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Curved-pipe flows have been the subject of many theoretical investigations due to their importance in various applications. The
goal of this paper is to study the flow of incompressible fluid with a pressure-dependent viscosity through a curved pipe with
an arbitrary central curve and constant circular cross section. The viscosity-pressure dependence is described by the well-known
Barus law extensively used by the engineers. We introduce the small parameter 𝜀 (representing the ratio of the pipe’s thickness and
its length) into the problem and perform asymptotic analysis with respect to 𝜀. The main idea is to rewrite the governing problem
using the appropriate transformation and then to compute the asymptotic solution using curvilinear coordinates and two-scale
asymptotic expansion. Applying the inverse transformation, we derive the asymptotic approximation of the flow clearly showing
the influence of pipe’s distortion and viscosity-pressure dependence on the effective flow.

1. Introduction

Curved-pipe flows have gained much attention over past
years due to their importance in numerous industrial and
engineering applications. Air conditioners, refrigeration sys-
tems, central heating radiators, and chemical reactors are
only few examples of devices where we can find different
types of curved pipes. From the theoretical point of view,
curved-pipe flows are interesting due to the appearance of
secondary flows caused by the effects of the pipe’s distortion.
Therefore, when analyzing such problems, the main attempt
is to detect the effects of the pipe’s geometry on the velocity
and pressure distribution through the pipe. The engineering
approach to the curved-pipe flows is often based on the
Poiseuille formula providing an exact solution only in case of
stationary, laminar Newtonian flow through a straight pipe
with constant cross section. However, if the pipe is curved,
such formula only gives an approximation of the solution
with low order of accuracy. In view of that, the Poiseuille flow
has to be corrected by the lower-order term which contains
the effects of pipe’s curvedness leading to a more accurate
approximation.

In his celebrated work, Stokes [1] suggested that the vis-
cosity of the fluid can depend on the pressure. Since then,

numerous researchers confirmed that, especially at high
values of pressure, the variations of the viscosity with pressure
should be taken into account while the flow is still incom-
pressible. For that reason, the problemof incompressible fluid
flow with a pressure-dependent viscosity is very attractive
and has been extensively studied in recent years, mostly in
the engineering literature (see, e.g., [2–6]).There exist several
ways to describe the viscosity-pressure relation. Among all,
the most famous one is, without any doubt, the Barus law [7]:

𝜇 (𝑝) = 𝜇
0
𝑒
𝛽𝑝
. (1)

Here 𝜇
0
stands for the viscosity at atmospheric pressure while

𝛽 > 0 is the pressure-viscosity coefficient. Barus formula has
been extensively used throughout the engineering literature.

Motivated by the above discussion, the aimof this paper is
to study the incompressible fluid with a pressure-dependent
viscosity obeying Barus law and flowing through a curved
pipe with constant circular cross section. Introducing the
viscosity-pressure dependence (1) into the Navier-Stokes
system completely changes the nature of the system making
it very challenging from the mathematical point of view.
It brings the additional nonlinearity to the system and the
flow becomes non-Newtonian. The main difficulty lies in the

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 905406, 8 pages
http://dx.doi.org/10.1155/2015/905406



2 Mathematical Problems in Engineering

fact that we cannot treat pressure as we did in the classical,
Newtonian case so we need to change our approach. In view
of that, our strategy consists of the following three steps:

(1) rewriting the governing system by replacing the
original pressure with a new, transformed pressure;

(2) finding the solution of the transformed system satis-
fied by the velocity and a new pressure;

(3) reconstructing the effective pressure by applying the
inverse transformation.

Naturally, it is not reasonable to expect that we will suc-
ceed to find the exact solution of the governing 3Dboundary-
value problem. Therefore, inspired by the applications, we
introduce the small parameter 𝜀 into the system (denoting the
ratio between pipe’s thickness and its length) and consider the
flow in a pipe which is either very thin or very long. By doing
that, we are in position to perform the asymptotic analysis as
𝜀 → 0 and to build the asymptotic approximation of the flow
with high order of accuracy.

Along with the viscosity-pressure dependence, our aim
is to treat as general domain as possible. Thus, we assume
that the pipe’s central curve, denoted by 𝛾, is an arbitrary
smooth curve given by its natural parametrization. The only
constraint we impose on 𝛾 is that it is a generic curve. As
a consequence, we can use local Frenet’s basis attached to
𝛾 and use the curvilinear coordinates to formally define
our domain. An efficient technique for handling curved
geometries has been proposed in some of our previous works
(see, e.g., [8–10]) and we employ it here to construct the
asymptotic solution of the transformed system (Step 2). It
enables us to explicitly compute the terms from the two-scale
asymptotic expansion and to detect the effects we seek for.
Indeed, after applying the inverse transformation, we obtain
the asymptotic approximation for the velocity and pressure
explicitly acknowledging the effects of pressure-dependent
viscosity and the pipe’s curvedness. By taking those effects
into account, we believe that the obtained result is very
relevant with regard to numerical simulations and could
improve the known engineering practice. We should also
mention that the presented approach can be generalized to
a case of a general viscosity-pressure relation, as commented
in the concluding section.

We conclude the introduction by providing more bibli-
ographic remarks on the subject. Curved-pipe flow in case
of constant viscosity (𝜇 = const.) has been extensively
investigated for various liquids and regime of flows; see, for
example, [11–15]. In case of pressure-dependent viscosity, to
our knowledge there are no analytical results on the curved-
pipe flows. Analytical solutions have been reported only
in some simplified situations like unidirectional and plane-
parallel flows and under the assumption of the linear law
𝜇(𝑝) = 𝛽𝑝 or 𝜇(𝑝) = 𝜇

0
(1 + 𝛽𝑝). We refer the reader to

[16–20]. However, a year ago, the straight-pipe flow has been
successfully addressed by Marušić-Paloka and Pažanin [21]
in the case of exponential law (1). The flow through a specific
helical pipe frequently appearing in the applications has been
analyzed this year in [22]. The goal of the present paper

is to extend the analysis presented in [21, 22] to a general
framework, that is, the case of general curved pipe.

2. Position of the Problem

2.1. The Pipe’s Geometry. In this section we formally describe
the complex pipe’s geometry. As emphasized in Introduction,
we want to address the case of a general curved pipe with
circular cross section. In view of that, we introduce a generic
curve in R3, denoted by 𝛾, which serves to define the central
curve of the pipe. We suppose that 𝛾 is parameterized by its
arc length 𝑥

1
∈ [0, ℓ] and denote by 𝜋 ∈ 𝐶

3
([0, ℓ];R3) its

natural parametrization. We also assume that 𝜋(𝑥
1
) ̸= 0,

for every 𝑥
1
∈ [0, ℓ]. Since 𝛾 is taken to be generic, it holds

|𝜋

(𝑥
1
)| > 0, for every 𝑥

1
∈ [0, ℓ]. Denoting by 𝜅(𝑥

1
) =

|𝜋

(𝑥
1
)| the flexion of the curve 𝛾, we introduce Frenet’s basis

in a standard way:

t = 𝜋 (the tangent) ,

n = 1

𝜅

t (the normal) ,

b = t × n (the binormal) .

(2)

The normal n is extended by continuity in points where
curvature is zero. We also denote by 𝜏(𝑥

1
) = −|b(𝑥

1
)| the

torsion of 𝛾. One of the main goals of this study is to detect
the influence of geometric parameters 𝜅 and 𝜏 on the effective
flow.

Next, we introduce the small parameter 𝜀 (0 < 𝜀 ≪ 1)
into the problem and first define an undeformed pipe

𝑇
𝜀
= {𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
) ∈ R3 : 𝑥

1
∈ (0, ℓ) , 𝑥 = (𝑥2

, 𝑥
3
) ∈ 𝜀𝐵} ,

(3)

where 𝐵 = 𝐵(0, 1) = {𝑦 ∈ R2 : |𝑦| < 1} is the unit circle. Now
we have to choose the appropriate parametrization to define
our curved pipe. The best way to do this is to introduce the
mappingΦ𝛼

𝜀
: 𝑇
𝜀
→ R3 as follows:

Φ
𝛼

𝜀
(𝑥) = 𝜋 (𝑥

1
) + 𝑥
2
n
𝛼
(𝑥
1
) + 𝑥
3
b
𝛼
(𝑥
1
) . (4)

Here

n
𝛼
(𝑥
1
) = cos𝛼 (𝑥

1
)n (𝑥
1
) + sin𝛼 (𝑥

1
) b (𝑥
1
) ,

b
𝛼
(𝑥
1
) = − sin𝛼 (𝑥

1
)n (𝑥
1
) + cos𝛼 (𝑥

1
) b (𝑥
1
)

(5)

stand for the rotated unit vectors with respect to standard
Frenet’s normal and binormal (see Figure 1), where the
rotation is given by

𝛼 (𝑥
1
) = −∫

𝑥
1

𝑥
0

𝜏 (𝜉) 𝑑𝜉 + 𝛼
0
, (𝑥

0
, 𝛼
0
arbitrary constants) .

(6)

Observe that by putting 𝛼 ≡ 0 we get classical Frenet’s
system which is most usually employed in describing the
curved geometries. However, since we analyze the problem
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Figure 1: The reference system.

in the pipe with circular cross section (the most common
one in the engineering applications), it is plausible to use
this particular reference system in which the domain’s cross
section possesses no rotation with respect to the tangent
vector t. Let us mention that it was originally introduced by
Germano in the 80s for treating the classical Newtonian flow
through a helically coiled pipe (see [23, 24]).

We are now in position to define our three-dimensional
domain representing thin (or long) curved pipe with an
arbitrary central curve 𝛾 and circular cross section. It is given
by

Ω
𝛼

𝜀
= Φ
𝛼

𝜀
(𝑇
𝜀
) . (7)

Finally, we denote by Σ𝑖
𝜀
= Φ
𝛼

𝜀
({𝑖} × 𝜀𝐵), 𝑖 = 0, ℓ, the pipe’s

ends and by Γ𝛼
𝜀
= Φ
𝛼

𝜀
((0, ℓ) × 𝜀𝜕𝐵) the lateral boundary.

Remark 1. From the strictly mathematical point of view, we
have to ensure the local injectivity of the parametrizationΦ𝛼

𝜀
.

It can be accomplished by assuming that 𝜀 is sufficiently small;
namely, 𝜀‖𝜅‖

𝐿
∞
(0,ℓ)

< 1/2 (see (29)).

2.2. The Governing System. We suppose that the pipe Ω𝛼
𝜀
is

filled with incompressible fluid with a viscosity depending on
pressure. For such fluids, the stress tensor can be taken as

T = −𝑝I + 2𝜇 (𝑝)D (u) , (8)

where D(u) = (1/2)[∇u + (∇u)𝑇] stands for the symmetric
part of the velocity gradient. We can always assume that the
Reynolds number is not too large andneglect the inertial term
in the original Navier-Stokes system. In view of that, the flow

inΩ𝛼
𝜀
is going to be governed by the following system for the

unknown velocity u
𝜀
and pressure 𝑝

𝜀
:

− div [2𝜇 (𝑝
𝜀
)D (u

𝜀
)] + ∇𝑝

𝜀
= 0 in Ω

𝛼

𝜀
, (9)

div u
𝜀
= 0 in Ω

𝛼

𝜀
. (10)

As mentioned before, we use the well-known Barus law to
describe the viscosity-pressure dependence:

𝜇 (𝑝) = 𝜇
0
𝑒
𝛽𝑝
, 𝜇
0
, 𝛽 = const. > 0. (11)

The above system should be completed by the appropriate
boundary conditions. Since our aim is to study a real-life
situation, we assume that the flow is governed by the pre-
scribed pressure drop between pipe’s ends. On the lateral part
of the boundary we prescribe the classical no-slip boundary
condition for the velocity:

u
𝜀
= 0 on Γ

𝛼

𝜀
,

u
𝜀
× t = 0, 𝑝

𝜀
= 𝑝
𝑖

on Σ
𝑖

𝜀
, 𝑖 = 0, ℓ.

(12)

Here 𝑝
0
and 𝑝

ℓ
are the given constant pressures (𝑝

0
> 𝑝
ℓ
).

The well-posedness of the above problem has been recently
established by Marušić-Paloka [25]. Our goal is to find the
asymptotic behavior of the flow, as the thickness 𝜀 → 0.

3. Asymptotic Modeling

3.1. Transformed System. Substituting the Barus law into the
momentum equation (9) leads to

0 = − div [2𝜇
0
𝑒
𝛽𝑝
𝜀D (u
𝜀
)] + ∇𝑝

𝜀

= −𝜇
0
𝑒
𝛽𝑝
𝜀
Δu
𝜀
− 2𝜇
0
𝛽𝑒
𝛽𝑝
𝜀D (u
𝜀
) ∇𝑝
𝜀
+ ∇𝑝
𝜀
.

(13)

We divide it by 𝜇
0
𝑒
𝛽𝑝
𝜀 to obtain

−Δu
𝜀
+

1

𝜇
0

𝑒
−𝛽𝑝
𝜀
∇𝑝
𝜀
= 2𝛽D (u

𝜀
) ∇𝑝
𝜀
. (14)

The form of the above equation suggests introducing a
new function, denoted by 𝑞

𝜀
, such that

1

𝜇
0

𝑒
−𝛽𝑝
𝜀
∇𝑝
𝜀
= ∇𝑞
𝜀
. (15)

Here and in the sequel we will call it the transformed
pressure. It is obvious that (15) will be satisfied if we take

𝑞
𝜀
=

1

𝛽𝜇
0

(𝑒
−𝛽𝑞
0
− 𝑒
−𝛽𝑝
𝜀
) , 𝑞

0
∈ R arbitrary. (16)

By a simple calculation we deduce

∇𝑝
𝜀
= 𝜇
0
𝑒
𝛽𝑝
𝜀
∇𝑞
𝜀
=

𝜇
0

𝑒
−𝛽𝑞
0 − 𝛽𝜇

0
𝑞
𝜀

∇𝑞
𝜀
. (17)

Consequently, (14) becomes

−Δu
𝜀
+ ∇𝑞
𝜀
=

2𝛽𝜇
0

𝑒
−𝛼𝑞
0 − 𝛽𝜇

0
𝑞
𝜀

D (u
𝜀
) ∇𝑞
𝜀
. (18)
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The above procedure yields the following system satisfied by
the velocity u𝜀 and the transformed pressure 𝑞𝜀 (we will refer
to it as the transformed system):

−Δu
𝜀
+ ∇𝑞
𝜀
=

2𝛽𝜇
0

𝑒
−𝛽𝑞
0 − 𝛽𝜇

0
𝑞
𝜀
D (u
𝜀
) ∇𝑞
𝜀

in Ω
𝛼

𝜀
, (19)

div u
𝜀
= 0 in Ω

𝛼

𝜀
, (20)

u
𝜀
= 0 on Γ

𝛼

𝜀
, (21)

u
𝜀
× t = 0, 𝑞

𝜀
=

1

𝛽𝜇
0

(𝑒
−𝛽𝑞
0
− 𝑒
−𝛽𝑝
𝑖
) on Σ

𝑖

𝜀
, 𝑖=0, ℓ.

(22)

The obtained transformed system is in the form of a
nonlinear Stokes-like system (with nonlinearity appearing on
the right-hand side in (19)) and it will be the subject of our
investigation in the sequel. More precisely, after writing the
transformed system in curvilinear coordinates (𝑥

𝑖
), we will

construct its asymptotic solution via two-scale asymptotic
technique.The liberty in choice of parameter 𝑞

0
(see (16)) will

enable us to control the nonlinearity in a way that it does not
contribute to the macroscopic model. Indeed, we can always
choose 𝑞

0
small enough such that

lim
𝑞
0
→−∞

𝛽𝜇
0

𝑒
−𝛽𝑞
0 − 𝛽𝜇

0
𝑞
𝜀
= 0. (23)

It is essential to be aware that, throughout the whole
process, 𝑞

0
plays the role of an auxiliary parameter. It means

that, by choosing 𝑞
0
such that (23) holds, we do not impose

any additional constraints since it turns out that the effective
pressure will not depend on the parameter 𝑞

0
at all (see

Section 3.4.).

3.2. Transformed System in Curvilinear Coordinates

3.2.1. Tools from Differential Geometry. In order to write the
transformed equations (19)-(20) in the curvilinear coordi-
nates (𝑥

𝑖
), we need to introduce some advanced notions from

differential geometry. We begin by introducing the covariant
basis defined as

a
𝑖
(𝑥) =

𝜕Φ
𝛼

𝜀

𝜕𝑥
𝑖

(𝑥) , 𝑖 = 1, 2, 3. (24)

Using the fact that 𝛼 = −𝜏 together with

t = 𝜅n, n = −𝜅t + 𝜏b, b = −𝜏n, (25)

it is straightforward to obtain

a
1
= (1 − 𝜅 (𝑒

𝛼
⋅ 𝑥)) t,

a
2
= cos𝛼n + sin𝛼b,

a
3
= − sin𝛼n + cos𝛼b.

(26)

To make the complex notation more compact, here and
in the sequel we introduce

𝑒
𝛼
= (cos𝛼, − sin𝛼) , 𝑒

⊥

𝛼
= (sin𝛼, cos𝛼) (27)

and denote by ⋅ the standard scalar product in R2. We also
denote B = [t n b] implying

∇Φ
𝛼

𝜀
= B[[

[

1 − 𝜅 (𝑒
𝛼
⋅ 𝑥) 0 0

0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

]

]

]

. (28)

Observe that

det∇Φ𝛼
𝜀
= 1 − 𝜅 (𝑒

𝛼
⋅ 𝑥) . (29)

We employed this fact to assure the local injectivity of the
parametrizationΦ𝛼

𝜀
(see Remark 1).

The covariant basis is complemented with the contravari-
ant basis given by the relation

a𝑖 ⋅ a
𝑗
= 𝛿
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, 3. (30)

In our case it reads

a1 = 1

1 − 𝜅 (𝑒
𝛼
⋅ 𝑥)

t,

a2 = cos𝛼n + sin𝛼b,

a3 = − sin𝛼n + cos𝛼b.

(31)

Finally, Christoffel’s symbols are defined as

Γ
𝑖

𝑗𝑘
= a𝑖 ⋅ 𝜕a𝑘

𝜕𝑥
𝑗

, 𝑖, 𝑗, 𝑘 = 1, 2, 3. (32)

Its fundamental property is that they are symmetric in
lower indices; that is, Γ𝑖

𝑗𝑘
= Γ
𝑖

𝑘𝑗
.We leave the reader to confirm

that nonzero Christoffel’s symbols in our setting are given by

Γ
1

11
= −

(𝜅

(𝑒
𝛼
⋅ 𝑥) + 𝜅𝜏 (𝑒

⊥

𝛼
⋅ 𝑥))

1 − 𝜅 (𝑒
𝛼
⋅ 𝑥)

,

Γ
1

12
= Γ
1

21
= −

𝜅 cos𝛼
1 − 𝜅 (𝑒

𝛼
⋅ 𝑥
∗
)

,

Γ
1

13
= Γ
1

31
=

𝜅 sin𝛼
1 − 𝜅 (𝑒

𝛼
⋅ 𝑥)

,

Γ
2

11
= 𝜅 (1 − 𝜅 (𝑒

𝛼
⋅ 𝑥)) cos𝛼,

Γ
3

11
= −𝜅 (1 − 𝜅 (𝑒

𝛼
⋅ 𝑥)) sin𝛼.

(33)

Now we are going to establish the asymptotic behavior of
the above quantities needed in the sequel. Having in mind
that𝑥

2
, 𝑥
3
= O(𝜀), from (29), we first conclude that det∇Φ𝛼

𝜀
=

O(1). Next, we have

(∇Φ
𝛼

𝜀
)
−1
=
[

[

[

1 + 𝜀𝜅 (𝑒
𝛼
⋅ 𝑦) 0 0

0 cos𝛼 sin𝛼
0 − sin𝛼 cos𝛼

]

]

]

B𝑇 + O (𝜀
2
) ,

(34)
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where 𝑦 = (𝑦
2
, 𝑦
3
), 𝑦
𝑖
= 𝑥
𝑖
/𝜀, 𝑖 = 2, 3. Here we used the fact

that the vectors of the contravariant basis are, in fact, the rows
of (∇Φ𝛼

𝜀
)
−1. Finally, for Christoffel’s symbols we obtain

Γ
1

11
= O (𝜀) ,

Γ
1

12
= Γ
1

21
= −𝜅 cos𝛼 + O (𝜀) ,

Γ
1

13
= Γ
1

31
= 𝜅 sin𝛼 + O (𝜀) ,

Γ
2

11
= 𝜅 cos𝛼 + O (𝜀) ,

Γ
3

11
= −𝜅 sin𝛼 + O (𝜀) .

(35)

3.2.2. The Equations in Curvilinear Coordinates. In [10], the
reader can find detailed derivation of the following formulae
for differential operators in curvilinear coordinates:

(∇𝑠)
𝑇
∘Φ
𝛼

𝜀
= (∇Φ

𝛼

𝜀
)
−𝑇

(∇𝑆)
𝑇
,

(∇k) ∘ Φ𝛼
𝜀
= (∇Φ

𝛼

𝜀
)
−𝑇
([

𝜕𝑉
𝑘

𝜕𝑥
𝑙

]

𝑘,𝑙

− 𝑉
𝑗
Γ
𝑗
) (∇Φ

𝛼

𝜀
)
−1
,

Γ
𝑖
= [Γ
𝑖

𝑗𝑘
]
𝑗,𝑘
,

(Δk) ∘Φ𝛼
𝜀

= (∇Φ
𝛼

𝜀
)
−𝑇
(

𝜕

𝜕𝑥
𝑖

([

𝜕𝑉
𝑘

𝜕𝑥
𝑙

]

𝑘,𝑙

− 𝑉
𝑗
Γ
𝑗
)

− ([

𝜕𝑉
𝑘

𝜕𝑥
𝑙

]

𝑘,𝑙

− 𝑉
𝑗
Γ
𝑗
) Γ̂
𝑖

−Γ̂
𝑇

𝑖
([

𝜕𝑉
𝑘

𝜕𝑥
𝑙

]

𝑘,𝑙

− 𝑉
𝑗
Γ
𝑗
)) (∇Φ

𝛼

𝜀
)
−1 a𝑖,

Γ̂
𝑖
= [Γ
𝑗

𝑖𝑘
]
𝑗,𝑘
.

(36)

Here 𝑆 = 𝑠 ∘ Φ
𝛼

𝜀
denotes a scalar field, while V = k ∘ Φ𝛼

𝜀

stands for a vector field (𝑉𝑖 = V ⋅ a
𝑖
are the corresponding

covariant components). It is important to be aware that, in
the above formulae, summation is taken over repeated indices
(Einstein summation convention).

Rather complicated but straightforward calculations
based on (34)–(36) provide us with the transformed equa-
tions written in the curvilinear coordinates. We write only
the terms of order 1 and 𝜀; that is, we neglect the terms
with higher powers of 𝜀. For notational simplicity, we omit
the nonlinear terms in the momentum equations since those
terms will not contribute to the macroscopic model. The
equations read

− [Δ𝑉
1

𝜀
+ 𝜅(cos𝛼(

𝜕𝑉
1

𝜀

𝜕𝑥
2

−

𝜕𝑉
2

𝜀

𝜕𝑥
1

) −

𝜕𝑉
2

𝜀

𝜕𝑥
1

+ sin𝛼(
𝜕𝑉
3

𝜀

𝜕𝑥
1

−

𝜕𝑉
1

𝜀

𝜕𝑥
3

))

+ (𝜅
2
− 2𝜅)𝑉

1

𝜀
− 𝜅

𝑉
2

𝜀
+ 𝜅 (𝑒

𝛼
⋅ 𝑥)

⋅ (3

𝜕
2
𝑉
1

𝜀

𝜕𝑥
2

1

+ Δ
𝑥
𝑉
1

𝜀
− 𝜅 cos𝛼

𝜕𝑉
1

𝜀

𝜕𝑥
2

+ 𝜅 sin𝛼(
𝜕𝑉
1

𝜀

𝜕𝑥
3

+ 3

𝜕𝑉
3

𝜀

𝜕𝑥
1

) − 3𝜅

𝑉
2

𝜀

−3𝜅 (1 + cos𝛼)
𝜕𝑉
2

𝜀

𝜕𝑥
1

+ (𝜅
2
− 6𝜅)𝑉

1

𝜀
)]

+ (1 + 𝜅 (𝑒
𝛼
⋅ 𝑥))

𝜕𝑄
𝜀

𝜕𝑥
1

= 0,

(37)

− [cos𝛼Δ𝑉2
𝜀
− sin𝛼Δ𝑉3

𝜀
+ 2𝜅

𝜕𝑉
1

𝜀

𝜕𝑥
1

− 𝜅cos2𝛼
𝜕𝑉
2

𝜀

𝜕𝑥
2

− 𝜅sin2𝛼
𝜕𝑉
3

𝜀

𝜕𝑥
3

+ 𝜅

𝑉
1

𝜀
+

𝜅

2

sin 2𝛼(
𝜕𝑉
2

𝜀

𝜕𝑥
3

+

𝜕𝑉
3

𝜀

𝜕𝑥
2

)

− 𝜅
2
𝑉
2

𝜀
+ 2𝜅 (𝑒

𝛼
⋅ 𝑥)

⋅ (cos𝛼
𝜕
2
𝑉
2

𝜀

𝜕𝑥
2

1

− sin𝛼
𝜕
2
𝑉
3

𝜀

𝜕𝑥
2

1

+ 2𝜅

𝜕𝑉
1

𝜀

𝜕𝑥
1

− 𝜅cos2𝛼
𝜕𝑉
2

𝜀

𝜕𝑥
2

− 𝜅sin2𝛼
𝜕𝑉
3

𝜀

𝜕𝑥
3

+

𝜅

2

sin 2𝛼(
𝜕𝑉
2

𝜀

𝜕𝑥
3

+

𝜕𝑉
3

𝜀

𝜕𝑥
2

) + 𝜅

𝑉
1

𝜀
− 𝜅
2
𝑉
2

𝜀
)]

+ cos𝛼
𝜕𝑄
𝜀

𝜕𝑥
2

− sin𝛼
𝜕𝑄
𝜀

𝜕𝑥
3

= 0,

(38)

− [sin𝛼Δ𝑉2
𝜀
+ cos𝛼Δ𝑉3

𝜀
− 𝜅cos2𝛼

𝜕𝑉
3

𝜀

𝜕𝑥
2

+ 𝜅sin2𝛼
𝜕𝑉
2

𝜀

𝜕𝑥
3

+

𝜅

2

sin 2𝛼(
𝜕𝑉
3

𝜀

𝜕𝑥
3

−

𝜕𝑉
2

𝜀

𝜕𝑥
2

) + 𝜅𝜏𝑉
1

𝜀
+ 2𝜅 (𝑒

𝛼
⋅ 𝑥)

⋅ (sin𝛼
𝜕
2
𝑉
2

𝜀

𝜕𝑥
2

1

+ cos𝛼
𝜕
2
𝑉
3

𝜀

𝜕𝑥
2

1

− 𝜅cos2𝛼
𝜕𝑉
3

𝜀

𝜕𝑥
2

+ 𝜅sin2𝛼
𝜕𝑉
2

𝜀

𝜕𝑥
3

+

𝜅

2

sin 2𝛼(
𝜕𝑉
3

𝜀

𝜕𝑥
3

−

𝜕𝑉
2

𝜀

𝜕𝑥
2

) + 𝜅𝜏𝑉
1

𝜀
)]

+ sin𝛼
𝜕𝑄
𝜀

𝜕𝑥
2

− cos𝛼
𝜕𝑄
𝜀

𝜕𝑥
3

= 0,

(39)
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𝜕𝑉
1

𝜀

𝜕𝑥
1

− 𝜅𝑉
2

𝜀
+

𝜕𝑉
2

𝜀

𝜕𝑥
2

+

𝜕𝑉
3

𝜀

𝜕𝑥
3

+ 2𝜅 (𝑒
𝛼
⋅ 𝑥) (

𝜕𝑉
1

𝜀

𝜕𝑥
1

− 𝜅𝑉
2

𝜀
) = 0,

(40)

with

U
𝜀
= u
𝜀
∘Φ
𝛼

𝜀
= 𝑉
1

𝜀
t + 𝑉2
𝜀
n + 𝑉3
𝜀
b, 𝑄

𝜀
= 𝑞
𝜀
∘Φ
𝛼

𝜀
. (41)

3.3. Asymptotic Solution of the Transformed Problem. Nowwe
apply the two-scale asymptotic technique on the transformed
problem (37)–(40) posed in 𝑇

𝜀
= (0, ℓ) × 𝜀𝐵. More precisely,

we expand the unknowns U
𝜀
and 𝑄

𝜀
in powers of small

parameter 𝜀 as follows:

𝑉
𝑖

𝜀
(𝑥) = 𝜀

2
𝑉
𝑖

0
(𝑥
1
,

𝑥
2

𝜀

,

𝑥
3

𝜀

) + 𝜀
3
𝑉
𝑖

1
(𝑥
1
,

𝑥
2

𝜀

,

𝑥
3

𝜀

) + ⋅ ⋅ ⋅ ,

𝑖 = 1, 2, 3,

𝑄
𝜀
(𝑥) = 𝑄

0
(𝑥
1
,

𝑥
2

𝜀

,

𝑥
3

𝜀

) + 𝜀𝑄
1
(𝑥
1
,

𝑥
2

𝜀

,

𝑥
3

𝜀

) + ⋅ ⋅ ⋅ .

(42)

Plugging the above expansions in (37)–(40), after col-
lecting the terms with equal powers of 𝜀 we are going to
obtain the recursive sequence of problems now posed in the
𝜀-independent domain𝑇 = (0, ℓ)×𝐵. In viewof that, we intro-
duce the rescaled variable 𝑦 = (𝑦

2
, 𝑦
3
) = (𝑥

2
/𝜀, 𝑥
3
/𝜀) and use

the following notation for partial differential operators:

∇
𝑦
=

𝜕

𝜕𝑦
2

j + 𝜕

𝜕𝑦
3

k,

Δ
𝑦
V =

𝜕
2V
𝜕𝑦
2

2

+

𝜕
2V
𝜕𝑦
2

3

,

div
𝑦
V =

𝜕𝑉
2

𝜕𝑦
2

+

𝜕𝑉
3

𝜕𝑦
3

,

V = 𝑉
1i + 𝑉2j + 𝑉3k.

(43)

First, let us note that substituting (42) in momentum
equations (38)-(39) implies that ∇

𝑦
𝑄
0
= 0; that is, the lowest-

order approximation for the transformed pressure depends
only on the variable 𝑥

1
going along the pipe. That was to be

expected due to the small pipe’s thickness. Next, we deduce
the problem satisfied by the zero-order approximation for the
velocity:

1: − Δ
𝑦
V
0
+ (

𝑑𝑄
0

𝑑𝑥
1

,

𝜕𝑄
1

𝜕𝑦
2

,

𝜕𝑄
1

𝜕𝑦
3

) = 0 in 𝑇,

𝜀: div
𝑦
V
0
= 0 in 𝑇,

𝜀
2:
𝜕𝑉
1

0

𝜕𝑥
1

+ div
𝑦
V
1
= 0 in 𝑇,

V
0
= 0 on Γ = (0, ℓ) × 𝜕𝐵,

𝑄
0 (
𝑖) =

1

𝛽𝜇
0

(𝑒
−𝛽𝑞
0
− 𝑒
−𝛽𝑝
𝑖
) 𝑖 = 0, ℓ.

(44)

Observe that, at this stage, the angle 𝛼 is eliminated from
the systemby adding/substracting (38) and (39)multiplied by
cos𝛼 and sin𝛼. Consequently, the system (44) will yield the
solution in the following form:

𝑉
1

0
(𝑦) =

1

4𝛽𝜇
0
ℓ

(𝑒
−𝛽𝑝
0
− 𝑒
−𝛽𝑝
ℓ
) (




𝑦





2
− 1) ,

𝑄
0
(𝑥
1
) =

1

𝛽𝜇
0

(𝑒
−𝛽𝑞
0
− 𝑒
−𝛽𝑝
0
) +

𝑒
−𝛽𝑝
0
− 𝑒
−𝛽𝑝
ℓ

𝛽𝜇
0
ℓ

𝑥
1
,

𝑉
2

0
= 𝑉
3

0
= 0, 𝑄

1
= 𝑄
1
(𝑥
1
) .

(45)

Seeking for the effects of the pipe’s distortion, we continue
the computation and try to construct the velocity corrector.
The O(𝜀) term from (37) provides the following equation for
the first component 𝑉1

1
:

𝜀: − (Δ
𝑦
𝑉
1

1
+ 𝜅 cos𝛼

𝜕𝑉
1

0

𝜕𝑦
2

− 𝜅 sin𝛼
𝜕𝑉
1

0

𝜕𝑦
3

+ 𝜅 (𝑒
𝛼
⋅ 𝑦) Δ

𝑦
𝑉
1

0
)

+ 𝜅 (𝑒
𝛼
⋅ 𝑦)

𝑑𝑄
0

𝑑𝑥
1

+

𝑑𝑄
1

𝑑𝑥
1

= 0.

(46)

Taking into account (45), we arrive at

−Δ
𝑦
𝑉
1

1
=

𝜅

2𝛽𝜇
0
ℓ

(𝑒
−𝛽𝑝
0
− 𝑒
−𝛽𝑝
ℓ
) (cos𝛼𝑦

2
− sin𝛼𝑦

3
)

−

𝑑𝑄
1

𝑑𝑥
1

(𝑥
1
) in 𝑇,

𝑉
1

1
= 0 on Γ.

(47)

Since𝑄
1
= 0 for 𝑥

1
= 0, ℓ, the above system can be solved

by putting 𝑄
1
= 0 and

𝑉
1

1
(𝑥
1
, 𝑦) =

𝜅 (𝑥
1
)

16𝛽𝜇
0
ℓ

(𝑒
−𝛽𝑝
0
− 𝑒
−𝛽𝑝
ℓ
)

⋅ (1 −




𝑦





2
) (cos𝛼𝑦

2
− sin𝛼𝑦

3
) .

(48)

By a simple integration (passing to polar coordinates),
one can easily check that ∫

𝐵
𝑉
1

1
= 0. It means that the

pipe’s curvature, appearing in the correction for the tangential
velocity, affects only the flow profile but not the mean flow.

Finally, from (38)–(40) we deduce the problem for the
remaining two components:

𝜀: − Δ
𝑦
̃V
1
+ ∇
𝑦
𝑄
2
= 0 in 𝑇,

𝜀
2: div
𝑦
V
1
= 0 in 𝑇,

̃V
1
= 0 on Γ,

(49)

where ̃V
1
= (𝑉
2

1
, 𝑉
3

1
). It is well-known that the above system

has (unique) trivial solution so we do not observe the desired
effects here.
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To conclude this section we write the asymptotic solution
of the transformed problem (19)–(22). The velocity part is
given by

uapprox
𝜀

(𝑧) = V
𝜀
(𝑥) , 𝑧 = Φ

𝛼

𝜀
(𝑥) ,

V
𝜀
(𝑥) = (𝜀

2
𝑉
1

0
+ 𝜀
3
𝑉
1

1
) t

=

𝑒
−𝛽𝑝
ℓ
− 𝑒
−𝛽𝑝
0

4𝛽𝜇
0
ℓ

(𝜀
2
− 𝑥
2

2
− 𝑥
2

3
)

⋅ (1 −

𝜅 (𝑥
1
)

4

(cos𝛼𝑥
2
− sin𝛼𝑥

3
)) t
𝜀
(𝑥
1
) .

(50)

For the transformed pressure we obtain

𝑞
approx
𝜀

(𝑧) = Q
𝜀 (
𝑥) , 𝑧 = Φ

𝜀 (
𝑥) ,

Q
𝜀
(𝑥) = 𝑄

0
(𝑥
1
) =

1

𝛽𝜇
0

(𝑒
−𝛽𝑞
0
− 𝑒
−𝛽𝑝
0
) +

𝑒
−𝛽𝑝
0
− 𝑒
−𝛽𝑝
ℓ

𝛽𝜇
0
ℓ

𝑥
1
.

(51)

3.4. Back to the Original Problem. Now we apply the inverse
transformation, that is, we reconstruct the original pressure
from (16):

𝑝
approx
𝜀

=

1

𝛽

ln( 1

𝑒
−𝛽𝑞
0 − 𝛽𝜇

0
𝑞
approx
𝜀

) . (52)

In view of (51), we deduce

𝑝
approx
𝜀

(𝑧) = P
𝜀
(𝑥) , 𝑧 = Φ

𝜀
(𝑥) ,

P
𝜀 (
𝑥) =

1

𝛽

ln( 1

𝑒
−𝛽𝑝
0 + ((𝑒

−𝛽𝑝
ℓ − 𝑒
−𝛽𝑝
0) /ℓ) 𝑥

1

) .

(53)

This represents our asymptotic approximation for the
effective pressure. Obviously, it is well-defined since 𝑝

0
>

𝑝
ℓ
implying 𝑒−𝛼𝑝ℓ > 𝑒

−𝛼𝑝
0 . Next, notice that the effective

pressure does not depend on 𝑞
0
at all. This means that,

throughout the whole process, the parameter 𝑞
0
has been just

an auxiliary parameter; that is, it was justified to choose the
parameter 𝑞

0
such that (23) holds. If we compare 𝑝approx

𝜀
with

the approximation for straight-pipe flow derived in [21], we
do not observe any effects coming due to the pipe’s distortion.
Those effects could be retrieved by computing lower-order
terms in the pressure expansion. However, those terms would
serve only for the convergence proof; that is, they would not
influence the effective flow.

For the velocity approximation, we have

uapprox
𝜀

(𝑧) = V
𝜀
(𝑥) , 𝑧 = Φ

𝛼

𝜀
(𝑥) ,

V
𝜀 (
𝑥) =

𝑒
−𝛽𝑝
ℓ
− 𝑒
−𝛽𝑝
0

4𝛽𝜇
0
ℓ

(𝜀
2
− 𝑥
2

2
− 𝑥
2

3
)

⋅ (1 −

𝜅 (𝑥
1
)

4

(𝑒
𝛼
⋅ 𝑥)) t

𝜀
(𝑥
1
)

(54)

and we can clearly detect the effects of the pipe’s curvedness.
Indeed, though its main part remains in the Poiseuille form

(in direction tangential to the central line of the pipe—note
that the tangent is not constant vector), the flow profile is
not perfectly parabolic any more and it is being corrected.
More precisely, the tangential corrector is proportional to
the curvature of the pipe’s central curve, and that should be
acknowledged in the precise analysis of the curved-pipes flow.

Finally, to emphasize the importance of the obtained
result, let us compare it with the one from [12] derived for
Newtonian (i.e., the constant viscosity) case. The differences
coming due to the effects of the pressure-dependent viscos-
ity are particularly observed in the approximation for the
pressure (53). Instead of simple linear function Q

𝜀
(𝑥
1
) =

((𝑝
ℓ
−𝑝
0
)/ℓ)𝑥
1
+𝑝
0
, here we obtain a new asymptotic solution

clearly acknowledging the viscosity-pressure dependence of
the Barus law. The velocity approximation (54) also feels the
effects of the variable viscosity. Indeed, the constant term
multiplying the approximation is consistent with the viscosity
obeying the Barus law and that was to be expected. The main
difference with respect to the Newtonian case is that the
velocity is exclusively in the tangential direction; that is, no
effects of the central curve’s flexion and torsion appear in the
direction of the normal or binormal.

4. Concluding Remarks

In the previous section, we formally derived an asymptotic
model describing the flow of incompressible fluid with a
pressure-dependent viscosity through a thin (or long) curved
pipe. We assumed that the pressure-dependent viscosity
obeyed Barus formula (most commonly used in the engi-
neering community) and worked with physically relevant
Dirichlet boundary conditions. Since the pipe’s central curve
is assumed to be a general (generic) curve, the applicability
of the obtained result is broad. Moreover, by obtaining the
explicit expressions (53)-(54) for the pressure and velocity
distribution, we believe that the result is very relevant with
regard to numerical simulations. The effects of pipe’s distor-
tion are clearly detected and the difference between classical
Newtonian and non-Newtonian flow is established as well.

From the rigorous mathematical point of view, we should
link our formally obtained solution with the original solution
by proving some kind of convergence result. It can be
accomplished by evaluating the difference between those
two solutions in the appropriate rescaled norm. Though
rigorous justification is out of scope of the present paper,
let us comment on this as well. Since det∇Φ𝛼

𝜀
= O(1),

it is easy to confirm that the appropriate norm is, in fact,
‖ ⋅ ‖
𝜀
= 𝜀
−1
‖ ⋅ ‖
𝐿
2
(Ω
𝛼

𝜀
)
. Thus, the idea is to derive the error

estimates (expressed in this norm) for the asymptotic solution
of the transformed problem and then to use the continuity of
the inverse transformation. The first part can be done using
techniques from [10, 12] developed for curved geometries (see
also [8, 9]), while the second part is straightforward.

To conclude, it is important to emphasize that the
presented approach can be extended to a case of general
viscosity-pressure relation 𝑝 → 𝜇(𝑝) satisfied by Barus law
and other empiric laws. To assure the well-posedness (see
[25]), we only have to impose some technical conditions
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addressing the behavior of the viscosity for large negative
pressures being, obviously, irrelevant from the physical point
of view. Instead of (16), we simply introduce 𝑞

𝜀
as 𝐵(𝑝

𝜀
) =

∫

𝑝
𝜀

𝑞
0

(𝑑𝜉/𝜇(𝜉)) and apply the same procedure as presented
above. We refer the reader to [21] for details.
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[15] I. Pažanin, “Investigation of micropolar fluid flow in a helical
pipe via asymptotic analysis,”Communications in Nonlinear Sci-
ence and Numerical Simulation, vol. 18, no. 3, pp. 528–540, 2013.

[16] M. Renardy, “Parallel shear flows of fluids with a pressure-
dependent viscosity,” Journal of Non-Newtonian Fluid Mechan-
ics, vol. 114, no. 2-3, pp. 229–236, 2003.

[17] M. Vasudevaiah and K. R. Rajagopal, “On fully developed flows
of fluids with a pressure dependent viscosity in a pipe,” Appli-
cations of Mathematics, vol. 50, no. 4, pp. 341–353, 2005.

[18] A. Kalogirou, S. Poyiadji, and G. C. Georgiou, “Incompress-
ible Poiseuille flows of Newtonian liquids with a pressure-
dependent viscosity,” Journal of Non-Newtonian Fluid Mechan-
ics, vol. 166, no. 7-8, pp. 413–419, 2011.

[19] K. D. Housiadas, G. C. Georgiou, and R. I. Tanner, “A note
on the unbounded creeping flow past a sphere for Newtonian
fluids with pressure-dependent viscosity,” International Journal
of Engineering Science, vol. 86, pp. 1–9, 2015.

[20] S. Poyiadji, K. D. Housiadas, K. Kaouri, and G. C. Geor-
giou, “Asymptotic solutions of weakly compressible Newtonian
Poiseuille flows with pressure-dependent viscosity,” European
Journal of Mechanics. B. Fluids, vol. 49, pp. 217–225, 2015.
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