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We investigate the existence of mild solutions for fractional order differential equations with integral boundary conditions and
not instantaneous impulses. By some fixed-point theorems, we establish sufficient conditions for the existence and uniqueness of
solutions. Finally, two interesting examples are given to illustrate our theory results.

1. Introduction

Impulsive differential equations are used to describe many
practical dynamical systems including evolutionary processes
characterized by abrupt changes of the state at certain
instants. Such processes are naturally seen in biology, physics,
engineering, and so forth. Due to their significance, many
authors have established the solvability of impulsive differen-
tial equations. Nowadays, the theory of impulsive differential
equations has received great attention. Differential equations
with instantaneous impulses have been treated in several
works (see, e.g., the monographs [1–3], the works on time
variable impulses problem [4–7], and the references therein).

However, in almost all the papers concerning impul-
sive differential equations, the impulses are all instanta-
neous impulses, and the classical models with instantaneous
impulses cannot characterize many practical problems, for
example, the dynamics of evolution processes in pharma-
cotherapy. Let us consider the hemodynamic equilibrium of
a person. The introduction of the drugs in the bloodstream
and the consequent absorption for the body are gradual and
continuous processes. In fact, this situation should be charac-
terized by a new case of impulsive action, which starts at an
arbitrary fixed point 𝑡

𝑖
and stays active on a finite time interval

[𝑡
𝑖
, 𝑠
𝑖
]. To this end, Hernández and O’Regan [8] initially

offered to study a new class of abstract semilinear impulsive
differential equations with not instantaneous impulses in a
PC-normed Banach space. In [8], the authors discussed the
following problem:

𝑢
󸀠
(𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ (𝑠

𝑖
, 𝑡
𝑖+1

] , 𝑖 = 0, . . . , 𝑁,

𝑢 (𝑡) = 𝑔
𝑖 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ (𝑡

𝑖
, 𝑠
𝑖
] , 𝑖 = 1, . . . , 𝑁,

𝑢 (0) = 𝑥
0
,

(1)

where 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is the generator of a 𝐶
0
-

semigroup of bounded linear operators (𝑇(𝑡))
𝑡>0

defined on a
Banach space (𝑋, ‖⋅‖), 0 = 𝑡

0
= 𝑠
0
< 𝑡
1
≤ 𝑠
1
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑁
≤ 𝑠
𝑁

≤

𝑡
𝑁+1

= 𝑎 are prefixed numbers, 𝑥
0
∈ 𝑋, 𝑔

𝑖
∈ 𝐶((𝑡

𝑖
, 𝑠
𝑖
] × 𝑋,𝑋)

for all 𝑖 = 1, . . . , 𝑁, and 𝑓 : [0, 𝑎] × 𝑋 → 𝑋 is a suitable
function. Meanwhile, Pierri et al. [9] continued the work in
[8] in a PC

𝛼
-normed Banach space.

On the one hand, the absorption of drugs has a memory
effect; thus, the new class of impulsive conditions introduced
by [8] may not explain this phenomenon very well. On the
other hand, fractional calculus provides a powerful tool for
the description of hereditary properties of various materials
and memory processes [10, 11]. Fractional differential equa-
tions have recently proved to be strong tools in the modeling
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of medical, physics, economics, and technical sciences. For
more details on fractional calculus theory, one can see the
monographs of Diethelm [12], Kilbas et al. [13], Laksh-
mikantham et al. [14], Miller and Ross [15], Podlubny [16],
and Tarasov [17]. Fractional differential equations involving
the Riemann-Liouville fractional derivative or the Caputo
fractional derivative have been paidmore andmore attention
(see [10, 11, 18–22]).

The theory of boundary value problems (BVPs) with
integral boundary conditions for differential equations arises
in different areas of applied mathematics and physics. For
example, heat conduction, chemical engineering, under-
ground water flow, thermo-elasticity, and plasma physics can
be reduced to the nonlocal problems with integral boundary
conditions. For BVPs with integral boundary conditions
and comments on their importance, we refer the readers to
the papers by Gallardo [23], Karakostas and Tsamatos [24],
Lomtatidze and Malaguti [25], and the references therein.
For more information about the general theory of integral
equations and their relation with BVPs, we refer to the
books of Corduneanu [26] and Agarwal and O’Regan [27].
Moreover, BVPswith integral boundary conditions constitute
a very interesting and important class of problems. They
include two, three, multipoint, and nonlocal BVPs as special
cases. The existence and multiplicity of positive solutions for
such problems have received a great deal of attention. To
identify a few, we refer the readers to [28–31] and references
therein.

In [32], the authors consider the following problem:

𝑐
𝐷
𝑞

𝑡
𝑢 (𝑡) = 𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠) ,

𝑡 ∈ 𝐽
󸀠
:= 𝐽 \ {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
} , 𝐽 := [0, 𝑇] ,

𝑢 (𝑡
+

𝑘
) = 𝑢 (𝑡

−

𝑘
) + 𝑢
𝑘
, 𝑢
𝑘
∈ 𝑅, 𝑘 = 0, 1, . . . , 𝑚,

𝑢 (0) = ∫

1

0

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

(2)

where 𝑐𝐷𝑞
𝑡
is the Caputo fractional derivative of order 𝑞 ∈

(0, 1) with the lower limit zero, 𝑓 : 𝐽 × 𝑋 × 𝑋 → 𝑋 is
a given function, 𝑘 : Δ × 𝑋 → 𝑋, 𝑔 ∈ 𝐿

1
([0, 1], 𝑅

+
),

𝑔(𝑡) ∈ [0, 1), Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1}, and 𝑡
𝑘
satisfy 0 =

𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑚+1

= 𝑇, 𝑢(𝑡+
𝑘
) = lim

ℎ→0
+𝑢(𝑡
𝑘

+ ℎ)

and 𝑢(𝑡
−

𝑘
) = lim

ℎ→0
−𝑢(𝑡
𝑘
+ ℎ) represent the right and left

limits of 𝑢(𝑡) at 𝑡 = 𝑡
𝑘
. Obviously, the impulses in (2) are

instantaneous. Motivated by the work in [8, 9, 32], in this
paper, we consider the following impulsive fractional differ-
ential equations with integral boundary conditions and not
instantaneous impulses:

𝑐
𝐷
𝑞

𝑡
𝑢 (𝑡) = 𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠) ,

𝑡 ∈ (𝑠
𝑖
, 𝑡
𝑖+1

] , 𝑖 = 0, . . . , 𝑁,

𝑢 (𝑡) = 𝑔
𝑖 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ (𝑡

𝑖
, 𝑠
𝑖
] , 𝑖 = 1, . . . , 𝑁,

𝑢 (0) = ∫

𝑇

0

𝑤 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

(3)

where 𝑐𝐷𝑞
𝑡
is the Caputo fractional derivative of order 𝑞 ∈

(0, 1) with the lower limit zero, 0 = 𝑡
0
= 𝑠
0
< 𝑡
1
≤ 𝑠
1
≤ ⋅ ⋅ ⋅ ≤

𝑡
𝑁

≤ 𝑠
𝑁

≤ 𝑡
𝑁+1

= 𝑇 are prefixed numbers, 𝑔
𝑖
∈ 𝐶((𝑡

𝑖
, 𝑠
𝑖
] ×

𝑅, 𝑅), for 𝑖 = 1, . . . , 𝑁, 𝐽 = [0, 𝑇], 𝑓 : 𝐽 × 𝑅 × 𝑅 → 𝑅,
𝑘 : Δ × 𝑅 → 𝑅, 𝑤 ∈ 𝐿

1
([0, 𝑇], 𝑅

+
), and 𝑤 ∈ [0, 1/𝑇), Δ =

{(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇}.
The rest of this paper is organized as follows. In Section 2,

some lemmas which are essential to prove our main results
are stated. In Section 3, we give the main results. In Section 4,
two interesting examples are given to illustrate our theory
results.

2. Preliminaries

At first, we present the necessary definitions for the fractional
calculus theory.

Definition 1 (see [13]). The Riemann-Liouville fractional
integral of order 𝛼 > 0 of a suitable function 𝑦 : (0,∞) → 𝑅

is given by

𝐼
𝛼

0
+

𝑦 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑦 (𝑠) 𝑑𝑠, (4)

where the right side is pointwise defined on (0, +∞).

Definition 2 (see [13]). The Caputo fractional derivative of
order 𝛼 > 0 of a suitable function 𝑦 : (0,∞) → 𝑅 is given by

𝑐
𝐷
𝛼
𝑦 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑦
(𝑛)

(𝑠) 𝑑𝑠, (5)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of number 𝛼

and the right side is pointwise defined on (0, +∞).

Lemma 3 (see [13]). Let 𝛼 > 0; then the fractional differential
equation 𝑐𝐷𝛼𝑢(𝑡) = 0 has solutions

𝑢 (𝑡) = 𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑛−1
𝑡
𝑛−1

, (6)

where 𝑐
𝑖
∈ 𝑅, 𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑛 = [𝛼] + 1.

Lemma 4 (see [13]). Let 𝛼 > 0, then one has

𝐼
𝛼

0
+

𝑐
𝐷
𝛼
𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐

0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑛−1
𝑡
𝑛−1

, (7)

where 𝑐
𝑖
∈ 𝑅, 𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑛 = [𝛼] + 1.

Lemma 5 (Krasnoselskii’s fixed point theorem [33]). Let 𝑀
be a closed convex and nonempty subset of a Banach space 𝑋.
Let 𝐴 and 𝐵 be two operators such that

(1) 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀 whenever 𝑥, 𝑦 ∈ 𝑀;
(2) 𝐴 is compact and continuous;
(3) 𝐵 is a contraction mapping.

Then there exists 𝑧 ∈ 𝑀 such that 𝑧 = 𝐴𝑧 + 𝐵𝑧.
In order to study problem (3), we define 𝑋 = 𝑃𝐶(𝐽, 𝑅) =

{𝑥 : 𝐽 → 𝑅; 𝑥 ∈ 𝐶((𝑡
𝑘
, 𝑡
𝑘+1

], 𝑅), 𝑘 = 0, 1, . . . , 𝑁, and 𝑥(𝑡
+

𝑘
),

𝑥(𝑡
−

𝑘
) exist with 𝑥(𝑡

−

𝑘
) = 𝑥(𝑡

𝑘
), 𝑘 = 1, . . . , 𝑁}.

It is easy to check that 𝑋 is a Banach space with the norm
‖𝑥‖
𝑃𝐶

= sup
𝑡∈𝐽

|𝑥(𝑡)|.
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Let 𝐵𝑢(𝑡) = ∫
𝑡

0
𝑘(𝑡, 𝑠, 𝑢(𝑠))𝑑𝑠, 𝜎 = ∫

𝑡
1

0
𝑤(𝑡)𝑑𝑡; then 0 ≤ 𝜎 ≤

∫
𝑇

0
𝑤(𝑡)𝑑𝑡 < 1.
If 𝑢 ∈ PC(𝐽, 𝑅) satisfies problem (3), then for 𝑡 ∈ (𝑠

𝑖
, 𝑡
𝑖+1

],
𝑖 = 1, . . . , 𝑁, integrating the first equation of (3) from 𝑠

𝑖
to 𝑡

by virtue of Definition 1, one can obtain

𝑢 (𝑡) = 𝑢 (𝑠
𝑖
) +

1

Γ (𝑞)
∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠.

(8)

From the second equation in (3), we know𝑢(𝑠
𝑖
) = 𝑔
𝑖
(𝑠
𝑖
, 𝑢(𝑠
𝑖
)).

Then, for 𝑡 ∈ (𝑠
𝑖
, 𝑡
𝑖+1

], we have

𝑢 (𝑡)

= 𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) +

1

Γ (𝑞)
∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠.

(9)

For 𝑡 ∈ [0, 𝑡
1
], integrating the first equation in (3) from 0

to 𝑡 by virtue of Definition 1, one can obtain

𝑢 (𝑡) = 𝑢 (0) +
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠.

(10)

By the boundary conditions, we have

𝑢 (𝑡) = ∫

𝑇

0

𝑤 (𝑡) 𝑢 (𝑡) 𝑑𝑡

+
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠.

(11)

Multiplying (11) with 𝑤(𝑡) and integrating from 0 to 𝑡
1
, we

have

∫

𝑡
1

0

𝑤 (𝑡) 𝑢 (𝑡) 𝑑𝑡

= ∫

𝑡
1

0

𝑤 (𝑡) 𝑑𝑡 ∫

𝑇

0

𝑤 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+
1

Γ (𝑞)
∫

𝑡
1

0

𝑤 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 𝑑𝑡,

(12)

Multiplying (9) with 𝑤(𝑡) and integrating from 𝑠
𝑖
to 𝑡
𝑖+1

, 𝑖 =

1, . . . , 𝑁, we have

∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑢 (𝑡) 𝑑𝑡

= 𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) ∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑑𝑡 +
1

Γ (𝑞)

⋅ ∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡)
1

Γ (𝑞)
∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 𝑑𝑡.

(13)

Multiplying the second equation of (3) with 𝑤(𝑡) and
integrating from 𝑡

𝑖
to 𝑠
𝑖
, 𝑖 = 1, . . . , 𝑁, we can obtain

∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡) 𝑢 (𝑡) 𝑑𝑡 = ∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡) 𝑔𝑖 (𝑡, 𝑢 (𝑡)) 𝑑𝑡. (14)

Adding (12), (13), and (14), one has

∫

𝑇

0

𝑤 (𝑡) 𝑢 (𝑡) 𝑑𝑡

= ∫

𝑡
1

0

𝑤 (𝑡) 𝑑𝑡 ∫

𝑇

0

𝑤 (𝑠) 𝑢 (𝑠) 𝑑𝑠 +

𝑁

∑

𝑖=1

𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) ∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑑𝑡

+
1

Γ (𝑞)

𝑁

∑

𝑖=0

∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) ∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 𝑑𝑡

+

𝑁

∑

𝑖=1

∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡) 𝑔𝑖 (𝑡, 𝑢 (𝑡)) 𝑑𝑡.

(15)

Hence

∫

𝑇

0

𝑤 (𝑡) 𝑢 (𝑡) 𝑑𝑡

=
1

1 − 𝜎

⋅ {

𝑁

∑

𝑖=1

𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) ∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑑𝑡

+
1

Γ (𝑞)

𝑁

∑

𝑖=0

∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) ∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 𝑑𝑡

+

𝑁

∑

𝑖=1

∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡) 𝑔𝑖 (𝑡, 𝑢 (𝑡)) 𝑑𝑡} .

(16)

So, for 𝑡 ∈ [0, 𝑡
1
], we have

𝑢 (𝑡)

=
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠

+
1

1 − 𝜎

⋅ {

𝑁

∑

𝑖=1

𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) ∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑑𝑡 +
1

Γ (𝑞)

⋅

𝑁

∑

𝑖=0

∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) ∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 𝑑𝑡

+

𝑁

∑

𝑖=1

∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡) 𝑔𝑖 (𝑡, 𝑢 (𝑡)) 𝑑𝑡} .

(17)

Then similar to Definition 2.1 in [9], we can define the
mild solution for (3).
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Definition 6. A function 𝑢 ∈ PC(𝐽, 𝑅) is a mild solution of
problems (3) if

𝑢 (0) = ∫

𝑇

0

𝑤 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑢 (𝑡) = 𝑔
𝑖 (𝑡, 𝑢 (𝑡)) , ∀𝑡 ∈ (𝑡

𝑖
, 𝑠
𝑖
] , 𝑖 = 1, . . . , 𝑁,

𝑢 (𝑡)

=
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 +
1

1 − 𝜎

⋅ {

𝑁

∑

𝑖=1

𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) ∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑑𝑡 +
1

Γ (𝑞)

⋅

𝑁

∑

𝑖=0

∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) ∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 𝑑𝑡

+

𝑁

∑

𝑖=1

∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡) 𝑔𝑖 (𝑡, 𝑢 (𝑡)) 𝑑𝑡}

(18)

for all 𝑡 ∈ [0, 𝑡
1
] and

𝑢 (𝑡)

= 𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) +

1

Γ (𝑞)
∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠

(19)

for all 𝑡 ∈ (𝑠
𝑖
, 𝑡
𝑖+1

], 𝑖 = 1, . . . , 𝑁.

3. Main Results

This section deals with the existence of mild solutions for
(3). Before stating and proving the main results, we make the
following hypotheses.

(𝐻
1
) 𝑓 : 𝐽 × 𝑅 × 𝑅 → 𝑅 is jointly continuous. There exists
a function 𝑒 ∈ 𝐶(𝐽, 𝑅) such that

󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑢

1 (𝑡) , V1 (𝑡)) − 𝑓 (𝑡, 𝑢
2 (𝑡) , V2 (𝑡))

󵄨󵄨󵄨󵄨

≤ 𝑒 (𝑡) (
󵄨󵄨󵄨󵄨
𝑢
1 (𝑡) − 𝑢

2 (𝑡)
󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨
V
1 (𝑡) − V

2 (𝑡)
󵄨󵄨󵄨󵄨
) ,

(20)

for all 𝑢
1
, V
1
, 𝑢
2
, V
2
∈ PC(𝐽, 𝑅), for all 𝑡 ∈ 𝐽.

(𝐻
2
) 𝑘 : Δ × 𝑅 → 𝑅 is continuous and there exists a
function 𝑑 ∈ 𝐶[𝐽, 𝑅

+
] such that

|𝑘 (𝑡, 𝑠, 𝑢 (𝑠)) − 𝑘 (𝑡, 𝑠, V (𝑠))| ≤ 𝑑 (𝑡) (|𝑢 (𝑡) − V (𝑡)|) ,

∀𝑢, V ∈ PC (𝐽, 𝑅) , (𝑡, 𝑠) ∈ Δ.

(21)

(𝐻
3
) 𝑔
𝑖
∈ 𝐶((𝑡

𝑖
, 𝑠
𝑖
] × 𝑅, 𝑅) and there exist 𝑙

𝑖
∈ 𝐶[𝐽, 𝑅], 𝑖 =

1, . . . , 𝑁 such that

󵄨󵄨󵄨󵄨
𝑔
𝑖 (𝑡, 𝑥 (𝑡)) − 𝑔

𝑖
(𝑡, 𝑦 (𝑡))

󵄨󵄨󵄨󵄨
≤ 𝑙
𝑖 (𝑡)

󵄨󵄨󵄨󵄨
𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨
,

∀𝑥, 𝑦 ∈ PC (𝐽, 𝑅) , ∀𝑡 ∈ 𝐽.

(22)

Let

𝐿 = max
1≤𝑖≤𝑁

sup
𝑡∈𝐽

󵄨󵄨󵄨󵄨
𝑙
𝑖 (𝑡)

󵄨󵄨󵄨󵄨
, 𝑀 = sup

𝑡∈𝐽

|𝑒 (𝑡)| ,

𝐷 = sup
𝑡∈𝐽

|𝑑 (𝑡)| .

(23)

Now we are in the position to establish the main results.
Our first theorem is based on contraction mapping principle.

Theorem 7. Let (𝐻
1
)–(𝐻
3
) hold and 𝑛 < 1; then the problem

(3) has a unique mild solution, where

𝑛 =
𝑇
𝑞
𝑀(1 + 𝑇𝐷) (2 − 𝜎)

Γ (𝑞 + 1) (1 − 𝜎)
+

2𝐿

1 − 𝜎
. (24)

Proof. Let 𝐴 : PC(𝐽, 𝑅) → PC(𝐽, 𝑅) be the map defined by

𝐴𝑢 (𝑡) = 𝑔
𝑖 (𝑡, 𝑢 (𝑡)) , for 𝑡 ∈ (𝑡

𝑖
, 𝑠
𝑖
] , 𝑖 = 1, . . . , 𝑁,

𝐴𝑢 (𝑡)

=
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 +
1

1 − 𝜎

⋅ {

𝑁

∑

𝑖=1

𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) ∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑑𝑡 +
1

Γ (𝑞)

⋅

𝑁

∑

𝑖=0

∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) ∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 𝑑𝑡

+

𝑁

∑

𝑖=1

∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡) 𝑔𝑖 (𝑡, 𝑢 (𝑡)) 𝑑𝑡}

(25)

for 𝑡 ∈ [0, 𝑡
1
] and

𝐴𝑢 (𝑡) = 𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
))

+
1

Γ (𝑞)
∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠

(26)

for 𝑡 ∈ (𝑠
𝑖
, 𝑡
𝑖+1

], 𝑖 = 1, . . . , 𝑁. Clearly, 𝐴 is well defined.
Next we show that 𝐴 is contraction on PC(𝐽, 𝑅).
Fix 𝑥, 𝑦 ∈ PC(𝐽, 𝑅); we consider three cases.

Case 1. If 𝑡 ∈ (𝑠
𝑖
, 𝑡
𝑖+1

], 𝑖 = 1, . . . , 𝑁, by the assumptions
(𝐻
1
)–(𝐻
3
) and the property Γ(𝑞 + 1) = 𝑞Γ(𝑞), we have

󵄨󵄨󵄨󵄨
𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨
𝑔
𝑖
(𝑠
𝑖
, 𝑥 (𝑠
𝑖
)) − 𝑔

𝑖
(𝑠
𝑖
, 𝑦 (𝑠
𝑖
))
󵄨󵄨󵄨󵄨

+
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

⋅
󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠)) 𝑑𝑠 − 𝑓 (𝑠, 𝑦 (𝑠) , 𝐵𝑦 (𝑠))

󵄨󵄨󵄨󵄨
𝑑𝑠



Journal of Function Spaces 5

≤ 𝐿
󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC +
𝑀

Γ (𝑞)
[−

(𝑡 − 𝑠)
𝑞

𝑞
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

0

⋅ (
󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC +
󵄩󵄩󵄩󵄩
𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩PC)

= 𝐿
󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC +
𝑀

Γ (𝑞)

𝑡
𝑞

𝑞
(
󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC +
󵄩󵄩󵄩󵄩
𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩PC)

≤ 𝐿
󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC +
𝑇
𝑞
𝑀

Γ(𝑞 + 1)
(
󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC +
󵄩󵄩󵄩󵄩
𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩PC)

≤ [𝐿 +
𝑇
𝑞
𝑀(1 + 𝑇𝐷)

Γ (𝑞 + 1)
]
󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC .

(27)

Case 2. If 𝑡 ∈ [0, 𝑡
1
], by (𝐻

1
), (𝐻
2
), one can obtain

󵄨󵄨󵄨󵄨
𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)

󵄨󵄨󵄨󵄨

≤
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

⋅
󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠) , 𝐵𝑦 (𝑠))

󵄨󵄨󵄨󵄨
𝑑𝑠

+
1

1 − 𝜎
{

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨
𝑔
𝑖
(𝑠
𝑖
, 𝑥 (𝑠
𝑖
)) − 𝑔

𝑖
(𝑠
𝑖
, 𝑦 (𝑠
𝑖
))
󵄨󵄨󵄨󵄨
∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑑𝑡

+
1

Γ (𝑞)

𝑁

∑

𝑖=0

∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) ∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

⋅
󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠))

−𝑓 (𝑠, 𝑦 (𝑠) , 𝐵𝑦 (𝑠))
󵄨󵄨󵄨󵄨
𝑑𝑡

+

𝑁

∑

𝑖=1

∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡)
󵄨󵄨󵄨󵄨
𝑔
𝑖 (𝑡, 𝑥 (𝑡)) − 𝑔

𝑖
(𝑡, 𝑦 (𝑡))

󵄨󵄨󵄨󵄨
𝑑𝑡} .

(28)

Then, by a similar argument, we can get

󵄨󵄨󵄨󵄨
𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)

󵄨󵄨󵄨󵄨

≤ (
𝑇
𝑞
𝑀(1 + 𝑇𝐷) (2 − 𝜎)

Γ (𝑞 + 1) (1 − 𝜎)
+

2𝐿

1 − 𝜎
)

󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC .

(29)

Case 3. If 𝑡 ∈ (𝑡
𝑖
, 𝑠
𝑖
], 𝑖 = 1, . . . , 𝑁, from the assumption (𝐻

3
),

we get
󵄨󵄨󵄨󵄨
𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)

󵄨󵄨󵄨󵄨
≤ 𝐿

󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC . (30)

Therefore, ‖𝐴𝑥 − 𝐴𝑦‖PC ≤ 𝑛‖𝑥 − 𝑦‖PC, for all 𝑥, 𝑦 ∈

PC(𝐽, 𝑅), which implies that 𝐴 is a contraction mapping.
Then, there exists a unique mild solution of (3).

In order to get the secondmain result, we give assumption
(𝐻
4
).

(𝐻
4
) The function 𝑓 : 𝐽 × 𝑅 × 𝑅 → 𝑅 is jointly
continuous and strongly measurable on 𝐽. There exist

𝑚
𝑓

∈ 𝐶(𝐽, 𝑅
+
) and a nondecreasing function ℎ

𝑓
∈

𝐶(𝑅
+
, 𝑅
+
) such that

󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑥, 𝑦)

󵄨󵄨󵄨󵄨
≤ 𝑚
𝑓 (𝑡) ℎ𝑓 (

󵄨󵄨󵄨󵄨
𝑥 + 𝑦

󵄨󵄨󵄨󵄨
) ∀𝑡 ∈ 𝐽, 𝑥, 𝑦 ∈ 𝑅.

(31)

Our second result is based on Krasnoselskii’s fixed point
theorem.

Theorem 8. Assume that (𝐻
2
)–(𝐻
4
) hold; if 2𝐿/(1 − 𝜎) < 1

and there exists a constant 𝑟 > 0 such that

𝑟 (1 − 𝜎 − 2𝐿)

≥
𝑇
𝑞
(2 − 𝜎)

Γ (𝑞 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩𝑃𝐶
ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾] + 2𝑎,

(32)

where 𝑎 = max
𝑖=1,...,𝑁

|𝑔
𝑖
(𝑡, 0)|, then the problem (3) has at least

a mild solution.

Proof. Let 𝐴𝑢(𝑡) be the map introduced in the proof of
Theorem 7.We consider the decomposition𝐴𝑢(𝑡) = 𝐴

1
𝑢(𝑡)+

𝐴
2
𝑢(𝑡), where

𝐴
1
𝑢 (𝑡) =

𝑁

∑

𝑖=1

𝐴
1

𝑖
𝑢 (𝑡) , 𝐴

2
𝑢 (𝑡) =

𝑁

∑

𝑖=1

𝐴
2

𝑖
𝑢 (𝑡) ,

𝐴
1

𝑖
𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{

{

1

Γ (𝑞)
∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠,

if 𝑡 ∈ (𝑠
𝑖
, 𝑡
𝑖+1

] , 𝑖 ≥ 1,

1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠

+
1

(1 − 𝜎) Γ (𝑞)

⋅

𝑁

∑

𝑖=0

∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) ∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

⋅𝑓 (𝑠, 𝑢 (𝑠) , 𝐵𝑢 (𝑠)) 𝑑𝑠 𝑑𝑡,

if 𝑡 ∈ [0, 𝑡
1
] ,

0, else,

𝐴
2

𝑖
𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝑔
𝑖 (𝑡, 𝑢 (𝑡)) , if 𝑡 ∈ (𝑡

𝑖
, 𝑠
𝑖
] , 𝑖 ≥ 1,

𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) , if 𝑡 ∈ (𝑠

𝑖
, 𝑡
𝑖+1

] , 𝑖 ≥ 1,

1

1 − 𝜎
{

𝑁

∑

𝑖=1

𝑔
𝑖
(𝑠
𝑖
, 𝑢 (𝑠
𝑖
)) ∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑑𝑡

+

𝑁

∑

𝑖=1

∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡) 𝑔𝑖 (𝑡, 𝑢 (𝑡)) 𝑑𝑡}

if 𝑡 ∈ [0, 𝑡
1
] ,

0, else.
(33)

Let 𝐵
𝑟
= {𝑥 ∈ PC(𝐽, 𝑅) : ‖𝑥‖PC ≤ 𝑟}. We divide our proof

into three steps.
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Step 1. First we show that𝐴1𝑥+𝐴
2
𝑦 ∈ 𝐵

𝑟
whenever 𝑥, 𝑦 ∈ 𝐵

𝑟
.

From (𝐻
2
), we know that 𝑘 : Δ × 𝑋 → 𝑋 is continuous,

and then 𝑘(𝑡, 𝑠, 0) is bounded, for (𝑡, 𝑠) ∈ Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤

𝑡 ≤ 𝑇}. Let 𝐾 := max{𝑘(𝑡, 𝑠, 0) : (𝑡, 𝑠) ∈ Δ}.
Let 𝑥 ∈ 𝐵

𝑟
; if 𝑡 ∈ (𝑠

𝑖
, 𝑡
𝑖+1

], we have
󵄨󵄨󵄨󵄨󵄨
𝐴
1

𝑖
𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝑞)
∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1 󵄨󵄨󵄨󵄨

𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠))
󵄨󵄨󵄨󵄨
𝑑𝑠

≤
1

Γ (𝑞)
(∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑚
𝑓 (𝑠) 𝑑𝑠) ℎ

𝑓
(‖𝑥 + 𝐵𝑥‖PC)

≤
1

Γ (𝑞)
(∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠)
󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC
ℎ
𝑓
(‖𝑥 + 𝐵𝑥‖PC)

≤
1

Γ (𝑞)
(∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠)
󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC
ℎ
𝑓
(‖𝑥 + 𝐵𝑥‖PC)

=
1

Γ (𝑞)
[−

(𝑡 − 𝑠)
𝑞

𝑞
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC
ℎ
𝑓
(‖𝑥 + 𝐵𝑥‖PC)

=
1

Γ (𝑞)

𝑡
𝑞

𝑞

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC ℎ
𝑓
(‖𝑥 + 𝐵𝑥‖PC)

≤
𝑇
𝑞

𝑞Γ (𝑞)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC ℎ
𝑓
(‖𝑥‖PC + ‖𝐵𝑥‖PC) .

(34)

By the definition of 𝐵, the integral mean value theorem, (𝐻
2
),

and the property Γ(𝑞 + 1) = 𝑞Γ(𝑞), we have
󵄨󵄨󵄨󵄨󵄨
𝐴
1

𝑖
𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
𝑇
𝑞

Γ (𝑞 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC

⋅ ℎ
𝑓
[‖𝑥‖PC + 𝑇 (

󵄨󵄨󵄨󵄨
𝑘 (𝑡, 𝜉, 𝑥) − 𝑘 (𝑡, 𝜉, 0)

󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨
𝑘 (𝑡, 𝜉, 0)

󵄨󵄨󵄨󵄨
)]

≤
𝑇
𝑞

Γ (𝑞 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC

⋅ ℎ
𝑓
(‖𝑥‖PC + 𝐷𝑇 ‖𝑥‖PC + 𝑇

󵄨󵄨󵄨󵄨
𝑘 (𝑡, 𝜉, 0)

󵄨󵄨󵄨󵄨
)

≤
𝑇
𝑞

Γ (𝑞 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾] ,

(35)

where 0 ≤ 𝜉 ≤ 𝑡 ≤ 𝑇.
By a similar argument, let 𝑥 ∈ 𝐵

𝑟
, if 𝑡 ∈ [0, 𝑡

1
]; we have

󵄨󵄨󵄨󵄨󵄨
𝐴
1

𝑖
𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠)) 𝑑𝑠

+
1

(1 − 𝜎) Γ (𝑞)

⋅

𝑁

∑

𝑖=0

∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) ∫

𝑡

𝑠
𝑖

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠)) 𝑑𝑠 𝑑𝑡

≤
𝑇
𝑞

Γ (𝑞 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC
ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾]

+
1

(1 − 𝜎) Γ (𝑞)

⋅ ∫

𝑇

0

𝑤 (𝑡)
𝑇
𝑞

𝑞

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾] 𝑑𝑡

=
𝑇
𝑞

Γ (𝑞 + 1)
(1 +

∫
𝑇

0
𝑤 (𝑡) 𝑑𝑡

1 − 𝜎
)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC

⋅ ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾] .

(36)

From the condition 𝑤 ∈ 𝐿
1
([0, 𝑇], 𝑅

+
), 𝑤 ∈ [0, 1/𝑇), we can

get

󵄨󵄨󵄨󵄨󵄨
𝐴
1

𝑖
𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤

𝑇
𝑞
(2 − 𝜎)

Γ (𝑞 + 1) (1 − 𝜎)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC
ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾] .

(37)

For the other cases, from the definition of 𝐴1
𝑖
𝑢, one can

get |𝐴1
𝑖
𝑥(𝑡)| = 0.

From the proof above, let 𝑥 ∈ 𝐵
𝑟
; then for all 𝑡 ∈ [0, 𝑇],

we have

󵄨󵄨󵄨󵄨󵄨
𝐴
1

𝑖
𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤

𝑇
𝑞
(2 − 𝜎)

Γ (𝑞 + 1) (1 − 𝜎)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾] .

(38)

Let 𝑦 ∈ 𝐵
𝑟
; if 𝑡 ∈ (𝑡

𝑖
, 𝑠
𝑖
], 𝑖 ≥ 1, we can obtain

󵄨󵄨󵄨󵄨󵄨
𝐴
2

𝑖
𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨
𝑔
𝑖
(𝑡, 𝑦 (𝑡)) − 𝑔

𝑖 (𝑡, 0)
󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨
𝑔
𝑖 (𝑡, 0)

󵄨󵄨󵄨󵄨
≤ 𝐿𝑟 + 𝑎.

(39)

Let 𝑦 ∈ 𝐵
𝑟
; if 𝑡 ∈ [0, 𝑡

1
], we can get

󵄨󵄨󵄨󵄨󵄨
𝐴
2

𝑖
𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
1

1 − 𝜎
{

𝑁

∑

𝑖=1

( (
󵄨󵄨󵄨󵄨
𝑔
𝑖
(𝑠
𝑖
, 𝑦 (𝑠
𝑖
)) − 𝑔

𝑖
(𝑠
𝑖
, 0)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨
𝑔
𝑖
(𝑠
𝑖
, 0)

󵄨󵄨󵄨󵄨
) ∫

𝑡
𝑖+1

𝑠
𝑖

𝑤 (𝑡) 𝑑𝑡)

+

𝑁

∑

𝑖=1

∫

𝑠
𝑖

𝑡
𝑖

𝑤 (𝑡) (
󵄨󵄨󵄨󵄨
𝑔
𝑖
(𝑡, 𝑦 (𝑡)) − 𝑔

𝑖 (𝑡, 0)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨
𝑔
𝑖 (𝑡, 0)

󵄨󵄨󵄨󵄨
) 𝑑𝑡}

≤
2 (𝐿𝑟 + 𝑎)

1 − 𝜎
.

(40)

Proceeding as above, we obtain that |𝐴
2

𝑖
𝑦(𝑡)| ≤ 𝐿𝑟 + 𝑎,

∀𝑦 ∈ 𝐵
𝑟
, for 𝑡 ∈ (𝑠

𝑖
, 𝑡
𝑖+1

], 𝑖 ≥ 1.
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Then, for all 𝑥, 𝑦 ∈ 𝐵
𝑟
, we have that

󵄩󵄩󵄩󵄩
𝐴𝑥 + 𝐵𝑦

󵄩󵄩󵄩󵄩PC

≤
𝑇
𝑞
(2 − 𝜎)

Γ (𝑞 + 1) (1 − 𝜎)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC
ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾]

+
2 (𝐿𝑟 + 𝑎)

1 − 𝜎
≤ 𝑟.

(41)

Step 2. We show that 𝐴2 = ∑
𝑁

𝑖=1
𝐴
2

𝑖
is a contraction mapping.

From the definition of 𝐴2𝑢(𝑡), 𝐴2
𝑖
𝑢(𝑡), and (𝐻

3
), we can

easily get

󵄨󵄨󵄨󵄨󵄨
𝐴
2

𝑖
𝑥 (𝑡) − 𝐴

2

𝑖
𝑦 (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤

2𝐿

1 − 𝜎

󵄩󵄩󵄩󵄩
𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC , ∀𝑥, 𝑦 ∈ 𝐵
𝑟
, ∀𝑡 ∈ 𝐽,

(42)

which implies that 𝐴2 is a contraction mapping.

Step 3. Next we will prove that𝐴1 is compact and continuous.
We also divide the proof into 3 steps.
(I) We show that 𝐴1 is continuous.
Let {𝑥

𝑛
} be a sequence such that 𝑥

𝑛
→ 𝑥 in PC(𝐽, 𝑅).

Then for all 𝑡 ∈ 𝐽, by the definition of𝐴1𝑢(𝑡),𝐴1
𝑖
𝑢(𝑡), we have

󵄨󵄨󵄨󵄨󵄨
𝐴
1
𝑥
𝑛 (𝑡) − 𝐴

1
𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
𝑇
𝑞
(2 − 𝜎)

Γ (𝑞 + 1) (1 − 𝜎)

⋅
󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑥

𝑛 (𝑡) , 𝐵𝑥
𝑛 (𝑡)) − 𝑓 (𝑡, 𝑥 (𝑡) , 𝐵𝑥 (𝑡))

󵄨󵄨󵄨󵄨

≤
𝑇
𝑞
(2 − 𝜎)

Γ (𝑞 + 1) (1 − 𝜎)

⋅ (
󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑥

𝑛 (𝑡) , 𝐵𝑥
𝑛 (𝑡)) − 𝑓 (𝑡, 𝑥 (𝑡) , 𝐵𝑥

𝑛 (𝑡))
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑥 (𝑡) , 𝐵𝑥

𝑛 (𝑡)) − 𝑓 (𝑡, 𝑥 (𝑡) , 𝐵𝑥 (𝑡))
󵄨󵄨󵄨󵄨
) .

(43)

From (𝐻
2
), (𝐻
4
), we can get the continuity of 𝑓 and 𝐵.

Then one has
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑥
𝑛
− 𝐴
1
𝑥
󵄩󵄩󵄩󵄩󵄩PC 󳨀→ 0, as 𝑥

𝑛
󳨀→ 𝑥 (𝑛 󳨀→ ∞) , (44)

which shows that the operator 𝐴1 is continuous.
(II) We show that 𝐴

1 maps bounded sets into bounded
sets in PC(𝐽, 𝑅).

Indeed, it is enough to show that, for any 𝑅 > 0, there
exists a 𝑅

󸀠
> 0 such that, for each 𝑥 ∈ 𝐵

𝑅
= {𝑢 ∈ PC(𝐽, 𝑅) :

‖𝑢‖PC ≤ 𝑅}, we have ‖𝐴
1
𝑥‖PC ≤ 𝑅

󸀠.
For all 𝑡 ∈ 𝐽, from the definition of 𝐴1𝑢(𝑡), 𝐴1

𝑖
𝑢(𝑡), and

(𝐻
2
), (𝐻
4
), one can obtain

󵄨󵄨󵄨󵄨󵄨
𝐴
1
𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
𝑇
𝑞
(2 − 𝜎)

Γ (𝑞 + 1) (1 − 𝜎)

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC
ℎ
𝑓 [𝑅 (1 + 𝑇𝐷) + 𝑇𝐾] := 𝑅

󸀠
.

(45)

Then we conclude that 𝐴
1 maps bounded sets into

bounded sets in PC(𝐽, 𝑅).
(III) At last, we prove that 𝐴

1 maps bounded sets into
equicontinuous sets in PC(𝐽, 𝑅).

For interval 𝑡 ∈ (𝑠
𝑖
, 𝑡
𝑖+1

], 𝑠
𝑖
≤ 𝑙
1
< 𝑙
2
≤ 𝑡
𝑖+1

, 𝑖 = 1, . . . , 𝑁,
∀𝑥(𝑡) ∈ 𝐵

𝑟
, by definition of 𝐴1𝑢(𝑡) and (𝐻

3
), we have

󵄨󵄨󵄨󵄨󵄨
(𝐴
1
𝑥) (𝑙
2
) − (𝐴

1
𝑥) (𝑙
1
)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝑞)
∫

𝑙
2

𝑠
𝑖

(𝑙
2
− 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠)) 𝑑𝑠

−
1

Γ (𝑞)
∫

𝑙
1

𝑠
𝑖

(𝑙
1
− 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝑞)
∫

𝑙
2

𝑙
1

(𝑙
2
− 𝑠)
𝑞−1 󵄨󵄨󵄨󵄨

𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠))
󵄨󵄨󵄨󵄨
𝑑𝑠

+
1

Γ (𝑞)
∫

𝑙
1

𝑠
𝑖

󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑥 (𝑠) , 𝐵𝑥 (𝑠))

󵄨󵄨󵄨󵄨

⋅ [(𝑙
1
− 𝑠)
𝑞−1

− (𝑙
2
− 𝑠)
𝑞−1

] 𝑑𝑠

≤

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC
ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾]

Γ (𝑞)

⋅ {∫

𝑙
2

𝑙
1

(𝑙
2
− 𝑠)
𝑞−1

𝑑𝑠 + ∫

𝑙
1

𝑠
𝑖

[(𝑙
1
− 𝑠)
𝑞−1

− (𝑙
2
− 𝑠)
𝑞−1

] 𝑑𝑠}

≤

󵄩󵄩󵄩󵄩󵄩
𝑚
𝑓

󵄩󵄩󵄩󵄩󵄩PC ℎ
𝑓 [𝑟 (1 + 𝑇𝐷) + 𝑇𝐾]

Γ (𝑞 + 1)

⋅ [ (𝑙
2
− 𝑙
1
)
𝑞
+

󵄨󵄨󵄨󵄨󵄨
(𝑙
1
− 𝑠
𝑖
)
𝑞
− (𝑙
2
− 𝑠
𝑖
)
𝑞󵄨󵄨󵄨󵄨󵄨

] ,

(46)

which is independent of 𝑥. As 𝑙
1

→ 𝑙
2
, the right-hand side

of the above inequality tends to zero. Therefore 𝐴
1 is equi-

continuous on interval (𝑠
𝑖
, 𝑡
𝑖+1

], 𝑖 ≥ 1.
Proceeding as above, we can also prove that𝐴1 is equicon-

tinuous for the time interval [0, 𝑡
1
]. From the definition of𝐴1

𝑖
,

it is easy to see that 𝐴1 is equicontinuous for the other cases.
By Arzela-Ascoli Theorem, 𝐴1 is continuous and com-

pact.

As a consequence of Lemma 5, we deduce that the
operator 𝐴 has at least a fixed point on 𝐵

𝑟
which means that

problem (3) has at least a mild solution.

4. Examples

Consider the following impulsive system of fractional differ-
ential equations.

Example 1. Consider

𝑐
𝐷
1/2

𝑡
𝑢 (𝑡) =

1

16
(

𝑢 (𝑡) sin 𝑡
2

1 + 𝑒
𝑡
2

+ ∫

𝑡

0

sin (𝑡
2
+ √𝑠)

2
𝑢 (𝑠) 𝑑𝑠) ,

𝑡 ∈ (𝑠
𝑖
, 𝑡
𝑖+1

] , 𝑖 = 1, . . . , 𝑁,
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𝑢 (𝑡) =
𝑢 (𝑡)

18𝑒
𝑡
(1 + |𝑢 (𝑡)|)

, 𝑡 ∈ (𝑡
𝑖
, 𝑠
𝑖
] , 𝑖 = 1, . . . , 𝑁,

𝑢 (0) = ∫

1

0

𝑢 (𝑡)

3
𝑑𝑡,

(47)

where 0 = 𝑡
0
= 𝑠
0
< 𝑡
1
= 1/2 ≤ 𝑠

1
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑁
≤ 𝑠
𝑁

≤ 𝑡
𝑁+1

= 1

are pre-fixed numbers, 𝐽 = [0, 1], 𝑞 = 1/2, and 𝑤(𝑡) = 1/3 <

1.
We prove that Example 1 satisfies all the assumptions of

Theorem 7.
In Example 1, set

𝑓 (𝑡, 𝑢, V) =
𝑢 sin 𝑡

2

16 (1 + 𝑒
𝑡
2

)

+
V
16

,

𝐵𝑢 (𝑡) = ∫

𝑡

0

sin (𝑡
2
+ √𝑠)

2
𝑢 (𝑠) 𝑑𝑠,

𝑘 (𝑡, 𝑠, 𝑢) =

sin (𝑡
2
+ √𝑠)

2
𝑢.

(48)

It is easy to see that 𝑓 is jointly continuous. We can also
check that (𝐻

1
) and (𝐻

2
) are satisfied with 𝑒(𝑡) = 1/16 and

𝑑(𝑡) = 1/2.
For 𝑡 ∈ [0, 1], 𝑢 ∈ 𝑅, and 𝑔

𝑖
(𝑡, 𝑢) = 𝑢/18𝑒

𝑡
(1 + |𝑢|), then

we know
󵄨󵄨󵄨󵄨
𝑔
𝑖 (𝑡, 𝑢) − 𝑔

𝑖 (𝑡, V)
󵄨󵄨󵄨󵄨
≤

1

18
|𝑢 − V| , (49)

with 𝑙
𝑖
(𝑡) = 1/36, so (𝐻

3
) is also satisfied.

From 1, we can get 𝐿 = 1/18, 𝑇 = 1, 𝑀 = 1/16, 𝐷 = 1/2,
𝑞 = 1/2, Γ(3/2) = √𝜋/2, 𝜎 = 1/6, and then

𝑛 =
𝑇
𝑞
𝑀(1 + 𝑇𝐷) (2 − 𝜎)

Γ (𝑞 + 1) (1 − 𝜎)
+

2𝐿

1 − 𝜎
=

33

80√𝜋
+

2

15
< 1.

(50)

So all the conditions of Theorem 7 are satisfied. As a
consequence of Theorem 7, Example 1 has a unique mild
solution.

Example 2. Consider
𝑐
𝐷
1/2

𝑡
𝑢 (𝑡)

=
1

15 (1 + 𝑒
√sin 𝑡

)

(𝑢 (𝑡) + ∫

𝑡

0

sin (𝑡
2
+ √𝑠)

2
𝑢 (𝑠) 𝑑𝑠) ,

𝑡 ∈ (𝑠
𝑖
, 𝑡
𝑖+1

] , 𝑖 = 1, . . . , 𝑁,

𝑢 (𝑡) =
𝑢 (𝑡)

18 (1 + |𝑢 (𝑡)|)
, 𝑡 ∈ (𝑡

𝑖
, 𝑠
𝑖
] , 𝑖 = 1, . . . , 𝑁,

𝑢 (0) = ∫

1

0

𝑢 (𝑡)

2
𝑑𝑡,

(51)

where 0 = 𝑡
0

= 𝑠
0

< 𝑡
1

= 1/3 ≤ 𝑠
1

≤ 𝑡
2

≤ ⋅ ⋅ ⋅ ≤ 𝑡
𝑁

≤

𝑠
𝑁

≤ 𝑡
𝑁+1

= 1 are prefixed numbers, 𝐽 = [0, 1], 𝑞 = 1/2, and
𝑤(𝑡) = 1/2 < 1.

It is easy to see that 𝑔
𝑖
(𝑡, 0) = 0 is bounded. Set

𝑓 (𝑡, 𝑢, V) =
𝑢 + V

15 (1 + 𝑒
√sin 𝑡

)

,

𝐵𝑢 (𝑡) = ∫

𝑡

0

sin (𝑡
2
+ √𝑠)

2
𝑢 (𝑠) 𝑑𝑠,

𝑘 (𝑡, 𝑠, 𝑢) =

sin (𝑡
2
+ √𝑠)

2
𝑢.

(52)

Then we have

󵄨󵄨󵄨󵄨
𝑓 (𝑡, 𝑢, 𝐵𝑢)

󵄨󵄨󵄨󵄨
≤

1

15
|𝑢 + 𝐵𝑢| , (53)

with 𝑚
𝑓

= 1/15 ∈ 𝐶(𝐽, 𝑅
+
), ℎ
𝑓
(|𝑢 + 𝐵𝑢|) = |𝑢 + 𝐵𝑢| ∈

𝐶(𝑅
+
, 𝑅
+
) being nondecreasing. So (𝐻

4
) is satisfied. Similarly

to the proof of Example 1, we know that (𝐻
2
) and (𝐻

3
) are

satisfied.
From (51), we can obtain 𝑇 = 1, 𝜎 = 1/6, 𝐷 = 1/2, 𝐿 =

1/18 < 1, 𝑎 = 0, 𝐾 = 0, Γ(3/2) = √𝜋/2, 𝑚
𝑓

= 1/15, 𝑞 = 1/2,
and 2𝐿/(1 − 𝜎) = 2/15 < 1, and then the inequality (32)
becomes 13𝑟/18 ≥ (11/30√𝜋)𝑟. Hence, inequality (32) holds
for all 𝑟 > 0.

Thus, all the assumptions in Theorem 8 are satisfied, and
our results can be applied to Example 2. So Example 2 has at
least one mild solution.
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