manufacturer determines
the effort level, he prefers to the revenue-sharing contract most likely if both parties agree on consignment.

1. Introduction

Study in fashion products supply chains management often
focuses on inventory decisions and assumes that demand is
exogenously determined [1, 2]. However, in practice retail
store managers often combine marketing decisions such as
retailing price and promotion level, which directly impacts
consumer demands, with operational decisions like stock
levels. For example, retail outlet managers take extra effort
and offer discounting prices to those overstock items such
as clothes and shoes. Demands are therefore regarded as
endogenously determined in such supply chain systems. In
particular, this paper investigates optimal decisions in fashion
product supply chainswhere demand is endogenously depen-
dent on both price and sales effort.

Contracts in fashion and textile supply chains exhibits
different forms [3, 4]. Although wholesale pricing contract
has been and still is a dominant form, sharing revenue with
partners has increasingly grown in recent years [5]. We are
then interested in how contract types influence pricing and
sales effort decisions of a fashion product supply chain. It is
also worth noting though sales effort most often is offered by
a retailer, it is still quite common that a manufacturer decides
and exerts effort investment to promote sales. For example,
in Gome, the giant retail outlet in consumer electronics in

China, those brand-name manufacturers train and hire sales
people to promote their ownproducts inGome’s outlets. Does
it matter who takes the effort investment? If it does, will it
impact the effort level as well as other supply chain decisions?
In addition, under different contracting formswill the impact
be different? Under which scenario, will the retailer (or the
manufacturer) be better off?

This paper intends to answer these questions. In particu-
lar, the purpose of the paper is threefold: first, to investigate
the impact of price and sales effort on the demand and supply
chain decisions, second, to investigate the contracting form
on the supply chain decisions, and third, to identify the
players’ optimal choice for different supply chain settings.

To study the degree of effectiveness of price and sales
effort on sales depends on how these factors influence the
aggregate demand. The formulation of demand function is
therefore very essential. Huang et al. [6] give a comprehensive
survey on demand functions in decision modeling. Here we
assume a power model where both price and sales effort are
endogenous decision variables. The advantage of the power
model is its ability to characterize the nonlinear effects arising
in the market, however, with the drawback that the demand
elasticity always equals a constant. In addition, when price
or sales effort approaches zero, demand approaches infinity,
which is not realistic.
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Considering the complexity of the demand function, this
paper confines the discussion to deterministic demand in
a single manufacturer-retailer supply chain structure. Two
types of contracts are considered: wholesale price contract
and revenue-sharing contract.With the purpose tomaximize
their own profits, optimal decisions of both manufacturer
and retailer are investigated and further compared where the
effort investment fee determined either by the manufacturer
or by the retailer. Our results reveal that (1) if the retailer
decides the effort investment level, she would be better off
under the wholesale price contract and would invest more
effort. (2)However, if the manufacturer determines the effort
level, he prefers to the revenue-sharing contract given that the
effort impact factor belongs to certain specified range.

2. Related Work

There have been a growing number of studies investigat-
ing the impact of endogenous demand functions in recent
decades. A variety of mathematical forms have been devel-
oped to characterize demand functions which depend on
a firm’s operational and marketing activities, see [6] for a
general review. A simple classification is to divide it into
deterministic demand and stochastic demand formulations.

Assuming demand is stochastic and price-sensitive, a
series of work study joint pricing and inventory problems
and investigates the optimal combined decisions, with [7] on
single-period models and [8–11] on multiple-period models.
Extending the price-sensitive demand assumption from one-
stage problem to supply chain structures, Chauhan and Proth
[12] study the optimal decisions under a revenue-sharing
contract with the purpose to maximize the total chain’s net
profit. Chiu et al. [13] show that for price-sensitive demand,
a policy that combines the use of wholesale price, channel
rebate, and returns can coordinate a supply chain channel.
Assuming demand is deterministic and price-dependent,
some study in joint inventory and pricing problem is based on
linear demandmodels [14, 15], while others on power models
[16]. Conducting a two-stage fashion supply chain with risk-
averse retailer and price-dependent demand, Xu et al. [3]
discuss revenue sharing contract and two-part tariff contract
and further explores the optimal conditions for coordination.

Typical work assuming demand is dependent on sales
effort can be referred to [17–19]. Taylor [17] studies supply
chain coordination considering the impact of sales effort on
the demand under channel rebates. Zhang and Chen [18]
investigate different forms of contract with effort-dependent
demand. Chiu et al. [4] explore the performance of sales
rebate contract in fashion supply chains via a mean-variance
framework. Further noticing the impact of both price and
sales effort, He et al. [19] study the coordination of supply
chains.

Some work incorporates other marketing decisions like
advertising and display level into operational models and
study the combined impact on demand function. It should be
noted that because of the complexity of the demand function,
mostly demand is assumed to be deterministic. Assuming
demand is deterministic and a power function of pricing and

advertisement decisions, Yue et al. [20] study the optimal
marketing decisions in a manufacturer-retailer supply chain,
and compares the results between a Stackelberg and a Nash
game setting. Wang and Hu [21] study capital allocation’s
selection effect and investment efficiency problem, assuming
demand is a deterministic power function depending on
price and investment level. Cao and Zhou [22] find that
quantity discounting contract can coordinate the supply
chain given demand is deterministic and influenced by both
price and stock level.

This paper extends the exogenous demand assumption
to endogenous demand incorporating price and sales effort
decisions in a supply chain system, where demand is assumed
to be a deterministic power function following [20–22]. It
contributes to the literature by discussing and comparing
optimal decisions under different contracting form in the
supply chain. In addition, it jointly considers supply chain
decisions and marketing decisions, whoever decides and
undertakes the sales effort investment level really depends on
supply chain partners’ bargain power in the market.

3. The Model

We first describe a base model under a wholesale price
contract structure. In a two-stage supply chain system, a risk
neutral manufacturer supplies a product to a single risk-
neutral retailer. Let 𝑤 > 0 denote the wholesale price and
let 𝑐 > 0 denote the unit production cost.The retailer decides
the retailing price 𝑝 > 0 and effort investment level 𝑒. Here
the effort could be advertising, effort of sales people, and
display effort to promote products, and so forth. Demand is
a continuous variable dependent on retailing price and effort
investment level. More specifically, let demand 𝐷 = 𝑘𝑝

−𝛼

𝑒𝛽,
where 𝑘 > 0 is the potential market size. 𝛼 is the price impact
factor, with 𝛼 > 1 implying that demand is sensitive to the
price, while 0 < 𝛼 ≤ 1 implying that demand is insensitive to
the price. Following the standard assumption as mentioned
in [3], here we assume 𝛼 > 1. Similarly, 𝛽 is the impact
factor of effort investment level. In addition, we assume that
demand increases with the effort investment level, while at a
decreasing rate, that is, 0 < 𝛽 < 1 [14].

Employing a wholesale price contract, the game’s timing
is as follows. The manufacturer first sets a wholesale price,
𝑤. The retailer then decides the retailing price and effort
investment level, orders 𝑞 ≥ 0 units of inventory and pays
the manufacturer𝑤𝑞. Noticing that demand is deterministic,
we have 𝑞 = 𝐷 = 𝑘𝑝

−𝛼

𝑒𝛽. Assuming that order-fulfillment
time is zero and there is no production capacity constraint,
the manufacturer then immediately supplies 𝑞 units to the
retailer to satisfy her customer. The net profit of the retailer,
𝜋
𝑟

, and the net profit of the manufacturer, 𝜋
𝑚

, separately are

𝜋
𝑊,𝑅

𝑟

= 𝐷 (𝑝 − 𝑤) − 𝑒 = 𝑘 ⋅ 𝑝
−𝛼

⋅ 𝑒
𝛽

⋅ (𝑝 − 𝑤) − 𝑒, (1)

𝜋
𝑊,𝑅

𝑚

= 𝐷 ⋅ (𝑤 − 𝑐) . (2)

Here the first superscript “𝑊/𝑅” denotes for “whole-
sale price/revenue-sharing contract,” the second superscript
“𝑅/𝑀” denote for “retailer/manufacturer decides the effort
investment”.
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Under a revenue sharing contract, when the retailer
decides the effort investment level, the game’s timing is as
follows. The manufacturer first sets a wholesale price, 𝑤, and
revenue sharing ratio 𝜆.The retailer then decides the retailing
price and effort investment level, orders 𝑞 ≥ 0 units of
inventory and pays the manufacturer 𝑤𝑞. Similarly, 𝑞 = 𝐷.
The net profits of both the retailer and the manufacturer are

𝜋
𝑅,𝑅

𝑟

= 𝐷 (𝜆 ⋅ 𝑝 − 𝑤) − 𝑒 = (𝜆 ⋅ 𝑝 − 𝑤) ⋅ 𝑘 ⋅ 𝑝
−𝛼

⋅ 𝑒
𝛽

− 𝑒, (3)

𝜋
𝑅,𝑅

𝑚

= 𝐷 ⋅ [(1 − 𝜆) ⋅ 𝑝 + 𝑤 − 𝑐] . (4)

Under a wholesale price contract, however, if the man-
ufacturer determines and undertakes the effort investment
(like P&G, as a manufacturer, decides its advertising invest-
ment for Panteen shampoo), the manufacturer first sets a
wholesale price, 𝑤, and decides the effort investment level, 𝑒.
The retailer then decides the retailing price and orders 𝑞 ≥ 0

units of inventory and pays the manufacturer 𝑤𝑞, where 𝑞 =
𝐷. The net profits of both the retailer and the manufacturer
are

𝜋
𝑊,𝑀

𝑟

= 𝐷 (𝑝 − 𝑤) = 𝑘 ⋅ 𝑝
−𝛼

⋅ 𝑒
𝛽

⋅ (𝑝 − 𝑤) , (5)

𝜋
𝑊,𝑀

𝑚

= 𝐷 ⋅ (𝑤 − 𝑐) − 𝑒. (6)

Under a revenue-sharing contract, if the manufacturer
determines the effort investment level 𝑒, we revise the model
setting as follows. Instead of offering a wholesale price 𝑤, the
manufacturer asks the retailer to sell on consignment. The
retailer decides the revenue sharing ratio 𝜆 and the retailing
price 𝑝. The net profits of the retailer and the manufacturer
are then

𝜋
𝑅,𝑀

𝑟

= 𝐷 ⋅ 𝜆 ⋅ 𝑝, (7)

𝜋
𝑅,𝑀

𝑚

= 𝐷 [(1 − 𝜆) ⋅ 𝑝 − 𝑐] − 𝑒. (8)

In what follows, we will first discuss the optimal supply
chain decisions under the aforementioned settings, and then
compare them for different scenarios.

4. Optimal Decisions If Retailer
Determines the Effort

4.1. Under a Wholesale Price Contract. Given a wholesale
price𝑤, the retailer decides optimal decisions on the retailing
price 𝑝 and the effort investment 𝑒 to maximize (1). Taking
first order derivative on (1) yields

𝜕𝜋
𝑊,𝑅

𝑟

𝜕𝑝
= −𝛼 ⋅ 𝑘 ⋅ 𝑝

−𝛼−1

⋅ 𝑒
𝛽

⋅ (𝑝 − 𝑤) + 𝑘 ⋅ 𝑝
−𝛼

⋅ 𝑒
𝛽

= 0,

𝜕𝜋
𝑊,𝑅

𝑟

𝜕𝑒
= 𝛽 ⋅ 𝑘 ⋅ 𝑝

−𝛼

⋅ 𝑒
𝛽−1

(𝑝 − 𝑤) − 1 = 0.

(9)

Solving the above equations, we obtain the optimal
price 𝑝∗

𝑊,𝑅

= 𝛼𝑤/(𝛼 − 1) and the optimal effort 𝑒∗
𝑊,𝑅

=

[((𝛽 ⋅ 𝑘)/(𝛼 − 1)) ⋅ (𝛼/(𝛼 − 1))
−𝛼

]
1/(1−𝛽)

⋅ 𝑤(1−𝛼)/(1−𝛽).
The manufacturer then decides the optimal wholesale

price 𝑤∗
𝑊,𝑅

to maximize his profit (see (2)). Proposition 1
summarizes the optimal decisions of both the manufacturer
and the retailer.

Proposition 1. (i) 𝑤∗
𝑊,𝑅

= ((𝛼 − 𝛽)/(𝛼 − 1)) ⋅ 𝑐; (ii) 𝑝∗
𝑊,𝑅

=
(𝛼/(𝛼− 1)) ⋅ ((𝛼−𝛽)/(𝛼− 1)) ⋅ 𝑐; (iii) 𝑒∗

𝑊,𝑅

= [((𝛽 ⋅ 𝑘)/(𝛼 − 1))⋅
(𝛼/(𝛼 − 1))

−𝛼

]
1/(1−𝛽)

⋅ 𝑐(1−𝛼)/(1−𝛽) ⋅ ((𝛼 − 𝛽)/(𝛼 − 1))
(1−𝛼)/(1−𝛽).

Proof. (i) Substituting 𝑒∗
𝑊,𝑅

= [((𝛽 ⋅ 𝑘)/(𝛼 − 1)) ⋅ (𝛼/(𝛼−

1))
−𝛼

]
1/(1−𝛽)

⋅𝑤(1−𝛼)/(1−𝛽) and𝐷 = 𝑒/(𝛽⋅(𝑝−𝑤)) = (𝑒⋅(𝛼−1))/
(𝛽 ⋅ 𝑤) into (2) and taking first order optimal equation yields

𝜕𝜋
𝑊,𝑅

𝑚

𝜕𝑤
=

𝑐

𝑤2
⋅
𝛼 − 1

𝛽
⋅ 𝐴 ⋅ 𝑤

(1−𝛼)/(1−𝛽)

+
𝛼 − 1

𝛽
⋅ (1 −

𝑐

𝑤
)

⋅ 𝐴 ⋅
1 − 𝛼

1 − 𝛽
⋅ 𝑤
((1−𝛼)/(1−𝛽))−1

= 0,

(10)

where 𝐴 = [((𝛽 ⋅ 𝑘)/(𝛼 − 1)) ⋅ (𝛼/(𝛼 − 1))
−𝛼

]
1/(1−𝛽). We then

have 𝑤∗
𝑊,𝑅

= ((𝛼 − 𝛽)/(𝛼 − 1)) ⋅ 𝑐, verifying (i).
(ii)-(iii) Substituting 𝑤∗

𝑊,𝑅

back to 𝑝∗
𝑊,𝑅

and 𝑒∗
𝑊,𝑅

, (ii) and
(iii) can then be easily proved.

Based on the results of Proposition 1, we can then
calculate profits of both the retailer and the manufacturer, as
summarized in Table 1.

4.2. Under a Revenue-Sharing Contract. Given a revenue-
sharing contract {𝑤, 𝜆}, the retailer decides her optimal
decisions on 𝑝 and 𝑒 to maximize (3), while themanufacturer
decides his optimal decisions on 𝑤 and 𝜆 to maximize (4).
Proposition 2 summarizes related results.

Proposition 2. (i) 𝑤∗
𝑅,𝑅

= 𝛽𝑐; (ii) 𝜆∗
𝑅,𝑅

= 𝛽 (iii) 𝑝∗
𝑅,𝑅

= 𝛼𝑐/
(𝛼 − 1); (iv) 𝑒∗

𝑅,𝑅

= [((𝛽 ⋅ 𝑘)/(𝛼 − 1)) ⋅ (𝛼/(𝛼 − 1))
−𝛼

]
1/(1−𝛽)

⋅

𝑐(1−𝛼)/(1−𝛽) ⋅ 𝛽1/(1−𝛽).

Proof. The first order optimal equation of (3) yields 𝑝∗
𝑅,𝑅

=

(𝛼 ⋅ 𝑤)/((𝛼 − 1) ⋅ 𝜆) and 𝑒∗
𝑅,𝑅

= [((𝛽 ⋅ 𝑘)/(𝛼 − 1)) ⋅ (𝛼/
(𝛼 − 1))

−𝛼

]
1/(1−𝛽)

⋅ 𝑤(1−𝛼)/(1−𝛽) ⋅ 𝜆𝛼/(1−𝛽).
Substituting them back to (4), and then taking first order

derivative, we have

𝜕𝜋
𝑅,𝑅

𝑚

𝜕𝜆
=

−𝛼

𝜆2 ⋅ (𝛼 − 1)
⋅
𝛼 − 1

𝛽
⋅ 𝐴 ⋅ 𝑤

(1−𝛼)/(1−𝛽)

⋅ 𝜆
𝛼/(1−𝛽)

+ (
𝛼

(𝛼 − 1) ⋅ 𝜆
−

1

𝛼 − 1
−
𝑐

𝑤
) ⋅

𝛼 − 1

𝛽
𝐴 ⋅

𝛼

1 − 𝛽

⋅ 𝑤
(1−𝛼)/(1−𝛽)

⋅ 𝜆
(𝛼/(1−𝛽))−1

= 0,

𝜕𝜋
𝑅,𝑅

𝑚

𝜕𝑤
=

𝑐

𝑤2
⋅
𝛼 − 1

𝛽
𝐴 ⋅ 𝑤
(1−𝛼)/(1−𝛽)

⋅ 𝜆
𝛼/(1−𝛽)

+ (
𝛼

(𝛼 − 1) ⋅ 𝜆
−

1

𝛼 − 1
−
𝑐

𝑤
) ⋅

𝛼 − 1

𝛽
𝐴

⋅
1 − 𝛼

1 − 𝛽
⋅ 𝑤
((1−𝛼)/(1−𝛽))−1

⋅ 𝜆
𝛼/(1−𝛽)

= 0.

(11)

Solving the above equations yields 𝑤∗
𝑅,𝑅

= 𝛽𝑐 and 𝜆∗
𝑅,𝑅

=

𝛽. Substituting them back to 𝑝∗
𝑅,𝑅

and 𝑒∗
𝑅,𝑅

, (i)–(iv) are then
proved.
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Similarly, we can then calculate profits of both the retailer
and the manufacturer, summarized in Table 1.

4.3. Comparison. Comparing the optimal decisions and prof-
its between the above two settings, we have the following
results.

Theorem 3. (i) 𝑝∗
𝑊,𝑅

> 𝑝∗
𝑅,𝑅

; (ii) 𝑒∗
𝑊,𝑅

> 𝑒∗
𝑅,𝑅

; (iii) 𝜋𝑊,𝑅
𝑟

>

𝜋𝑅,𝑅
𝑟

.

Proof. (i) From Propositions 1 and 2, we have 𝑝∗
𝑊,𝑅

/𝑝∗
𝑅,𝑅

=

(𝛼 − 𝛽)/(𝛼 − 1). Noticing 𝛼 > 1 and 0 < 𝛽 < 1, easily we have
(𝛼 − 𝛽)/(𝛼 − 1) > 1, thus, (i) is proved.

(ii) Notice 𝑒∗
𝑊,𝑅

/𝑒∗
𝑅,𝑅

= [((𝛼 − 1)/(𝛼 − 𝛽))
𝛼−1

⋅ (1/
𝛽)]
1/(1−𝛽), and 1/(1 − 𝛽) > 1. To show 𝑒∗

𝑊,𝑅

/𝑒∗
𝑅,𝑅

> 1, it is
equivalently to show ln[((𝛼 − 1)/(𝛼 − 𝛽))𝛼−1 ⋅ (1/𝛽)] > 0.

Let 𝑓(𝛼, 𝛽) = (𝛼 − 1) ⋅ [ln(𝛼 − 1) − ln(𝛼 − 𝛽)] − ln𝛽, since
𝜕𝑓(𝛼, 𝛽)/𝜕𝛽 = (𝛼−1)/(𝛼−𝛽)−1/𝛽 = (𝛼⋅(𝛽−1))/(𝛽⋅(𝛼−𝛽)) <

0, 𝑓(𝛼, 𝛽) decreases in 𝛽. Thus,𝑓(𝛼, 𝛽) > 𝑓(𝛼, 1) = 0.
Similarly, we have 𝜕𝑓(𝛼, 𝛽)/𝜕𝛼 = [ln(𝛼 − 1) − ln(𝛼 − 𝛽)] +

(𝛼− 1) ⋅(1/(𝛼− 1) − 1/(𝛼−𝛽)) = ln((𝛼− 1)/(𝛼−𝛽)) − (𝛼− 1)/
(𝛼 − 𝛽) + 1.

Let𝑥 = (𝛼−1)/(𝛼−𝛽), obviously𝑥 ∈ (0, 1) and𝑥 increases
in 𝛼. Let 𝑓(𝑥) = ln𝑥 − 𝑥 + 1, since 𝜕𝑓(𝑥)/𝜕𝑥 = 1/𝑥 − 1 > 0,
then 𝑓(𝑥) increases in 𝑥, and 𝑓(𝑥) < 𝑓(1) = 0. Therefore
𝜕𝑓(𝛼, 𝛽)/𝜕𝛼 < 0, and 𝑓(𝛼, 𝛽) decrease in 𝛼.

As 𝛼 → ∞, ((𝛼 − 1)/(𝛼 − 𝛽))𝛼−1 = 𝑒𝛽−1, 𝑓(𝛼, 𝛽) =

ln(𝑒𝛽−1/𝛽). Notice that 𝑓(𝛼, 𝛽) decreases in 𝛽, and 𝑓(∞, 𝛽) >

𝑓(∞, 1) = 0, therefore, 𝑓(𝛼, 𝛽) > 𝑓(∞, 𝛽) > 0. Thus,
𝑒
∗

𝑊,𝑅

/𝑒∗
𝑅,𝑅

> 1 holds. (ii) is then proved.
(iii) Noticing 𝜋𝑊,𝑅

𝑟

/𝜋𝑅,𝑅
𝑟

= [((𝛼 − 1)/(𝛼 − 𝛽))
𝛼−1/

𝛽]
1/(1−𝛽). Following the same prove process as in (ii), thus

𝜋𝑊,𝑅
𝑟

/𝜋𝑅,𝑅
𝑟

> 1.

Remark 4. When the retailer determines and undertakes the
effort investment, the optimal wholesale price and retailing
price are higher under wholesale price. So is the effort
investment level. As a payback, the retailer betters off under
a wholesale price contract. Theorem 3 also implies that
the retailer has no intension to carry out revenue-sharing
contract if she has to undertake the effort investment.

5. Optimal Decisions If Manufacturer
Determines the Effort

5.1. Under a Wholesale Price Contract. Given a wholesale
price 𝑤, and the determined effort investment 𝑒, the retailer
decides optimal retailing price 𝑝 to maximize (5). The first
order optimality of (5) yields 𝑝∗

𝑊,𝑀

= (𝛼 ⋅ 𝑤)/(𝛼 − 1). The
manufacturer then decides the optimal 𝑤 and 𝑒 to maximize
(6). Proposition 5 summarizes the optimal decisions.

Proposition 5. (i) 𝑝
∗

𝑊,𝑀

= (𝛼2/(𝛼 − 1)
2

) ⋅ 𝑐; (ii) 𝑤∗
𝑊,𝑀

= (𝛼/(𝛼 − 1)) ⋅ 𝑐; (iii) 𝑒∗
𝑊,𝑀

= [((𝛽 ⋅ 𝑘)/(𝛼 − 1)) ⋅ (𝛼/
(𝛼 − 1))

−𝛼

]
1/(1−𝛽)

⋅ 𝑐(1−𝛼)/(1−𝛽) ⋅ (𝛼/(𝛼 − 1))
−𝛼/(1−𝛽).

Proof. Substituting 𝑝∗
𝑊,𝑀

= (𝛼 ⋅ 𝑤)/(𝛼 − 1) into (6) obtains

𝜋
𝑊,𝑀

𝑚

= 𝐷 ⋅ (𝑤 − 𝑐) − 𝑒

= 𝑘 ⋅ (
𝛼

𝛼 − 1
)
−𝛼

⋅ 𝑤
−𝛼

⋅ 𝑒
𝛽

⋅ (𝑤 − 𝑐) − 𝑒.
(12)

Taking its first order optimality equation yields

𝜕𝜋
𝑊,𝑀

𝑚

𝜕𝑤
= 𝑘 ⋅ (

𝛼

𝛼 − 1
)
−𝛼

⋅ (−𝛼) ⋅ 𝑤
−𝛼−1

⋅ 𝑒
𝛽

⋅ (𝑤 − 𝑐)

− 𝑘 ⋅ (
𝛼

𝛼 − 1
)
−𝛼

⋅ 𝑤
−𝛼

⋅ 𝑒
𝛽

= 0,

𝜕𝜋
𝑊,𝑀

𝑚

𝜕𝑒
= 𝑘 ⋅ (

𝛼

𝛼 − 1
)
−𝛼

⋅ 𝛽 ⋅ 𝑤
−𝛼

⋅ 𝑒
𝛽−1

⋅ (𝑤 − 𝑐) − 1 = 0.

(13)

Solving the above equations obtains 𝑤∗
𝑊,𝑀

= (𝛼/(𝛼 −

1)) ⋅ 𝑐 and 𝑒∗
𝑊,𝑀

= [((𝛽 ⋅ 𝑘)/(𝛼 − 1)) ⋅ (𝛼/(𝛼 − 1))
−𝛼

]
1/(1−𝛽)

⋅

𝑐(1−𝛼)/(1−𝛽) ⋅ (𝛼/(𝛼 − 1))
−𝛼/(1−𝛽). Thus, (ii) and (iii) are proved.

Substituting 𝑤∗
𝑊,𝑀

into 𝑝∗
𝑊,𝑀

= (𝛼 ⋅ 𝑤)/(𝛼 − 1), we can then
easily prove (i).

Profits of both the retailer and the manufacturer are
calculated and listed in Table 1.

5.2. Under a Revenue-Sharing Contract on Consignment.
Under a revenue-sharing contract on consignment, the
retailer decides the revenue sharing ratio 𝜆 and the selling
price 𝑝 to maximize (7), while the manufacturer decides
the effort investment 𝑒 to maximize (8). Proposition 6
summarizes the related results.

Proposition 6. (i) 𝑝
∗

𝑅,𝑀

= (𝛼 ⋅ 𝑐)/(𝛼 − 1); (ii) 𝜆∗
𝑅,𝑀

=

(1−𝛽)/𝛼; (iii) 𝑒∗
𝑅,𝑀

= [((𝛽 ⋅ 𝑘)/(𝛼 − 1)) ⋅ (𝛼/(𝛼 − 1))
−𝛼

]
1/(1−𝛽)

⋅

𝑐(1−𝛼)/(1−𝛽) ⋅ (𝛽)
1/(1−𝛽).

Proof. Taking the first order derivative on (8) and sets to be
zero obtains

𝜕𝜋
𝑅,𝑀

𝑚

𝜕𝑒
= [(1 − 𝜆) ⋅ 𝑝 − 𝑐] ⋅ 𝑘 ⋅ 𝑝

−𝛼

⋅ 𝛽 ⋅ 𝑒
𝛽−1

− 1 = 0. (14)

Solving the equation yields 𝑒∗
𝑅,𝑀

= [𝛽 ⋅ 𝑘]
1/(1−𝛽)

⋅

[(1 − 𝜆) ⋅ 𝑝 − 𝑐]
1/(1−𝛽)

⋅𝑝−𝛼/(1−𝛽). Substituting it back to (7) and
taking the first order optimality equation yields

𝜕𝜋
𝑅,𝑀

𝑟

𝜕𝑝
=
1 − 𝛼 − 𝛽

1 − 𝛽
⋅ 𝐵 ⋅ [(1 − 𝜆) ⋅ 𝑝 − 𝑐]

𝛽/(1−𝛽)

⋅ 𝑝
((1−𝛼−𝛽)/(1−𝛽))−1

+ 𝐵 ⋅ (1 − 𝜆)

⋅ [(1 − 𝜆) ⋅ 𝑝 − 𝑐]
(𝛽/(1−𝛽))−1

⋅ 𝑝
(1−𝛼−𝛽)/(1−𝛽)

= 0,

(15)

where 𝐵 = 𝜆 ⋅ 𝑘 ⋅ [𝛽 ⋅ 𝑘]
𝛽/(1−𝛽).
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𝜕𝜋
𝑅,𝑀

𝑟

𝜕𝜆
= 𝑘 ⋅ [𝛽 ⋅ 𝑘]

𝛽/(1−𝛽)

⋅ [(1 − 𝜆) ⋅ 𝑝 − 𝑐]
𝛽/(1−𝛽)

⋅ 𝑝
(1−𝛼−𝛽)/(1−𝛽)

−
𝛽

1 − 𝛽
⋅ 𝑝 ⋅ 𝜆 ⋅ 𝑘 ⋅ [𝛽 ⋅ 𝑘]

𝛽/(1−𝛽)

⋅ [(1 − 𝜆) ⋅ 𝑝 − 𝑐]
(𝛽/(1−𝛽))−1

⋅ 𝑝
(1−𝛼−𝛽)/(1−𝛽)

= 0.

(16)

Solving the above equations obtains 𝑝∗
𝑅,𝑀

= (𝛼 ⋅ 𝑐)/(𝛼−1)

and 𝜆∗
𝑅,𝑀

= (1 − 𝛽)/𝛼; thus, (i)-(ii) are proved.
Substituting them back to 𝑒∗

𝑅,𝑀

and then (iii) is proved.

Profits of both the retailer and themanufacturer are listed
in Table 1.

5.3. Comparison. Comparing the optimal decisions and prof-
its between the above two setting, we have the following
theorem.

Theorem 7. (i) 𝑝∗
𝑊,𝑀

> 𝑝
∗

𝑅,𝑀

; (ii) when 1/𝑒
0

≤ 𝛽 < 1, where
𝑒
0

is the irrational number and 𝑒
0

≈ 2.71828, we have 𝑒∗
𝑅,𝑀

>

𝑒∗
𝑊,𝑀

, in addition, 𝜋𝑅,𝑀
𝑚

> 𝜋𝑊,𝑀
𝑚

.

Proof. (i) From above discussions we have 𝑝∗
𝑊,𝑀

/𝑝∗
𝑅,𝑀

=

𝛼/(𝛼 − 1). Notice 𝛼 > 1, thus, (i) holds.
(ii) Notice 𝑒∗

𝑅,𝑀

/𝑒∗
𝑊,𝑀

= [𝛽 ⋅ (𝛼/(𝛼 − 1))
𝛼

]
1/(1−𝛽). Let

𝑓(𝛼) = (𝛼/(𝛼 − 1))
𝛼

= (1 + 1/(𝛼 − 1))
𝛼. Notice that 𝑓(𝛼) is a

decreasing function, in addition, as 𝛼 → ∞, 𝑓(𝛼) = 𝑒
0

,
where 𝑒

0

is the irrational number and 𝑒
0

≈ 2.71828. Thus,
if defining 𝑓(𝛼, 𝛽) = 𝛽 ⋅ (𝛼/(𝛼 − 1))

𝛼, for 𝛼 > 1, 𝑓(𝛼, 𝛽) >
𝑓(∞, 𝛽) = 𝛽𝑒

0

. If 1 > 𝛽 > 1/𝑒
0

, then 𝑒∗
𝑅,𝑀

/𝑒∗
𝑊,𝑀

=

[𝛽 ⋅ (𝛼/(𝛼 − 1))
𝛼

]
1/(1−𝛽)

> 1, thus, proved.
Similarly, from Table 1, 𝜋∗

𝑅,𝑀

/𝜋∗
𝑊,𝑀

= [𝛽 ⋅ (𝛼/(𝛼−

1))
𝛼

]
1/(1−𝛽), following the same proof process, If 1 > 𝛽 > 1/𝑒

0

,
𝜋∗
𝑅,𝑀

/𝜋∗
𝑊,𝑀

> 1 holds.

Remark 8. When the manufacturer determines and under-
takes the effort investment, the optimal retailing price is
higher underwholesale price. If the effort impact parameter𝛽
is in a certain range (1/𝑒

0

≤ 𝛽 < 1), the effort investment level
under the revenue sharing contract is higher, as a payback, the
manufacturer betters off as compared to thewholesale pricing
contract. However, it is difficult to tell which contract benefits
the manufacturer if 𝛽 in the range of 0 < 𝛽 < 1/𝑒

0

.

6. Conclusions

This paper studies a singlemanufacturer-retailer supply chain
under different contract settings. Optimal decisions under
revenue-sharing contract and wholesale price contract are
analyzed and compared. If the effort investment level is
determined and undertaken by the retailer, under wholesale
price contract, she faces a higher wholesale price, which
results in a higher retailing price and larger effort investment.
As a payback, the retailer is better off. If the manufacturer
determines and undertakes the effort investment, under the
wholesale price contract, the retailing price is higher, while

the effort investment is lower if the impact parameter 𝛽

satisfies 1/𝑒
0

≤ 𝛽 < 1. The manufacturer would be better
off under a revenue-sharing contract if both parties agree on
consignment.

Finally, some limitations of this paper should be pointed
out. First, we only consider deterministic demand function,
which limits its application in practice considering the ran-
dom nature of demand variables. Second, we only discuss
the optimal decisions under different supply chain contract
and sales effort investment settings. Whether such contracts
coordinate the supply chain or not is out of our discussion,
which, however, is worthy of exploring in the future.
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