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ABSTRACT
Anewmethodology is presented formodel reduction of linear parabolic partial differential equations
(PDEs) on general geometries using multivariate splines on triangulations. State-space descriptions
are derived that can be used for control design. This method uses Galerkin projection with B-splines
to derive a finite set of ordinary differential equations (ODEs). Any desired smoothness conditions
between elements as well as the boundary conditions are flexibly imposed as a system of side con-
straints on the set of ODEs. Projection of the set of ODEs on the null space of the system of side con-
straints naturally produces a reduced-order model that satisfies these constraints. This method can
be applied for both in-domain control and boundary control of parabolic PDEs with spatially vary-
ing coefficients on general geometries. The reduction method is applied to design and implement
feedback controllers for stabilisation of a 1-D unstable heat equation and a more challenging 2-D
reaction–convection–diffusion equation on an irregular domain. It is shown that effective feedback
stabilisation can be achieved using low-order control models.

1. Introduction

This paper presents a reduced-order modelling
approach for control of distributed parameter sys-
tems (DPS) on general geometries using multivariate
B-splines defined on triangulations (de Boor, 1987; Farin,
1986; Lai & Schumaker, 2007). With DPS the system
state, input, output and parameters vary both spatially
and temporally. This paper focuses on DPS governed by
parabolic partial differential equations (PDEs) which, for
example, arise in the context of chemical processes, ther-
mal processes and fluid dynamic systems. PDE control
theory often focuses on extending finite-dimensional
results such as stability and optimal control to the
infinite-dimensional case (see Curtain and Zwart (1995)
and Lasiecka and Triggiani (2000) for a more complete
coverage, and references therein). While mathemati-
cally precise, these results are often derived for general
classes of PDEs, and for systems defined on 2-D/3-D
general geometries, only abstract results are typically
available.

This led to the attention of structure-specific oppor-
tunities that exist in PDEs to produce results that are
both constructive and mathematically rigorous (Bamieh,
Paganini, & Dahleh, 2002; Smyshlyaev & Krstic, 2004).
Constructive methods for solving optimal control prob-
lems for a class of spatially invariant systems with dis-
tributed sensing and actuation was first presented in
Bamieh et al. (2002). By applying a Fourier transform
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to the system along the spatially invariant coordinates,
the system can be block-diagonalised and decoupled in
terms of a frequency parameter that replaces the spa-
tially invariant coordinate (Bamieh et al., 2002). In this
way, analysis and design of the controller can be carried
out on a parameterised lower dimensional system and
later reconstructed in the physical space (Bamieh et al.,
2002; Hagen,Mezić, & Bamieh, 2004). In Smyshlyaev and
Krstic (2004, 2005), a closed-form continuous backstep-
ping control/observer design method was first presented
for stabilisation of a class of 1-D parabolic PDEs. The
backsteppingmethod has the powerful feature that it pro-
duces explicitly computable gains and has been extended
to higher dimensional spatial domains and systems of
coupled PDEs. We refer to Baccoli, Pisano, and Orlov
(2015) for a recent overview of developments of the back-
stepping method. In particular, by also exploiting spatial
invariance, this method has led to explicit solutions for 2-
D and 3-D spatially invariant control problems (Vazquez
& Krstic, 2007b) such as the Navier–Stokes channel flow
(Vazquez & Krstic, 2007a).

Many practical engineering problems are formulated
in spatially variant geometries such as irregular chan-
nels or require that the controls and sensors are spatially
localised. In this case, a finite-dimensional approxima-
tion of the infinite-dimensional system is often required.
Model reduction is the process of reducing the infinite-
dimensional PDE to a finite set of ODEs that can be
used for control design. We refer to Li and Qi (2010)
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for a recent review on model reduction techniques for
PDEs. Galerkin projection is most commonly applied to
parabolic PDEs and in this method, one obtains a lower
dimensional approximation by projecting the PDE onto a
set of spatial basis functions that contain characteristics of
the expected solution. The orthogonality of the projection
ensures the best possible solution in the space spanned by
the basis functions. The main advantage of this approach
is that it is robust with respect to the truncated dynam-
ics; a controller which exponentially stabilises the closed-
loopODE system also stabilises the closed-loop parabolic
PDE system (Balas, 1979, 1983, 1984). On the other hand,
it may require a large number of modes to derive an ODE
system with the desired degree of accuracy. Selection of
the spatial basis functions is critical and has a great impact
to the modelling performance.

A feature of most parabolic PDE systems is that
the eigenspectrum of the spatial differential operator
shows a clear separation between a finite-dimensional
slow part and an infinite-dimensional fast complement
(Balas, 1979). If the eigenfunctions of the spatial differ-
ential operator are known, a suitable choice for model
reduction is, therefore, the projection of the system on
the modal subspace spanned by the dominant eigen-
functions (Armaou & Christofides, 2001; Christofides,
2001; Christofides & Baker, 1999). This requires ana-
lytic solutions of the spatial differential operator eigen-
value problem to form the modal subspace which are
often not available for systems defined on irregular
domains and systems with spatially varying coefficients.
Another approach is to utilise simulation data or exper-
imental data of the PDE system to compute a set of
empirical eigenfunctions through the proper orthogo-
nal decomposition (POD) method (see e.g. Armaou &
Christofides, 2001, 2002; Baker, Armao, & Christofides,
2000). The POD method is a statistical technique that
extracts the most energetic modes from a set of snap-
shots and therefore leads to low-order expansions. The
PODmethod is applicable to a wide range of DPS, includ-
ing those defined on irregular domains. However, each
set of POD modes is intrinsic to a particular simula-
tion or snapshots and its effectiveness is highly dependent
on the simulation/experimental settings (Li & Qi, 2010;
Rowley, 2005). It also has limitations for the describ-
ing input–output behaviour of the system (Rowley,
2005).

This paper introduces a new systematic approach for
model reduction of parabolic PDEs on general geometries
using multivariate B-splines defined on triangulations
(de Boor, 1987; Farin, 1986; Lai & Schumaker, 2007). This
method uses Galerkin projection with B-splines to derive
a finite set of ODEs. The multivariate B-spline consists of
piecewise-defined polynomials of arbitrary degree called

B-form polynomials. Any desired smoothness conditions
between elements as well as the boundary conditions are
flexibly imposed as a system of side constraints on the
set of ODEs. Projection of the set of ODEs on the null
space of the system of side constraints naturally produces
a reduced-order model that satisfies these constraints.
The multivariate B-spline has been used in the past to
find numerical solutions for elliptic PDEs (Awanou, Lai,
& Wenston, 2005; Hu, Han, & Lai, 2007) and steady
Navier–Stokes equations (Awanou & Lai, 2004; Lai &
Wenston, 2004) based on energy methods, and to find
numerical solutions for Hamilton–Jacobi–Bellman PDEs
using the collocationmethod (Govindarajan, de Visser, &
Krishnakumar, 2014). This work is different in the sense
that it is does not find explicit numerical solutions for
PDEs. Instead, the PDE is spatially discretised and con-
verted to a linear state-space representation that is used
for control design.

The main contribution of the paper is a new frame-
work to derive state-space descriptions for a class of
parabolic PDEs to which standard control theoretic tools
can be applied. Themain advantage of this method is that
it is general in the sense that it can be applied for both
in-domain control and boundary control of parabolic
PDEs with spatially varying coefficients defined on gen-
eral geometries. It is in particular useful for parabolic
PDEs for which analytic solutions of the spatial dif-
ferential operator eigenvalue problem are not possible.
We are also able to use multivariate spline functions
of variable degrees and variable smoothness across any
given domain. These properties make spline functions
more user-friendly compared to standard finite elements.
Splines with higher order smoothness can directly be
implemented to approximate the strong solution of
the PDE system and polynomials of high degrees can
be easily used to get better approximation properties
(Awanou et al., 2005; Awanou & Lai, 2004; Hu et al.,
2007). The degree and order of continuity of splines are
simply input variables for creating the state-space models
which can also be tuned to achieve a desirable trade-
off between the accuracy and the order of the model.
Together with the mesh flexibility, this method allows the
construction of reduced-order models which are both
accurate and suitable for online applications. We refer to
Awanou et al. (2005) for an overview of more features
of multivariate splines and references within. Compared
to POD–Galerkin methods, this approach may lead to
higher order models, but in return provides a systematic
approach in which the input–output behaviour of the
system is easily established. This method can also be used
in conjunction with other open-loop truncation meth-
ods for state-space systems such as balanced POD
(Rowley, 2005) and balanced truncation. This
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combination can open a new route towards the control of
more complex problems such as the three-dimensional
Navier–Stokes equations.

In this paper, we restrict our attention to a linear class
of parabolic PDEs. Nonlinear parabolic PDEs are also
tractable for the spline Galerkin method and, in the most
general case, lead to nonlinear state space descriptions
of the PDE. To accurately capture the nonlinear cou-
plings between the fast and slow modes without using a
high-order model, the Galerkin method should be used
in combination with (approximate) inertial manifolds to
compensate the fastmodeswith the slowmodes (Armaou
& Christofides, 2001; Baker et al., 2000; Christofides &
Daoutidis, 1997). Nonlinearmodel reduction and control
of parabolic PDEswill, therefore, be considered in a forth-
coming study.

The outline of the paper is as follows. In
Section 2, the class of parabolic PDEs and con-
trol types for which the reduction method can
be applied is formulated. In Section 3, a pre-
liminary on multivariate B-splines is given. In
Section 4, the side constraints for the boundary con-
ditions are derived using new expressions for differential
operators acting on B-splines. Section 5 contains the
main contribution of this paper in which the state-space
descriptions are derived, and in Section 6, the state-space
models are used to synthesise the output feedback con-
troller. Finally, in Section 7, the reductionmethod is used
to implement the feedback controllers for stabilisation
of a 1-D unstable heat equation and a 2-D unstable
reaction–convection–diffusion equation on an irregular
domain, followed by conclusions in Section 8.

2. Class of systems under consideration

Let� be an open-bounded subset of Rn with a Lipschitz-
continuous boundary � and set �T = � × (0, T] for
some fixed time T > 0. In this paper, we consider linear
parabolic PDEs, with the following state space descrip-
tion:

∂y(x, t )
∂t

= Ly(x, t ) + g(x)u(t ) in�T (1a)

L�y(x, t ) = g�(x)u�(t ) on�T (1b)

zmk (t ) =
∫

�

δ(x − xk)Lzmy(x, t ), k = 1, · · · ,K

(1c)

zci (t ) =
∫

�

φi(x)Lzcy(x, t )dx, i = 1, · · · ,Q

(1d)

with y(x,t) the state variable, x � � the spatial
coordinate, zmk ∈ R a measured output and zci ∈ R a

controlled output which is used to define the con-
trol objective later in this section. The vector func-
tion g(x) = [g1(x),… , gm(x)], gi ∈ L2(�) describes how
the inputs u(t ) = [u1(t ), . . . , um(t )]T ∈ R

m fromm lin-
ear actuators are distributed in the domain, g�(x) =
[g�,1(x), . . . , g�,m(x)], g�,i ∈ L2(�) describes how the
inputs u�(t ) = [u�,1(t ), . . . , u�,m(t )]T ∈ R

m� are dis-
tributed over the boundary and φi(x) is determined by
the desired performance specifications in the domain �.
The operator L is defined as a linear partial differential
operator with derivatives up to order k � 1 with spatially
varying coefficients

L =
∑
|α|≤k

aα(x)Dα = a0(x) +
∑

1≤|α|≤k

aα(x)Dα (2)

where we have used the well-knownmulti-index notation
for the spatial derivative

Dαy = ∂ |α|y
∂xα1

1 ∂xα2
2 · · · ∂xαn

n
(3)

for a given multi-index (α1, α2,… , αn) of order |α| =
α1 + α2 + ��� + αn and the operators L�, Lzc, Lzm are
defined as partial differential operators with constant
coefficients. Common boundary conditions are Dirich-
let (L� = I), Neumann (L� = ∂

∂n ) and Robin boundary
conditions (L� = I + ∂

∂n ). In this study, feedback stabil-
isation of (1a) is considered where the PDE describes
the error between the unsteady response and the equilib-
rium profile, e.g. the error between the unsteady temper-
ature and the equilibrium profile of the temperature. It is
assumed that point measurements from K boundary or
in-domain sensors are used for feedback.

The objective is to reduce the infinite-dimensional
state-space system (1) to a finite-dimensional state-space
system using multivariate splines, which can be used to
synthesise any suitable linear controller. In this study,
a classical linear quadratic optimal control problem is
considered. To define the control objective, the system
(1) is formulated as an infinite-dimensional system in a
Hilbert space (Christofides & Daoutidis, 1997; Curtain &
Zwart, 1995). The derivation of this system is also closely
related to the derivation of the reduced-order model in
Section 5. Let H be the space of functions defined on
� that satisfy the boundary conditions (1b), with inner
product

(
y1, y2

) = ∫
�
y1y2dx and norm ‖y1‖2 = (y1,

y1)1/2 where y1, y2 ∈ H. Furthermore, let the trajectory
segment y( ·, t)= {y(x, t), x� �} be the state and y(t )|� ∈
U the value of y(t) on the boundary defined in a separa-
ble Hilbert space U . Defining the following operators on
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H as

A : D(A) ⊂ H �→ H, Ay(t ) = Ly(t )
A� : D(A�) ⊂ H �→ U , A�y(t ) = L�y(t )|�
A : D(A) �→ H, Ay(t ) = Ay(t ), for y ∈ D(A),

D(A) = D(A) ∩ ker(A�) = {
y ∈ H; L�y(t )|� = 0

}
(4)

whereD(A) denotes the domain ofA, defining the input
and output operators as

B : R
m �→ H, Bu(t ) = g(x)u(t )

B� : R
m� �→ U , B�u�(t ) = g�(x)u�(t )

Cmk : H �→ R, Cmky(t ) = (
δ(x − xk), Lzmy(t )

)
Cci : H �→ R, Cciy(t ) = (

φi(x), Lzcy(t )
)

(5)

construct an operatorQ such that

Q : U �→ H, A�QB�u�(t ) = B�u�(t ) (6)

system (1) can be formulated as (Curtain & Zwart, 1995)

∂ ỹ(t )
∂t

= Aỹ(t ) − QB�u̇�(t ) + AQB�u�(t )

+Bu(t ), ỹ(0) = ỹ0
zm(t ) = Cm(ỹ(t ) + QB�u�(t )) (7)
zc(t ) = Cc(ỹ(t ) + QB�u�(t ))

where the solution of (7) is related to the classical solution
of (1) by

y(t ) = ỹ(t ) + QB�u�(t ). (8)

From (6) and (8), it follows that ỹ(t ) can be regarded
as a homogeneous solution and QB�u�(t ) as a par-
ticular solution that satisfies the boundary conditions.
Equation (7) can also be formulated in the infinite-
dimensional state space format

ẋ(t ) = Āx(t ) + B̄ū(t ), x(0) = x0
zm(t ) = C̄mx(t ), zc(t ) = C̄cx(t ) (9)

where

x(t ) = [
ỹT (t ) uT�(t )

]T
, ū(t ) = [

uT (t ) u̇T�(t )
]T

Ā =
[
A AQB�

0 0

]
, B̄ =

[
B −QB�

0 I

]
(10)

C̄m = [
Cm CmQB�

]
, C̄c = [

Cc CcQB�

]

The control objective is to synthesise an output feedback
that minimises the quadratic (LQR) cost function

J =
∫ ∞

0
(zc, zc)Rn + (ū,Rū)Rn dt (11)

where (·, ·)Rn denotes the standard inner product in R
n.

3. Preliminaries onmultivariate splines

Given a bounded polygonal domain� ∈ R
n and let T be

a triangulation of �. The spline space is the space of all
smooth piecewise polynomial functions of degree d and
smoothness r over T with 0 � r < d

Srd (T ) := s ∈ Cr (�) : s|� ∈ Pd, ∀� ∈ T (12)

where Pd denotes the space of all polynomials of total
degree d and � denotes an n-simplex (line in 1-D, trian-
gle in 2-D, tetrahedron in 3-D) and� = ⋃

�∈T �. In this
paper, the B-form representation of splines defined on tri-
angulations is used (de Boor, 1987; Farin, 1986). Only the
essential theory that is necessary for the treatment of the
spline model reduction framework is discussed here. We
refer to Lai and Schumaker (2007) for a more complete
coverage.

Let � = 〈v0, v1,… , vn〉 be an n-simplex with vertices
vi = (x(i)

1 , x(i)
2 , . . . , x(i)

n ). A separate local coordinate sys-
tem can be defined for each simplex in terms of barycen-
tric weights. In this coordinate system, every point x =
(x1, x2, . . . , xn) ∈ R

n is described in terms of a unique
weighted vector sum of the vertices of �

x =
n∑

i=0

bivi,
n∑

i=0

bi = 1 (13)

where b = (b0, b1, . . . , bn) ∈ R
n+1 is called the barycen-

tric coordinate of point x = (x1,… , xn) relative to sim-
plex�. In the remainder of this paper, we denote b� j (x) :
R

n → R
n+1 as the mapping from Cartesian coordinates

to barycentric coordinates for a specific simplex with b =
b� j (x).

The simplex polynomials are expressed in terms of
Bernstein–Bézier basis polynomials of degree d

Bd
κ (b� j (x)) =

⎧⎨
⎩

d!
κ0!κ1! · · · κn!b

κ0
0 b

κ1
1 · · · bκn

n = d!
κ!
bκ , x ∈ � j

0, x /∈ � j
(14)

with κ = (κ0, κ1, . . . , κn) ∈ N
n+1 a multi-index with

properties κ! = κ0!κ1!���κn! and |κ | = κ0 + κ1 + ��� +
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Figure . Spatial location B-coefficients for a two-dimensional simplex polynomial of degree  (left) and the B-net of the polynomial
(right).

κn. In de Boor (1987), it is shown that the set

Bd = {
Bd

κ (b), |κ| = d
}

(15)

forms a unique stable local basis for Pd on �. Hence, any
simplex polynomial p� j of degree d defined on � can be
uniquely written as a linear combination of basis polyno-
mials in Bd (de Boor, 1987)

p� j (x) =
∑
|κ|=d

c� j
κ Bd

κ (b) (16)

with cκ the B-coefficients. The total number of valid per-
mutations of κ is d̂ = (d + n)!/n!d! which is equal to
the total number of B-coefficients per simplex. The B-
coefficients have a special property in the sense that they
have a unique geometric location inside their parent sim-
plex which are referred to as the domain points. The com-
plete set of domain points ξκ in barycentric coordinates
of a polynomial of degree d is given by

Dd =
{
ξκ = κ

d
, |κ| = d

}
(17)

which is equal to the location of the unique maximum
of the Bernstein basis polynomial Bd

κ in (14). In Figure 1,
the domain points and the B-net are shown for a bivari-
ate simplex polynomial of degree 4. The following theo-
remwill be used for the spline approximation of functions
over simplices.

Theorem 3.1: There is a unique polynomial p in n vari-
ables of degree d that interpolates any given function f on a
n-simplex over the domain points in (17).

See Chung and Yao (1977) for a proof. The B-form
polynomial (16) can also be written in vector form
(de Visser, Chu, & Mulder, 2009)

p� j (x) = Bd
� j

(x)c� j (18)

with Bd
� j

(x) = [Bd
κ (b� j (x))]|κ|=d ∈ R

1×d̂ the vector of

basis polynomials and with c� j := [c� j
κ ]|κ|=d ∈ R

d̂×1 the
vector of B-coefficients. Similarly, the globally defined
spline function can be written as

s(x) =
J∑

j=1

∑
|κ|=d

c� j
κ Bd

κ (x) = Bd(x)c (19)

with Bd(x) ∈ R
1×Jd̂ the global vector of vector basis poly-

nomials and c ∈ R
Jd̂×1 the global vector of B-coefficients

and J the total number of simplices. A spline function
is by definition a piecewise-defined polynomial with Cr

continuity over the element simplex boundaries. Con-
tinuity of order Cr between two neighbouring B-form
simplex polynomials p�i , p� j is achieved when all mth-
order directional derivatives with 0 � m � r are equal
at every point on the edge �̃i, j = �i ∩ � j between the
two simplices �i, �j. This is enforced by homogeneous
equality constraints of the form H�i,� j [cT�i

, cT� j
]T = 0

which are defined for every edge of two neighbouring
simplices in triangulation T (Awanou et al., 2005; Lai &
Schumaker, 2007, pp. 133–135). This guarantees the exis-
tence of amatrixH ∈ R

R∗×Jd̂ withR* = rank(H) such that
s � Cr(�) if and only if

Hc = 0 (20)

ConstructingH is not trivial andwe refer to deVisser et al.
(2009) for a general formulation of the continuity condi-
tions and the procedure to derive them utilising a B-net
orientation rule.

Wenext discuss the process of computing integrals and
inner products of B-formpolynomials which are required
for theGalerkin projection. The integral of a B-form basis
polynomial of degree d and dimension n for any multi-
index |κ | = d over the volume of its simplex � is given
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by

∫
�

Bd
κ (x)dx = S�(d+n

n

) (21)

where S� is the length (1d), area (2d), volume (3d) or
hypervolume of the simplex. Equation (21) leads directly
to inner products of any two B-form basis polynomials
Bd1

γ , Bd2
κ . Using (14), we have

Bd1
γ Bd2

κ = d1!d2!
γ !κ!

bκ+γ , Bd1+d2
γ+κ = (d1 + d2)!

(γ + κ)!
bκ+γ

(22)
It follows that∫

�

Bd1
γ Bd2

κ dx =
∫

�

d1!d2!
γ !κ!

(γ + κ)!
(d1 + d2)!

Bd1+d2
γ+κ dx (23)

which with (21) results in
∫

�

Bd1
γ Bd2

κ dx = d1!d2!
(d1 + d2)!

S�(d1+d2+n
n

) (γ + κ)!
γ !κ!

(24)

In the same way, it can be shown that the integral of the
product of three B-form basis polynomials Bd1

μ , Bd2
γ and

Bd3
κ is given by

∫
�

Bd1
μ Bd2

γ Bd3
κ dx = d1!d2!d3!

(d1 + d2 + d3)!
S�(d1+d2+d3+n
n

)
× (μ + γ + κ)!

μ!γ !κ!
(25)

4. Boundary conditions as side constraints

The boundary conditions (1b) are included as side con-
straints for the B-coefficients which are derived in this
section. With standard finite element methods, bound-
ary conditions are commonly explicitly incorporated
(Dirichlet type) in the finite-element basis or implicitly
incorporated (Neumann type) using a suitable choice
for the weak formulation of the PDE. We treat them as
side constraints to simplify the construction of the spline
basis that satisfies the boundary conditions. No modifi-
cations to the spline basis or to the weak formulation are
required for different types of boundary conditions. This
also allows us to define a model reduction scheme for the
general class of linear parabolic PDEs in the next section.
The side constraints constrain the spline polynomials at
the boundary such that the spline solution satisfies the
boundary conditions. The derivation of the constraints
requires a new matrix formulation for B-spline deriva-
tives whose image is in the same polynomial space. This
allows the formulation of all differential operators in (2)

in terms of a single-degree polynomial basis which will
also prove to be essential in the model reduction frame-
work. These derivatives are completely defined in terms
of a mapping acting on its B-coefficients and are derived
by combining the de Castelau formulation for the deriva-
tives (de Visser, Chu, & Mulder, 2011) with a polynomial
degree raising algorithm (Hu et al., 2007).

We start by introducing a mapping that raises the
degree of a simplex polynomial p ∈ Pd to p ∈ Pd+m. Let p
be a polynomial of degree d defined on a simplex� writ-
ten in the vector form (18), and let c be its coefficients.
Then, it can also be evaluated by Hu et al. (2007)

Bd(x)c = d!
(d + m)!

Bd+m(x)Ad+m,d
� c (26)

with Ad+m,d
� ∈ R

(d+m+n)!
n!(d+m)! × (d+n)!

n!d! the degree-raising matrix
that raises the set of B-coefficients of degree d into a set
of B-coefficients of degree d + m (Hu et al., 2007). The
right-hand side of (26) is again a B-form polynomial with
Bd +m(x) the polynomial basis and d!

(d+m)!A
d+m,d
� c its B-

coefficient vector. It follows that the mapping given by
c �→ d!

(d+m)!A
d+m,d
� c transforms the B-coefficient vector of

p ∈ Pd to the B-coefficient vector of p ∈ Pd+m.
We next discuss derivatives of B-form polynomi-

als. Let a = b� j (v ) − b� j (0) = (a0, a1, . . . , an) be the
directional coordinate of the unit vector v in barycentric
coordinates. Then, the general kth-order derivative of a
polynomial p of degree 1 � k � d in the unit directions
v1,… , vk is given by Lai and Schumaker (2007, p. 29)

Dvk · · ·Dv1 p(x)

= d!
(d − k)!

∑
|κ|=d−k

c(k)κ (a(1), . . . , a(k))Bd−k
κ (x) (27)

where c(k)κ (a(1), . . . , a(k)) are the quantities obtained after
carrying out k steps of the de Castelau iteration

c(k)κ (a) =
∑
|γ |=1

aγ c(k−1)
κ+γ (a), |κ| = d − k, k ≤ d (28)

using the directional coordinates a(1),… , a(k) of v1,… , vk
in that order. For example, if we put dκ = c(1)κ (a(1)), then
c(2)κ (a(1), a(2)) = d(1)

κ (a(2)). Equation (28) can be written
in matrix form (de Visser et al., 2011)

c(k) = Pd−k,d−k+1(a)c(k−1)(a) (29)

with Pd−k,d−k+1 ∈ R
(d−k+n)!
n!(d−k)! × (d−k+1+n)!

n!(d−k+1)! the one-step de
Castelau matrix (de Visser et al., 2011) which reduces
the set of B-coefficients of degree d − k + 1 into a set of
B-coefficients of degree d − k. Using the vector formula-
tion of the B-form polynomial (18) and the de Castelau
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algorithm (29), the general derivative (27) can be written
in matrix form

Dkp(x) = d!
(d − k)!

Bd−k(x)Pd−k,d(a(1), . . . , a(k))c

(30)
with Dk = Dvk . . .Dv1 and

Pd−k,d(a(1), . . . , a(k)) = �k
i=1P

d−i,d−i+1(a(i)) (31)

a multi-degree de Castelau matrix. Equation (30) can be
combined with polynomial degree raising (26) to con-
struct kth-order derivatives whose image is in Pd−k+m.

Theorem 4.1: Let p ∈ Pd be a B-form polynomial of
degree 1 � k � d relative to simplex �, and given a set
of directions v1,… , vk described by the directional coordi-
nates a(k) = (a(k)

0 , . . . , a(k)
n ). The matrix form of the kth-

order derivative Dk = Dvk · · ·Dv1 p ∈ Pd−k+m in the unit
directions v1,… , vk is given by

Dkp(x) = d!
(d − k + m)!

Bd−k+m(x)

×Ad−k+m,d−k
� Pd−k,d(a(1), . . . , a(k))c (32)

Proof: The right-hand side of (30) is a B-form poly-
nomial in Pd−k with Bd − k(x) its polynomial basis and
c(k)= d!

(d−k)!P
d−k,d (a(1),...,a(k) )c its coefficients. Applying the map-

ping c(k) �→ (d−k)!
(d−k+m)!A

d−k+m,d−kc(k) to (30) to raiseDkp(x) ∈ Pd−k
to Dkp(x) ∈ Pd−k+m gives the result in (32). �

The spline function s ∈ Srd(�) is guaranteed to be
r-times continuously differentiable on the domain �.
The following corollary introduces a mapping for the B-
coefficient vector to compute derivatives of s and follows
directly from Theorem 4.1.

Corollary 4.1: Given the B-coefficient vector c of s ∈
Srd(T ), the mapping c �→ T

d−k+m,d
Dk c with

T
d−k+m,d
Dk = diag

(
d!

(d − k + m)!

×Ad−k+m,d−k
� Pd−k,d(a(1), . . . , a(k)

)J

j=1
(33)

maps the B-coefficients of s ∈ Srd(T ) to the B-coefficients of
Dks ∈ Sr−k

d−k+m(T ), that is

Dk[Bd(x)c] = Bd−k+m(x)Td−k+m,d
Dk c (34)

Hence, any spatial derivative can simply be con-
structed by applying the mapping (33) in parameter
space. Note that the spatial derivative Dα (3) of order |α|
is a special case of Dk. Corollary 4.1 is used to define a

similar transformation matrix for the general linear dif-
ferential operator (2) with constant coefficients.
Theorem 4.2: Let L be a linear partial differential oper-
ator of order k given by (2) with constant coefficients and
given the B-coefficient vector c of s ∈ Srd(T ). Furthermore,
letT

d,d
Dα be the transformation matrix that maps s ∈ Srd(T )

to Dαs ∈ Sr−|α|
d (T ) constructed using (33) with k = m =

|α|. Then, the mapping c �→ T
d,d
L c with

T
d,d
L =

∑
|α|≤k

aαT
d,d
Dα (35)

maps the B-coefficients of s ∈ Srd(T ) to the B-coefficients of
Ls ∈ Sr−k

d (T ), that is, L[Bd(x)c] = Bd(x)Td,d
L c.

Proof: Applying Corollary 4.1, the linear operator acting
on s can be written in terms of a single degree basis poly-
nomial

L
[
Bd(x)c

] =
∑
|α|≤k

aαDα
[
Bd(x)c

]
=

∑
|α|≤k

aαBd(x)Td,d
Dα c (36)

which can be written in the form L
[
Bd(x)c

] =
Bd(x)Td,d

L c, where T
d,d
L is given by (35). �

This theorem is used to define the boundary con-
straints. The value of a B-form simplex polynomial at the
edge of the simplex is uniquely determined by the val-
ues of the B-coefficients located on the edge (Awanou &
Lai, 2004) (see also Figure 1). This implies that there is
a matrix D which maps the B-coefficients of s to the B-
coefficients of s|� , that is, s|� = B̃d(x)Dc, with B̃d(x) an
n − 1 B-form vector basis (Awanou & Lai, 2004). Or, in
other words, the action c�→Dc selects the B-coefficients
located on the boundary. Combined with Theorem 4.2,
it follows that c �→ DT

d,d
L�

cmaps the B-coefficients of s to
the B-coefficients of L�s|� , that is, L�s|� = B̃d(x)DT

d,d
L�

c.
Furthermore, by Theorem 3.1, there is a unique n −
1-dimensional simplex polynomial that interpolates the
actuator distribution functions g�, i(x) at the domain
points on the simplex face located on the boundary �.
Denote gi� as the B-coefficient vector of the n − 1-
dimensional spline function that interpolates g�, i(x) over
the complete set of domain points on the boundary� and
define G� = [

g1� · · · gm�
]
, and therefore we may set

DT
d,d
L�

c(t ) = G�u�(t ) (37)

to enforce that the spline solution satisfies the bound-
ary condition (1b) approximately. Note that in the case
of homogeneous boundary conditions, the B-coefficient
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constraints model the boundary conditions exactly since
no approximations are involved.

5. Model reduction of linear parabolic PDEs

In this section, the finite-dimensional state-space
description of (1) is constructed using multivariate
splines. First, the DPS is reduced to a finite set of coupled
ODEs usingGalerkin projection after which the complete
system of equations including the side constraints for the
smoothness conditions (20) and boundary conditions
(37) is transformed to state-space format using a null
space approach that significantly reduces the size of the
system.

The spline approximation is determined through
the following Galerkin-type weak formulation: Find
y(x, t ) ∈ L2 (0,T;Hk(�)

)
such that

∫
�

∂y(x, t )
∂t

v(x)dx =
∫

�

(Ly(x, t ) + g(x)u(t ))v(x)dx

L�y(x, t ) = g�(x)u�(t ), on �T (38)

∀v ∈ V0 and t� [0, T], withHk(�) the standard Sobolev
space consisting of all functions whose spatial derivatives
up to k-th order exist in the weak sense and are in L2(�)

and with V0 the space associated with the test functions
v(x)

V0 = {
v ∈ Hk(�) : L�v = 0

}
(39)

A common approach is to apply integration by parts and
the Gauss–Green theorem to (38) to lower the smooth-
ness requirements and to implicitly incorporate natural
(Neumann type) boundary conditions in the weak for-
mulation. This approach is not employed here since a
spline basis of higher degree and smoothness with the
characteristics of the strong solution can easily be con-
structed.

We now define the spline approximation of (38). Let
T be the triangulation of � if � is a polygonal domain.
Otherwise, we choose the vertices on � such that T
becomes the approximation of �. Let d and r be two
positive integers with d > r, r � k − 1 and let S be a
spline subspace consisting of spline functions which are
Cr inside �. We have that S ⊂ Sk−1

d (T ) ⊂ Hk(�). The
finite-dimensional approximation of y in � can be repre-
sented by

yN (x, t ) = s(x, t ) =
J∑

j=1

∑
|κ|=d

c� j
κ (t )Bd

κ (x) = Bd(x)c(t )

(40)

with s ∈ S , N = Jd̂ and where the B-coefficients satisfy
the Cr continuity conditions (20). In (40), the B-form
basis polynomials Bd

κ (x) are used as spatial basis func-
tions and the B-coefficients as time-varying expansion
coefficients. Let S0 = S ∩ V0. The spline approximation
of (38) with respect to the spatial variables is s(·, t ) ∈ S
which must satisfy the approximate boundary conditions
(37) such that

∫
�

∂s(x, t )
∂t

sv (x)dx =
∫

�

(Ls(x, t )+g(x)u(t ))sv (x)dx

(41)

∀sv ∈ S0 and t� [0 T]. Recall from Theorem 4.2 that the
differential operator acting on s can be written in terms of
a single-degree basis polynomial

L
[
Bd(x)c(t )

] =
∑
|α|≤k

aα(x)Bd(x)Td,d
Dα c(t ) (42)

with T
d,d
Dα the transformation matrix that maps the B-

coefficient vector of s ∈ Srd(T ) to the B-coefficients of
Dαs ∈ Sr−|α|

d (T ). Let cv be the B-coefficient vector of the
test function sv ∈ S0 with sv = Bd(x)cv , (41) can be writ-
ten as

cTv

(∫
�

[
Bd(x)

]T
Bd(x)dx

)
ċ(t )

= cTv

[ ∑
|α|≤k

(∫
�

aα(x)
[
Bd(x)

]T
Bd(x)dx

)
T
d,d
Dα

]
c(t )

+cTv

(∫
�

[
Bd(x)

]T
g(x)dx

)
u(t ) (43)

which must hold for all B-coefficient vectors cv of splines
in S0, that is, for all cv satisfying the Cr smoothness con-
straints Hcv = 0 and the homogeneous boundary con-
straintsDT

d,d
L�

cv = 0. Equation (43) is written in terms of
B-form polynomials by approximating the actuator dis-
tribution functions gi(x) and the PDE coefficients aα(x)
using B-splines. If these functions are continuous, inter-
polation is the obvious choice. By Theorem 3.1, there
is a unique simplex polynomial that interpolates aα(x)
over the simplex domain points {ξ�

κ , |κ| = d}. Let aα

be a B-coefficient vector with saα
(x) = Bd(x)aα ∈ S0d(T )

the spline interpolation of aα(x) over the complete set
of domain points and let gi be a B-coefficient vector
with sgi (x) = Bd(x)gi ∈ S0d(T ) the spline interpolation
of gi(x) and define G = [ g1, g2, · · · , gm ], then, the pro-
jection condition (43) can be approximated in terms
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of B-form polynomials by

cTv

(∫
�

[Bd(x)]TBd(x)dx
)
ċ(t )

= cTv

[∑
|α|≤k

(∫
�

Bd(x)aα
[
Bd(x)

]T
Bd(x)dx

)
T
d,d
Dα

]
c(t )

+cTv

(∫
�

[Bd(x)]TBd(x)dx
)
Gu(t ) (44)

If aα(x) and gi(x) are not continuous, interpolation can
still be used except that the interpolation values should
come from a suitable continuous approximation of aα(x)
and gi(x) or one can use a piecewise discontinuous poly-
nomial approximation using, for example, a least squares
fit (de Visser et al., 2009).

The integral over a simplex � of the product of two
or more basis polynomials defined on different simplices
is always equal to zero because of their local support. It
follows that the integrals in (44) result in block-diagonal
matrices. Applying the integration gives

cTv Mċ(t ) = cTv

⎛
⎝∑

|α|≤k

Kα
T
d,d
Dα

⎞
⎠ c(t ) + cTv MGu(t ) (45)

withM = diag(M�) amassmatrix (Awanou&Lai, 2004)
with blocks

M� =
[∫

�

Bd
κ (x)B

d
γ (x)dx

]
|κ| = d
|γ | = d

(46)

and Kα = diag(Kα
�) a bending matrix with blocks

Kα
� =

[∫
�

Bd(x)aαBd
κ (x)B

d
γ (x)dx

]
|κ| = d
|γ | = d

=
⎡
⎣∫

�

∑
|μ|=d

Bd
μ(x)aα

μB
d
κ (x)B

d
γ (x)dx

⎤
⎦

|κ| = d
|γ | = d

(47)

Using (24) and (25), the mass and bending matrices can
be explicitly calculated with

M� = d!d!
(2d)!

S�(2d+n
n

) [ (γ + κ)!
γ !κ!

]
|κ| = d
|γ | = d

(48)

Kα
� = d!d!d!

(3d)!
S�(3d+n
n

)
⎡
⎣∑

|μ|=d

aα
μ

(μ + γ + κ)!
μ!γ !κ!

⎤
⎦

|κ| = d
|γ | = d

(49)

Let K = ∑
|α|≤k K

α
T
d,d
Dα and F = MG, it follows that the

B-coefficient vector c of the spline approximation satisfies

cTv Mċ(t ) = cTv Kc(t ) + cTv Fu(t ) (50a)
Hc(t ) = 0 (50b)

DT
d,d
L�

c(t ) = G�u�(t ) (50c)

for all B-coefficient vectors cv of splines in S0 satisfy-
ing Hcv = 0 and DT

d,d
L�

cv = 0. Existence and uniqueness
of c can be shown by using the same argument for the
existence of the weak solution satisfying (38) (Awanou
et al., 2005; Lai & Wenston, 2004). We are interested in
solving (50) for ċ. A null-space approach is proposed
which significantly reduces the size of the system by the
rank of the side constraints. Let Q=[HT (DT

d,d
L�

)T ]T and
Ḡ� = [ 0T GT

� ]T , the constraints (50b) and (50c) can be
written as

Qc(t ) = Ḡ�u�(t ) (51)

Let V be a basis for null(Q) such that QV = 0 and let
cp(t ) = Cpu�(t ) be a particular solution of (51). The gen-
eral solution set for (51) can be written as

c(t ) = Vc̃(t ) +Cpu�(t ) (52)

with c̃ ∈ R
N−R∗ the coordinate vector of c relative to the

basis for null(Q) and with R* the rank ofQ. SinceQcv = 0
for all B-coefficient vectors cv of splines inS0, the solution
set for cv can be written as cv = Vc̃v . Substituting this set
for cv and the solution set (52) for c in (50) gives

c̃TvV
TM(V ˙̃c(t ) +Cpu̇�(t ))

= c̃TvV
TK(Vc̃(t ) +Cpu�(t )) + c̃TvV

TFu(t ) (53)

which is a reduced unconstrained system of orderN− R*

projected on the null space of the side constraints. Since
(53) must hold for all c̃v , (53) is equivalent to(
VTMV

) ˙̃c(t ) =
VT [

KVc̃(t ) + KCpu�(t ) + Fu(t ) − MCpu̇�(t )
]
(54)

The null-space method requires the construction of the
null basisV forQ. We use the sparse null-space algorithm
recently introduced inHölzel andBernstein (2014)which
is particularly useful for computing the null space of large
sparsematrices. The particular solution is obtained as by-
product of the computations necessary to obtain V. For
the measured output (1c) and the controlled output (1d),
the null-space Galerkin method yields

zmk (t ) = Bd(xk)Td,d
Lzm

[
Vc̃(t ) +Cpu�(t )

]
(55)

zci (t ) = (φi)TMT
d,d
Lzc

[Vc̃(t ) +Cpu�(t )] (56)



184 H. J. TOL ET AL.

where T
d,d
Lz maps the B-coefficient vector of s to the B-

coefficient vector of Lzs and with φi the B-coefficient vec-
tor of the spline that interpolates φi(x). Finally, we obtain
the system in state-space format

ẋN (t ) = AxN (t ) + Bū(t )
zNmk

(t ) = Cmkx
N (t ), zNci (t ) = Ccix

N (t ) (57)

where

xN (t ) = [
c̃T (t ) uT�(t )

]T
, ū(t ) = [

uT (t ) u̇T�(t )
]T

A =
[(

VTMV
)−1VTKV

(
VTMV

)−1VTKCp

0 0

]

B =
[(

VTMV
)−1VTF − (

VTMV
)−1VTMCp

0 I

]

Cmk =
[
Bd(xk)Td,d

Lzm
V Bd(xk)Td,d

Lzm
Cp

]
Cci =

[
(φi)TMT

d,d
Lzc
V (φi)TMT

d,d
Lzc
Cp

]
(58)

Remark 5.1: The approximation power of the general
multivariate spline space Srd(T ) is not fully known. For
bi-variate spline spaces, full approximation power in all
p-norms is achieved when d � 3r + 2 (Lai & Schumaker,
1998; Lai & Schumaker, 2007, pp. 276–286). The orthog-
onality of the Galerkin projection (41) ensures that the
approximation yN is the best possible solution in the space
spanned by the basis functions. Specific bounds for theL2
norm of projections onto bi-variate spline spaces S0d(T )

and Sdd(T ) with d � 3r + 2 are derived in Von Golitschek
and Schumaker (2002).

6. Controller synthesis

The reduced-order model (57) can be used to design
any suitable linear controller. In this study, a quadratic
optimal design is considered where the controlled out-
put (56) is used to build the objective function (11). The
quadratic objective function (11) for the reduced-order
model becomes

J =
∫ ∞

0

(
xN

)T CT
c CcxN + ūTRū dt (59)

Assuming that (A, B) is stabilisable, the state feedback
ū(t ) = −KcxN (t ) that minimises (59) can be computed
by solving the associated algebraic Ricatti equation for
(59). An output feedback controller is obtained by com-
bining the state feedback with a state observer and takes

the form

ū(t ) = −Kcx̂N (t )
˙̂xN (t ) = Ax̂N + Bū(t ) + Ko(zm(t ) − ẑNm(t ))
ẑNm(t ) = Cmx̂N (t ), x̂N (0) = x̂N0

(60)

where the observer gain Ko is tuned such that A −
KoCm has desired stability margins. The closed-loop sys-
tem consists of the actual DPS (9) combinedwith the con-
troller (60)[

ẋ
˙̂xN

]
=

[
Ā −B̄Kc

KoC̄m A − BKc − KoCm

] [
x
x̂N

]
(61)

When using reduced-order models in the design of a
control system, the truncated dynamics must be taken
into account in the stability analysis. Robustness with
respect to the truncated dynamics of reduced-order con-
trollers based on projections on non-modal subspaces,
such as finite-element spaces and spline spaces, for the
linear class of parabolicDPS treated in this paper has been
discussed in Balas (1983). In Balas (1983), precise con-
ditions are derived under which model reduction based
on consistent Galerkin approximations will lead to sta-
ble infinite-dimensional control. In particular, provided
that the infinite-dimensional system is exponentially sta-
ble and N sufficiently large, a controller which exponen-
tially stabilises the closed-loopODE system also stabilises
the closed-loop parabolic PDE system. The assumption
that the DPS is exponentially stable is generally required
in order to prove that the estimates are bounded for all
times, that is ‖y − yN‖2 � μ(N), �t with μ(N) a posi-
tive number depending on N satisfying limN → �μ(N) =
0 (Balas, 1983; Baker et al., 2000). In the next section, we
apply the reductionmethod to control two unstable PDEs
and analyse the closed-loop stability by computing the
eigenvalues of (61) numerically. To compute the eigenval-
ues and to simulate the response of the system, an accu-
rate high-ordermodel is used to represent the actual DPS,
that is, Ā, B̄ and C̄m in (61), and lower order models are
used to design the control system. For a given partitioning
of the domain, the degree and order of continuity of the
spline basis can be chosen arbitrarily to derive these state
space models. The order of continuity is chosen equal
to the continuity of the strong solution of the PDE sys-
tem. For the systems considered in the next section, the
strong solution is C2 smooth. The degree of the control
model can subsequently be tuned to obtain a desirable
trade-off between the order of themodel and the accuracy
of the model, and thereby closed-loop performance. We
provide a closed-loop performance analysis for various
degrees and selected the model that gives a good balance
between model order and performance to implement the
controller.
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7. Demonstration

In this section, two representative PDE control problems
are presented to demonstrate the implementation and to
evaluate the effectiveness of the proposed model reduc-
tion scheme. In the first case, we consider stabilisation of
a 1-D unstable reaction diffusion process which is often
considered as a benchmark problem (see e.g. Smyshlyaev
& Krstic, 2004). For this problem, an analytic solution
of the spatial differential operator eigenvalue problem
is available which allows for a direct comparison of the
eigenvalues and stability eigenfunctions of the reduced-
order models with the analytic solution. In the second
case, stabilisation of a 2-D reaction–convection–diffusion
equation on an irregular spatial domain is considered for
which analytic solutions of the spatial differential oper-
ator eigenvalue problem are not possible. This is a non-
trivial example which better illustrates the potential of the
spline reduction framework. We provide numerical con-
vergence results for increasing polynomial degrees and
show that effective feedback stabilisation can be achieved
using low-order control models.

7.1 Boundary feedback stabilisation of an unstable
reaction–diffusion equation

In this demo, boundary feedback control of an unstable
reaction–diffusion equation with constant coefficients is
considered

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂y(x,t )
∂t = μ

∂2y(x,t )
∂x2 + ay(x, t ) in (0, 1) × (0, ∞)

y(0, t ) = 0, y(1, t ) = u(t ) in (0, ∞)

y(x, 0) = sin(πx) in (0, 1)
zm(t ) = ∂y(0,t )

∂x in (0, ∞)

zc1 (t ) = ∫
�
sin(πx)y(x, t )dx in (0, ∞)

zc2 (t ) = ∫
�
sin(2πx)y(x, t )dx in (0, ∞)

(62)

Table . Number of system states (Jd̂ − R∗ + 1).

Degree        

T3        
T6        

where ∂y
∂x (0, t ) is measured and y(1, t) is actuated. The

coefficients are chosen as μ = 0.2, a = 4. The complete
system is converted to state-space format using a C2(�)
continuous spline basis of various degrees defined on a
uniform partitioning of the domain consisting of three
and six simplices. The dimension of the state-space sys-
tems is listed in Table 1. For system (62), the differen-
tial operator is of the formAy = μ

∂2y
∂x2 + ay and the exact

solution of the differential operator eigenvalue problem
Aφ j(x) = λ jφ j(x) is given by (Curtain andZwart, 1995)

λ j = a − μ j2π2, φ j(x) = sin
(
jπx

)
(63)

with j = 1, 2,… , �, λj the eigenvalues and φj the eigen-
functions. The case with μ = 0.2, a = 4 corresponds to
one unstable eigenvalue at λ1 = 4 − 0.2π2 � 2.03. Using
this eigenfunction expansion, we can directly calculate
the power spectral density (PSD) of the differential oper-
ator (Jovanović & Bamieh, 2006)

‖(iω − A)−1‖2HS = ‖F (ω)‖2HS =
∑
j∈N

1
ω2 + λ4

j
(64)

where ‖ · ‖HS denotes the Hilbert–Schmidt norm (gener-
alisation of the Frobenius norm for matrices). Figure 2
shows the errors for the first four dominant eigenval-
ues of the reduced-order models and Figure 3 compares
the PSD. It can be observed that the dominant modes
converge quickly up to numerical precision and that the
reduced-order models only deviate at higher frequen-
cies.

λ1

λ2

λ3

λ4

T3

10
lo

g
|λ

j
−

λ̂
j
|

d
3 4 5 6 7 8 9 10

−14

−12

−10

−8

−6

−4

−2

0

2

λ1

λ2

λ3

λ4

T6

10
lo

g
|λ

j
−

λ̂
j
|

d
3 4 5 6 7 8 9 10

−14

−12

−10

−8

−6

−4

−2

0

2

Figure . The error of the first four dominant eigenvalues of the S2d(T3) and S2d(T6) reduced-order models.
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Figure . Power spectral density of the differential operator of the
reduced-order models compared with the analytic solution.

The control objective is to stabilise the state at its
unstable equilibrium ȳ = 0. The controller (60) is syn-
thesised using s ∈ S2d(T3) Galerkin models of various
degrees. The controlled output is built using the first
two dominant eigenfunctions φ1(x), φ2(x) and the input
weight is set to R = 0.01. Adding more eigenfunctions
to the controlled output or lowering the input weight did
not further improve the performance of the controller. An
s ∈ S210(T6) Galerkin model is assumed to represent the
original DPS, that is, Ā, B̄, C̄m in (61), and is used in the
simulations. It is verified that further increase of the order
provided no improvement on the accuracy of the results.
The real part of the two least stable eigenvalues (pairs) of
the closed-loop system (61) is shown in Table 2. Higher
degree controllers give a faster stabilisation but no signif-
icant improvement is achieved after d = 4; the dominant
dynamics are accurately captured by low-degree models.
The closed-loop response for the s ∈ S24(T3)model-based
controller is shown in Figure 4. It can be observed that the

Table . Real part of the two least stable eigenvalues of the
closed-loop system ().

Degree      

σ  −. −. −. −. −. −.
σ  −. −. −. −. −. −.

s ∈ S24(T3)model-based controller provides a satisfactory
performance and quickly stabilises the system.

7.2 In-domain control of a
reaction–convection–diffusion equation

In this demo, in-domain feedback control of a reaction–
convection–diffusion equation is considered with spa-
tially varying coefficients

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂y(x,t )
∂t = μ(x)∇2y(x, t ) − v(x) · ∇y(x, t )

+a(x)y(x, t ) + g(x)u(t ) in �T
∂y(x,t )

∂n = 0 on �

y(x, 0) = 5 cos
(
π
(
x21 − 1

)(
x21 − 0.09

))
−5 cos

(
π
(
x22 − 1

)(
x22 − 0.09

))
zmk (t ) = zck (t ) = y(xk, t ), k = 1, . . . , 4

(65)
on a rectangular domain with a cut-out

� = {(x1, x2) , (x1, x2) ∈ (−1, 1)
× (−1, 1) \ (−0.3, 0.3) × (−0.3, 0.3)}

A rotating velocity field is applied with v(x) =
[ x2 −x1 ]T , the diffusivity is kept constant μ(x)
= μ = 0.05 and the reaction rate is chosen as
a(x) = 0.5 cos( 12πx1)e

x2 which has a destabilising
effect. The system is controlled using four actuators
whose spatial distributions are modelled as Gaussian
radial basis functions: gi(x) = exp[−(‖x − xc‖22)/(2σ 2)]
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Figure . Closed-loop response of the s ∈ S24(T3) controller. An s ∈ S210(T6) Galerkin model is used for simulating the response.
(a) Response, (b) boundary control input, (c)L2 norm of the state.
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Figure . Control layout and triangulations. (a) Domain, convective field v (x), actuator distribution contours gi(x) and sensor locations zi.
(b) Triangulation with  simplices used for control design. (c) Triangulation with  simplices used for simulation.

Table . Dimension state-space systems.

(a) Number of states Jd̂ − R∗

Degree       

T56       
T120       

(b) State reduction R*

T56       
T120       

and four in-domain Dirichlet measurements are used for
feedback. The complete geometry is shown in Figure 5
along with the triangulations used in this study. All
state-space models are derived using a C2 continuous
spline basis of various degrees defined on a triangulation
consisting of 56 and 120 simplices. The dimension of the
state-space systems are listed in Table 3(a) and the size
reduction R* resulting from the null-space projection is
listed in Table 3(b).
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Figure . Themaximum error versus degrees on T56 and T120 with
respect to the manufactured solution.

Since no analytic solution is available, the state-space
systems are validated using a manufactured solution
(Roache, 2002). For this, we consider the system (65) with
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Figure . Real part of the least stable eigenvalue of the closed-loop system () with R= diag(.). An s ∈ S29(T120)model is used as the
‘true system’. Left: s ∈ S2d(T56) controllers using four actuatorswith one (z), two (z, z), three (z, z, z) and four sensors. Right: s ∈ S2d(T56)
controllers using four sensors (z, z, z, z) with one (g), two (g, g), three (g, g, g) and four actuators.
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manufactured solution y*(x, t) = y(x, 0)u*(t). Since the
solution is not exact, inserting this solution into the PDE
results in a residual that does not cancel out. This resid-
ual is added as the source term to the right-hand side of
the PDE to create a modified PDE for which the artificial
solution is correct and can thus be used for comparison. A
sinusoidal input is applied u*(t) = cos(π t) and the result-
ing state-spacemodels are integrated over a time span of 1
secondusing a low sample time of�t= 0.001 tominimise
the errors from the time integration. Themaximum error
of spline solutions of various degrees against the manu-
factured solution is shown in Figure 6.

S2d(T56) state-space models for the original system are
used to synthesise the controller (60). The measured out-
put is also chosen as the controlled output and the input
weight is set to R = diag(0.01). A high-order s ∈ S29(T120)
model is assumed to represent original DPS and is used
to simulate the response. Figure 7 shows the real part of
the most dominant eigenvalue of the closed-loop system
for various sensor/actuator configurations. We were able
to lower the degree to d = 5 after which the stabilisation
effect is lost at d = 4 which is in accordance with the val-
idation results in Figure 6. The s ∈ S26(T56) model gives a
good balance between performance andmodel order (see
Table 3), and is used to implement the controller. Figure 8
shows the dominant eigenvalues of the s ∈ S26(T56) con-
trol model and the s ∈ S29(T120) simulation model. It can
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Figure . Dominant system poles of the s ∈ S26(T56) control
model (left) and of the s ∈ S29(T120) simulation model (right).

be observed that the eigenvalues of the control and simu-
lation model coincide well and that they only differ sig-
nificantly in the highly damped region (Re λ < −4.5).
As a result, the controller effectively stabilises the system
as can be seen in Figure 9. As a final study, we keep the
s ∈ S26(T56) controller but vary the number of observa-
tion points used for feedback (Figure 10(a)) and the num-
ber of actuators used for control (Figure 10(b)). It can
be observed that effective feedback stabilisation can be
achieved using a minimal amount of sensors and actu-
ators.

Figure . Closed-loop response of the s ∈ S26(T56) controller using four sensors and four actuators. An s ∈ S29(T120) Galerkin model is
used for simulating the response. (a) Response at four time instants, (b) L2 norm (left), control inputs (middle) and observer estimation
errors (right).
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Figure . L2 norm of the state for various controllers. An s ∈ S29(T120)model is used as the ‘true system’. (a): s ∈ S26(T56) controller using
four actuators with one (z), two (z, z), and four sensors. (b): s ∈ S26(T56) controllers using four sensors with one (g), two (g, g), three
(g, g, g) and four actuators.

8. Conclusions

This paper presented a new framework for model reduc-
tion of parabolic PDEs on general geometries using mul-
tivariate B-splines. The method uses Galerkin projec-
tion with B-splines to derive state-space descriptions
that can be used for control design. The method can be
used to design both in-domain and boundary feedback
controllers for PDEs. The effectiveness of the proposed
reduction scheme is demonstrated using two examples,
a 1-D unstable reaction–diffusion equation and a 2-
D unstable reaction–convection–diffusion equation with
spatially varying coefficients on an irregular domain.
Numerical convergence results show that the proposed
reduction scheme results in accurate low-order models
of the PDE. The reduced-order models are successfully
applied to design and implement feedback controllers
for the two test cases. It is shown that effective feedback
stabilisation can be achieved using low-order controllers
with aminimal amount of state information from sensors.

In this paper, we restricted our attention to a class
of linear PDEs. Significant work remains to be done in
applying this method to more complex PDE models of
chemical processes and fluid flows. Such control prob-
lems are often formulated on higher dimensional irreg-
ular geometries and are very tractable by the multivari-
ate spline reduction method. Future work will focus on
extending this method to coupled and nonlinear PDE
systems to further evaluate its effectiveness for practical
applications of PDE control.
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