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The spectral leakage has a harmful effect on the accuracy of harmonic analysis for asynchronous sampling. This paper proposed
a time quasi-synchronous sampling algorithm which is based on radial basis function (RBF) interpolation. Firstly, a fundamental
period is evaluated by a zero-crossing technique with fourth-order Newton’s interpolation, and then, the sampling sequence is
reproduced by theRBF interpolation. Finally, the harmonic parameters can be calculated by FFTon the synchronization of sampling
data. Simulation results showed that the proposed algorithm has high accuracy inmeasuring distorted and noisy signals. Compared
to the local approximation schemes as linear, quadric, and fourth-order Newton interpolations, the RBF is a global approximation
method which can acquire more accurate results while the time-consuming is about the same as Newton’s.

1. Introduction

With the widespread use of conventional and modern non-
linear loads, harmonic and interharmonic currents are being
injected into the power network and cause power quality
(PQ) problems [1]. Meanwhile, the embedded generation
and renewable sources of energy have also created new PQ
problems, such as voltage variations, flickers, and waveform
distortions [2]. So the monitoring of harmonic and inter-
harmonic distortions is an important issue that has been
addressed in recent years.

The discrete Fourier transform (DFT) with its highly
efficient algorithm, that is, the fast Fourier transform (FFT), is
the recommendedmethod in IEC 61000-4-7 [3] which entails
using a rectangular window with time length of 200ms. The
FFT algorithm has high precision for harmonic analysis in
the case of synchronous sampling. However, the fundamental
frequency of power system signals may vary because of the
generation and load mismatch even leads to fluctuations.
So the synchronous sampling is unattainable, and conse-
quently, the spectral leakage, caused by the FFT applied in
asynchronously sampling, reducesmeasurement accuracy. In
paper [4], the authors have shown that even a small error

in synchronization causes significant errors in amplitude
and phase estimations. Although, the grouping/subgrouping
method introduced in IEC standard can mitigate the spectral
leakages, the low-frequency resolution remains a problem.

Therefore, numerous investigations for reducing spectral
leakage errors in the case of asynchronous sampling have
been carried out extensively recently. Among them, the
windowed interpolated FFT algorithm (WIFFTA) is the
most popular because of its low computational burden and
feasibility for real-time monitoring. In the WIFFTA, the
window functions and interpolation algorithms are adopted
to reduce leakage effect and the picket fence effect. The
drawback of this frequency-domain approach is that the
calculation accuracy is not particularly high and is deficient in
detecting fluctuations in signals.The reasonwhy the accuracy
cannot be improved is because a flattop window with an
extremely small side lobe which can reduce both the short-
and long-range leakage errors does not exist [5].

On the contrary, the time quasi-synchronous sampling
algorithm (TQSA) [6] can modify the sampling rate and
reproduce a synchronous sampling signal. It includes the
following three steps as obtaining the fundamental period
of signal firstly, then adjusting the sampling rate so as to
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satisfy the integer-period sampling condition, and finally
reproducing the approximate synchronous sampling points
via interpolation. Hence, the harmonic parameters can be
determined accurately from the DFT/FFT results due to the
significant decrease in spectral leakage. The performance of
such techniques is highly dependent on the accuracies of fun-
damental period and interpolation samplings. Generally, the
fundamental period can be determined by the zero-crossing
technique and the approximate synchronous sampling can
be interpolated by the linear, quadratic, cubic spline [7], or
Newton’s interpolations. However, the above methods are
local interpolationwhichmeans the interpolated point is only
determined by nearby sampling data and the interpolation
accuracy is limited.

Thus, a global interpolation scheme which is based on
radial basis function (RBF) for data synchronization method
was proposed in this paper.The RBF [8], specifically the mul-
tiquadric (MQ) function adopted here, is defined on distance.
The MQ function was initially proposed for scattered data
approximation, and it has been proved by Franke that theMQ
method has the superior comprehensive performance in 29
kinds of scattered data interpolation methods [9].

The organization of this paper is as follows. In Section 2,
the Newton’s forward-difference interpolation for funda-
mental period is addressed with comparison to linear and
quadratic techniques. Then, in Section 3, the RBF interpo-
lation method for sampling sequence synchronization was
proposed. Test results are given to show the usefulness of the
proposed method by comparing with others.

2. Newton’s Interpolation for the
Fundamental Period

The time interval between adjacent zero-crossing points can
be considered as the fundamental period of the signal for a
periodic signal. So determining the zero-crossing points is of
great importance which is not only the basis for fundamental
frequency, but also has directly affection in absolute phase
calculation. The linear and quadratic interpolations are the
commonly used methods to acquire the zero-crossing time.

2.1. Linear and Quadratic Interpolations Schemes. For linear
type, one can firstly find two adjacent sampling points which
satisfy 𝑥(𝑡

1
) < 0 and 𝑥(𝑡

2
) > 0. Then, the 𝑡zero can be

determined with linear approximation as

𝑡zero = 𝑡
1
+

−𝑥 (𝑡
1
)

𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)

(𝑡
2
− 𝑡
1
) . (1)

Finally, the next zero-crossing point can be found by the sim-
ilar way.Therefore, the fundamental period can be calculated.

For quadratic situation, one can find three adjacent
sampling points which satisfy 𝑥(𝑡

0
) < 0, 𝑥(𝑡

1
) > 0, and

𝑥(𝑡
2
) > 0 just like Figure 1(a). Use the quadratic polynomial

approximation as
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where 𝑥[𝑡
0
, 𝑡
1
] is the first-order divided difference defined

as 𝑥[𝑡
0
, 𝑡
1
] = (𝑥 (𝑡
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) − 𝑥(𝑡

0
))/(𝑡
1
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) and 𝑥[𝑡
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the second-order divided difference in terms of 𝑡
0
, 𝑡
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, and 𝑡

2

and defined as 𝑥[𝑡
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1
, 𝑡
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] = (𝑥 [𝑡

1
, 𝑡
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] − 𝑥[𝑡
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Find the zero-crossing point 𝑡zero by iteration method which
satisfies 𝑥(𝑡zero) = 0; then denote the 𝑡zero as 𝑡zero 1. And
correspondingly, another three adjacent sampling points are
chosen which satisfy 𝑥(𝑡

0
) < 0, 𝑥(𝑡

1
) < 0, and 𝑥(𝑡

2
) > 0

like Figure 1(b) and 𝑡zero 2 can then be worked out. Because
the two zero-crossing points were calculated with different
sampling points, we took their average 𝑡zero = (𝑡zero 1 +

𝑡zero 2)/2 as a more accurate approximation for zero-crossing
point. In the same way, the next zero-crossing point can be
determined and the fundamental period is obtained.

2.2. Newton’s Interpolation Scheme. In above linear or
quadratic interpolations, only lower-order polynomials were
considered. Therefore, Newton’s interpolation algorithm [6]
is chosen for its low computational complexity and conve-
nience for programming in this paper. Since the error of
fourth-order polynomial is small enough in estimating the
fundamental period, only five adjacent sampling points were
taken as the interpolation nodes as 𝑥(𝑡

−2
), 𝑥(𝑡
−1
), 𝑥(𝑡
0
), 𝑥(𝑡
1
),

and 𝑥(𝑡
2
), just like Figure 2.

The fourth-order Newton’s divided-difference formula
can be represented as

𝑓 (𝑧) = 𝑓 (𝑧
0
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(3)

For the five pairs of numbers (𝑥(𝑡
𝑖
), 𝑡
𝑖
), where 𝑖 =

−2, . . . , 2, the actual zero-crossing time 𝑡zero is calculated by
Newton’s interpolation polynomial as follows:
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where 𝑓[𝑥(𝑡
−2
), 𝑥(𝑡
−1
)] = (𝑡

−1
− 𝑡
−2
)/(𝑥(𝑡

−1
) − 𝑥(𝑡

−2
)). The

same process is implemented to calculate next zero-crossing
time. If setting the first zero-crossing time as 𝑡start and the
latter as 𝑡end, we can estimate the fundamental period and
frequency by

𝑇
∗
= 𝑡end − 𝑡start,

𝑓
0
=

1

𝑇
∗

=

1

(𝑡end − 𝑡start)
.

(5)

In practice, the power signal contains higher harmonics
or noise; the zero-crossing point may be not unique or it
is sensitive to the noise influence. So a filtering process is
necessary which can remove the harmonics and diminish the
interference by averaging the noise. Specifically, the finite-
impulse response (FIR) filter is chosen for the determination
of the fundamental period due to its linear phase properties.
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Figure 1: Quadric interpolation for zero-crossing points.
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Figure 2: Newton’s interpolation for zero-crossing points.

3. RBF Interpolation Method for
Sampling Synchronization

The synchronization is essentially a mapping from an asyn-
chronous sampling set to a synchronous one. The syn-
chronous sampling points are defined on calculated syn-
chronous time which is based on the fundamental period
and zero-crossing point calculation. Usually, the mapping
is implemented by lower-order polynomial interpolations
which are local approximations even for fourth-order New-
ton’s scheme. Therefore, we proposed an RBF-based global
interpolation method in this paper. The basic idea of RBF
method is briefly narrated as follows. Firstly, we construct
an approximation signal 𝑥

𝑎
(𝑡) to approach the original

signal 𝑥(𝑡) through RBF interpolation. Then, we reproduce

the approximate synchronous sampling for synchronization
time.

3.1. Principle of Radial Basis Function Interpolation. Radial
basis function B : 𝑅+ → 𝑅 (domain: 𝑅𝑑) is defined as the
function of distance 𝑟 =

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑥
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
. The commonly used RBF

contains the thin plate splines function (B(𝑟) = 𝑟
2 ln 𝑟), the

Gaussian function (B(𝑟) = exp(−𝛽𝑟2)), Hardy’s multiquadric
(MQ) functions, and so forth. The widely used MQ function
has the following expression [8]:

𝜙 (x) = √‖x − c‖2 + 𝛼
2
. (6)

In above, c means the center of basis function; 𝛼 is the
shape parameter which generally associated with the distance
between adjacent centers. Taking 𝛼 = 𝛽

󵄩
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󵄩
󵄩
c
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− c
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
, 𝛽 is also

called shape parameter. The principle of RBF interpolation
is regarding the unknown functions as linear combination
of radial functions. So the approximation function can be
obtained after calculating the undetermined coefficients. For
example, a series of known data points (𝑡

𝑛
, 𝑥(𝑡
𝑛
)), 𝑛 =

1, 2, . . . , 𝑁, and the approximation function can be con-
structed as
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(7)

Then, substituting the interpolation data points into above
equation, we can obtain the following:

𝑥 (𝑛) = ∑𝜆
𝑗
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T are the sampling
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2
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T are the coefficients, and [Φ
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denotes the interpolation matrix whose element is B
𝑛𝑚

=

[(𝑡
𝑛
− 𝑡
𝑐𝑚

)
2

+ 𝛼
2
]

1/2

. Solve ((8)) as

[𝜆] = [Φ
𝑑
]
−1

[x
𝑑
] . (9)

Therefore, the approximation signal 𝑥
𝑎
(𝑡) is

𝑥
𝑎
(𝑡) = [Φ (𝑡)] [𝜆] = [Φ (𝑡)] [Φ

𝑑
]
−1

[x
𝑑
] . (10)

It is obvious that the approximated value at any time is
related to the entire interpolation sampling. So the interpola-
tion curve ismuch smoother and the approximation accuracy
is higher.

3.2. Sampling Data Synchronization with RBF. In the afore-
mentioned section, two adjacent zero-crossing points denot-
ed by 𝑡start and 𝑡end were determined by the fourth-orderNew-
ton’s interpolation. Therefore, according to the fundamental
period 𝑇

∗ calculated by ((5)), the original sampling period
𝑇𝑠 can be adjusted to 𝑇𝑠

∗ which satisfies𝑇∗ = 𝑁𝑇𝑠
∗. In other

words, we choose𝑁 equidistant sampling time as [𝑡start, 𝑡start+
𝑇𝑠
∗
, 𝑡start + 2𝑇𝑠

∗
, . . . , 𝑡start + (𝑁 − 1) 𝑇𝑠

∗
, 𝑡end] and then the

integer-period sampling is achieved. In practice, number 𝑁

can be arbitrarily selected according to the harmonic analysis
requirements. So the approximate synchronous sampling can
be obtained with RBF interpolation as

𝑥
𝑎
(𝑛) = 𝑥

𝑎
(𝑡)

󵄨
󵄨
󵄨
󵄨𝑡=𝑛𝑇s∗ = [Φ (𝑛𝑇s∗)] [𝜆]

= [Φ (𝑛𝑇s∗)] [Φ
𝑑
]
−1

[x
𝑑
] .

(11)

With synchronization processing of asynchronous sam-
pling 𝑥(𝑛), spectral leakage is efficiently decreased, and then,
the harmonic parameters (i.e., frequency, amplitude, and
phase) can be accurately determined from the DFT/FFT
results. In addition, the phase compensation should be
implemented as 𝜑󸀠(𝜔

𝑘
) = 𝜑(𝜔

𝑘
) − 𝜔
𝑘
𝑡start because of shifting

time 𝑡start.

4. Harmonic Analysis Based on
Newton’s and RBF Interpolation for
Asynchronous Sampling

So far, we combined the fourth-order Newton’s interpolation
and RBF interpolation methods. The former is utilized to
determine the signal’s zero-crossing points and its funda-
mental frequency. And then, an approximate function 𝑥

𝑎
(𝑡)

which is defined on the time range [𝑡start, 𝑡end] can be obtained
by the RBF interpolation. The synchronization data 𝑥

𝑎
(𝑛)

for given synchronization time can be acquired. Finally,
the amplitude parameters can be calculated by FFT, while
the phase parameters can be obtained after compensation
processing due to the beginning time 𝑡start. The detailed flow
chart is shown in Figure 3.

5. Simulation Result

In this section, two simulation tests to verify the estimation
accuracies of frequency, amplitude, and phase with the above

Start

End

Phase

Amplitude

Frequency

Input asynchronous sampling data x(n)

and corresponding sample time

Fourth-order Newton’s interpolation for
determining zero-crossing point tzero after filtering

Determining the fundamental period T∗ and
fundamental frequency f0

RBF interpolation for x(n): obtain approximation xa(t)

Obtain synchronization data xa(n) = xa(nTs
∗)

Harmonic calculation of xa(n) by FFT

Phase compensation according to tstart

Figure 3: Harmonic analysis procedure based on Newton and RBF
interpolation.

methods are performed. For RBF method, the centers are
chosen at the asynchronous sampling time, and the shape
parameter is 𝛽 = 5.0.

5.1. Simulation for Power Harmonic Measurement. In this
example, the input signal, which is the same as that used in
[10], is employed:

𝑥 (𝑛) =

3

∑

𝑚=1

𝐴
𝑚
sin(

2𝜋𝑓
𝑚
𝑛

𝑓
𝑠

+ 𝜑
𝑚
) . (12)

The fundamental frequency 𝑓
1
equals 49.85Hz. The

amplitudes of all the harmonics are normalized and are,
respectively, 𝐴

1
= 1, 𝐴

2
= 0.07, and 𝐴

3
= 0.2. The initial

phases are, respectively, 𝜑
1

= 0.9 rad, 𝜑
2

= 1.2 rad, and
𝜑
3

= 0.75 rad. According to the recommendation of IEC
Std. 61000-4-7, the window width is set as 200ms. Therefore,
the sampling frequency 𝑓

𝑠
and the length of the sampling

sequence𝑁 are set to be 2560Hz and 512 points, respectively.

5.1.1. Comparison of Fundamental Frequency Calculation.
Firstly, the precision comparison of zero-crossing detec-
tion among linear, quadratic, and fourth-order Newton’s
interpolations was carried out. All the 512 sampling points
are applied for 50th-order FIR filtering. However, only the
filtered sampling points which are located behind the first
51 points will be analyzed for zero-crossing detection. The
cutoff frequencies of bandpass FIR filter are 35 and 65Hz,
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Table 1: Relative error comparison for fundamental frequency.

Frequency (Hz) Linear Quadric Newton’s method
49.50 8.2209𝑒 − 004 1.6279e − 004 1.4848e − 007
49.60 9.0416e − 004 1.0133e − 004 4.1249e − 007
49.70 3.2312e − 004 3.7585e − 004 2.3696e − 007
49.80 8.7208e − 004 3.7908e − 004 3.6028e − 008
49.85 9.2362e − 004 3.1479e − 004 4.7762e − 008
49.90 8.6749e − 004 2.2591e − 004 1.1480e − 007
49.95 7.3448e − 004 1.2716e − 004 1.6125e − 007
50.00 5.5541e − 004 3.3378e − 005 1.8374e − 007
50.05 3.6123e − 004 4.0445e − 005 1.7949e − 007
50.10 1.8301e − 004 7.9253e − 005 1.4653e − 007
50.15 5.1957e − 005 6.7919e − 005 8.3851e − 008
50.20 5.4970e − 007 8.7226e − 006 8.2554e − 009
50.30 6.3150e − 004 1.1163e − 004 1.3240e − 007
50.40 5.7513e − 004 5.7684e − 006 2.2788e − 007
50.50 1.0963e − 004 1.9676e − 004 2.5694e − 007

respectively. The fundamental frequency varies from 49.5Hz
to 50.5Hz and the specific results were shown in Table 1.

InTable 1, the relative error of fundamental frequencywas
defineds as Err

𝑓
=

󵄨
󵄨
󵄨
󵄨
Δ𝑓

󵄨
󵄨
󵄨
󵄨
/𝑓
0
. It can be seen that the quadratic

interpolation is overall better than linear type, and the fourth-
order Newton’s interpolation acquires much better accuracy
which is about 2 or 3 orders ofmagnitude less than the former
two schemes.However, the average time-consuming of linear,
quadric, and Newton’s interpolations is about 1.1ms, 4.4ms,
and 6.2ms, respectively.

5.1.2. Interpolation Error Analysis for Asynchronous Data.
Then, the interpolation error comparison at frequency
49.85Hz for asynchronous data in a fundamental period
among the above methods was implemented. The absolute
error curves were shown in Figure 4. It is obvious that the
RBF interpolation takes great advantage over other three
methods because of its global approximation characteristic.
The RBF method can improve significantly the approxima-
tion accuracy which is about 2 orders of magnitude than the
Newtonmethod.The rootmean square error (RMSE) Err RMS
is defined as

Err RMS = √
1

𝑁

𝑁−1

∑

𝑛=0

[𝑥 (𝑛) − 𝑥
𝑎
(𝑛)]
2

. (13)

The results showed that the RMSEof RBF,Newton, linear, and
quadric interpolation methods is 1.2555e-007, 7.8289e-006,
2.0026e-003, and 3.2539e-004, respectively.The average time-
consuming is correspondingly about 18.7ms, 20.7ms, 3.5ms,
and 4.3ms. And subsequently, the fundamental frequency
varies from 49.5Hz to 50.5Hz, and the RMSE curves were
shown in Figure 5. So the RBF method can acquire much
better interpolation accuracy than the Newton’s.

Table 2: Relative error comparison of harmonic parameters.

Parameters RBF Newton Hanning
𝑓
1

4.7762e − 008 4.7762e − 008 1.0523e − 006
𝐴
1

2.3623e − 008 1.1721e − 008 5.8204e − 006
𝜑
1

1.8511e − 007 4.0930e − 007 1.3611e − 001
𝑓
2

4.7762e − 008 4.7762e − 008 3.2800e − 005
𝐴
2

1.8819e − 007 2.4299e − 007 1.4765e − 004
𝜑
2

1.0059e − 006 5.8174e − 006 2.0588e − 001
𝑓
3

4.7762e − 008 4.7762e − 008 2.5943e − 006
𝐴
3

1.2697e − 007 8.3411e − 006 2.5551e − 005
𝜑
3

8.6146e − 007 6.6761e − 005 4.9044e − 001

Table 3: Relative error comparison of harmonic parameters with
noise (SNR = 35 dB).

Parameters RBF Newton Hanning
𝑓
1

1.5990𝑒 − 006 1.5990e − 006 2.8590e − 006
𝐴
1

1.8227e − 004 1.9787e − 004 1.6213e − 005
𝜑
1

3.7576e − 004 3.8343e − 004 1.3628e − 001
𝑓
2

1.5990e − 006 1.5990e − 006 5.6802e − 005
𝐴
2

6.5670e − 004 7.2308e − 004 4.3881e − 004
𝜑
2

2.5664e − 004 2.3503e − 004 2.0678e − 001
𝑓
3

1.5990e − 006 1.5990e − 006 2.7103e − 006
𝐴
3

7.4394e − 004 5.0906e − 004 2.0779e − 004
𝜑
3

1.2813e − 003 1.2330e − 003 4.9096e − 001

5.1.3. Harmonic Analysis Comparison. Finally, a harmonic
analysis procedure was executed which was based on the syn-
chronization sequence. The TQSA methods as the RBF and
Newton’s interpolation, the Hanning windowed interpolated
FFT method were compared.

It can be clearly seen that the time-domain methods as
RBF and Newton’s interpolation can significantly improve
the parameters’ accuracy when compared to the Hanning
method. Particularly for the phase parameter, the accuracy
improves about 4 to 5 orders ofmagnitude inTQSA.Compar-
atively speaking, the RBF method possesses higher accuracy
for higher harmonic parameters than the Newton method,
for instance, the third harmonic case. The average time-
consuming of RBF, Newton’s interpolation, and Hanning
method is about 22.4ms, 23.6ms, and 4.3ms, respectively.
However, the time-consuming of filter process in TQSA is
about 122.5ms (Table 2).

5.1.4. Application to Signal with Noise. In addition, zero-
mean Gaussian white noise is added to the clean signal. The
signal to noise ratio (SNR) is set as 35 dB, and in order
to acquire a general conclusion, the mean value of 500
independent simulations is regarded as one measurement
result.The results of the Hanningmethod, RBF, andNewton’s
interpolation methods are listed in Table 3.

From Table 3, we can conclude that the TQSA methods
have obvious advantage in phase calculation more than the
Hanning method. The accuracy is improved about 2 or 3
orders of magnitude. However, the accuracy of frequency
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Figure 4: Absolute interpolation errors comparison.

Ro
ot

 m
ea

n 
sq

ua
re

 er
ro

rs

10−7

10−6

10−5

10−4

10−3

10−2

49.5 49.6 49.7 49.8 49.9 50 50.1 50.2 50.3 50.4 50.5

Frequency (Hz)

RBF
Newton

Linear
Quadric

Figure 5: Root mean square errors comparison.

and amplitude parameters is almost in the same magnitude.
This is mainly because the noise is relatively great and its
influence is taken into account in sampling interpolation
process. Although the RBF and Newton’s methods maintain
high accuracy in interpolation, the interpolated curves based
on noisy data have relatively larger error compared to the
clean signal.

5.2. Analysis of Current Signal Measured from a Forge. In
this example, we evaluate the performance of the TQSA in
the measurement of distorted signal which was recorded
from a forge. The current signal is greatly affected by the
working condition, and the amplitude has obvious variation
in Figure 6. Therefore, the TQSA method and Hanning
method are compared for distorted signal located in the seg-
ment sampling points of [425501, 426500]. And the sampling
frequency 𝑓𝑠 and the length of the sampling sequence 𝑁 are
5000Hz and 1000 points, respectively. So the time length of
segment is 200ms which is recommended in IEC 61000-4-7.

Firstly, the Hanning method is implemented as per
the IEC’s recommendation. Then, we can construct the
approximate signal from the harmonic parameters which
are calculated as aforementioned. And consequently, the
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Figure 6: Recorded current wave in a forge.
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Figure 7: Approximate signal based on Hanning method.

RBF and Newton’s interpolation methods are performed.
The fundamental period can be considered a constant in
200ms time interval.The asynchronous sampling pointswere
interpolated with TQSA. However, the calculations of FFT
for synchronization data were carried out for every signal
fundamental period because of its amplitude variation. The
approximate signals can then be constructed based on the
above harmonic parameters. Finally, the comparison can be
carried out betweenmeasurement signal and the approximate
signal in Figures 7 and 8 for Hanning method, RBF, and
Newton’s method, respectively.

From Figures 7 and 8, we can conclude that the TQSA
can calculate the harmonic parameters accurately even in a
fundamental period, so the reconstructed signal by TQSA
has much better approximation results as shown in Figure 8.
While for Hanning method, the window length is 10 times
the fundamental period; it cannot capture the amplitude
variation in a time window, and the reconstructed signal
has the same amplitude. If the time window is changed to
a fundamental period, the ability of following the amplitude
variation is sure to be improved. However, the harmonic
parameters’ accuracymust be decreased.The contradiction is
essentially the problem that a time window which can reduce
both the short- and long-range leakage errors does not exist.
The results showed that the RMSE for Hanningmethod, RBF,
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Figure 8: Approximate signal based on RBF, Newton’s method.

and Newton’s interpolation methods is 0.3598, 0.1027, and
0.1027, respectively.

Therefore, the above two simulation tests demonstrated
that the TQSA can avoid the contradiction between time and
frequency limitation raised from frequency-domain method
as Hanning. The RBF method is a global interpolation and
can acquire more accurate results than the Newton’s for clean
signal. Even for noisy data case, the RBF can also acquire
a similar accuracy to the Newton’s. Moreover, the time-
consuming of RBF is about the same as Newton’s.

6. Conclusions

The spectral leakage problems due to the asynchronous
sampling affect significantly the harmonic measurement
accuracy. So a time quasi-synchronous sampling algorithm
based on RBF interpolation has been proposed in this paper.
The principle of RBF interpolation and its application in
harmonic analysis was discussed in detail. Compared to the
local approximation schemes as linear, quadric, and fourth-
order Newton interpolations, the RBF is a global scheme
which can acquire more accurate results while the time-
consuming is about the same as Newton’s. The simulations
results also showed that the RBF method is suitable for the
applicationwhere frequency or amplitude variation detection
is strictly required.
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