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Packing orthogonal unequal rectangles in a circle with a mass balance (BCOURP) is a typical combinational optimization problem
with the NP-hard nature. This paper proposes an effective quasiphysical and dynamic adjustment approach (QPDAA). Two
embedded degree functions between two orthogonal rectangles and between an orthogonal rectangle and the container are defined,
respectively, and the extruded potential energy function and extruded resultant force formula are constructed based on them. By
an elimination of the extruded resultant force, the dynamic rectangle adjustment, and an iteration of the translation, the potential
energy and static imbalance of the system can be quickly decreased to minima. The continuity and monotony of two embedded
degree functions are proved to ensure the compactness of the optimal solution. Numerical experiments show that the proposed
QPDAA is superior to existing approaches in performance.

1. Introduction

2D rectangle packing problems are derived from the industry
and antiaircraft field [1–3]. They occur in logistics packing,
plate cutting, the layout design of the very large scale
integration (VLSI), and satellitemodules.They can be divided
into unconstrained rectangle packing problems [1] and con-
strained ones [3]. Both areNP-hard problems and are difficult
to be solved. However they have attractedmuch attention and
some packing approaches for different containers have been
reported in literatures.

For the 2D rectangle container, the packing approaches
mainly include graph theories [4–7], branch-and-bound
methods [8–10], dynamic planning [11], heuristics [12–15],
artificial intelligent [16], evolutionary approaches [17], and
hybrid approaches [18–20]. Regarding the strip container,
main packing approaches are branch-and-bound methods
[21], heuristics [22, 23], and evolutionary approaches [24, 25].
On the 2D polygon or 3D polyhedron container, the exist-
ing packing approaches have heuristics [26], evolutionary

approaches [27–29], and integer programming [30]. Some
scholars are interested in the packing problem of the convex
region and have proposed heuristics [26] and branch-and-
bound approaches [31].

The layout design problem of the satellite module
described in [32] is an important packing problem, which can
be transformed into the problem of packing 2D orthogonal
unequal rectangles within a circular container with the mass
balance (BCOURP). In 1999, Feng et al. [33] built a mathe-
maticalmodel of this problem and analyzed the isomorphism
and equivalent intrinsic properties among its layout schemes
by using the graph theory and group theory and proposed
a theoretical global optimization algorithm. In 2007, Xu et
al. [34] defined embedded degree functions between two
rectangles and between the rectangle and circular container
and presented a compaction algorithm with the particle
swarm local search (CA-PSLS). Their idea is that a feasible
solution with a smaller envelope radius obtained through
the gradient method is taken as an elite individual and the
optimal solution is obtained by the PSO iteration. In 2010, Xu

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 657170, 16 pages
http://dx.doi.org/10.1155/2014/657170



2 Mathematical Problems in Engineering

j

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Figure 1: The sketch map for available positions of the rectangle.

et al. [35] suggested a heuristic algorithmordered byGA (GA-
HA, see its algorithm steps in Appendix A and Figure 1). Its
key technology is the positioning strategy of constructing the
feasible solution. By combining it withGA, the computational
efficiency and solution quality are improved.

Generally, there exist strong points and deficiencies for
each type of approaches.

(i) For approaches based on the graph theory, there
exists combinatorial explosion when the adjacent
topological relation is transformed into the layout
diagraph without a size limit for the large-scale layout
problem. This is because only two limited relations
called the vicinity and distance can be used in pruning
branch.

(ii) Theheuristicmethod can be used to quickly construct
a feasible solution. But it is generally not easy to devise
a good heuristic strategy, unless the designer makes a
long time painstaking effort and has good luck.

(iii) Stochastic algorithms have the global search ability,
but there exists the bottleneck of time-costing over-
lapping area calculation for them [33]. By combining
the heuristic method with the stochastic algorithm,
their respective advantages can be exerted to the
utmost. Based on this mechanism, CA-PSLS and GA-
HA are consecutively proposed to solve this problem.
According to No Free Lunch Theory [36], how to
obtain the knowledge from the problem itself and its
area and fuse it into the heuristic and stochastic search
mechanism is a way of designing a high performance
approach for this problem.

Huang et al. [37–40] presented a quasiphysical and quasi-
humanheuristic algorithmand its variants for the circle pack-
ing problem. They obtained excellent results. For BCOURP,
Xu et al. [34] proposed CA-PSLS based on embedded degrees
between circumcircles of two rectangles and between the
container and rectangle’s circumcircle. But due to the discon-
tinuity of the two embedded degree functions, it is difficult to
obtain a high quality solution by using CA-PSLS.That is, con-
structing the continuous rectangular embedded function and
exploring a better optimized mechanism are necessary for
this problem. Therefore, in this paper, we consider two def-
initions of monotonous and continuous embedded degrees
between two orthogonal rectangles and between an orthogo-
nal rectangle and the container and suggest a dynamic adjust-
ment strategy. We merge them into the proposed QPDAA

to improve the solution quality of BCOURP. Numerical
experiments will test effectiveness of the considered QPDAA.

The remainder of this paper is organized as follows. The
problem statement and mathematical model are in Section
2. The compact and feasible solution strategy and dynamic
adjustment strategy are given in Sections 3 and 4, respect-
ively. This algorithm is presented in Section 5. Section 6 is
experiments and analysis.The conclusion is shown in Section
7. The final part is acknowledgment.

2. Problem Statement and
Mathematical Model

Consider the following two related definitions where I
𝑛
=

{1, 2, . . . , 𝑛} and 𝑛 is the number of rectangles.

Definition 1. As shown in Figure 2, let the origin of the
Cartesian coordinate system be the center of the container.
Let 𝑅

𝑖
denote the 𝑖th (𝑖 = 1, 2, . . . , 𝑛) rectangle and let

(𝑥
𝑖
, 𝑦
𝑖
), 𝑙
𝑖
, 𝑤
𝑖
, 𝑚
𝑖
, and 𝜃

𝑖
be its center, length, width, mass,

and direction angle between its long side and the positive
direction of the 𝑥-axis, respectively. Then a layout scheme
of 𝑛 rectangles 𝑅

𝑖
(𝑥
𝑖
, 𝑦
𝑖
, 𝑙
𝑖
, 𝑤
𝑖
, 𝑚
𝑖
, 𝜃
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) can be

denoted by X (𝑥
𝑖
, 𝑦
𝑖
, 𝜃
𝑖
| 𝑖 = 1, 2, . . . , 𝑛).

Definition 2. For a layout scheme X, if 𝜃
𝑖
= 0

∘ or 90∘, then
X is an orthogonal rectangle packing scheme, 𝑅

𝑖
(𝑖 ∈ I

𝑛
) is

an orthogonal rectangle, and the packing is the orthogonal
rectangle packing (see Figure 3).

Herein this paper considers only orthogonal rectangle
packing schemes.

Suppose that the center of each rectangle coincides with
its mass center. Let 𝑇 be a rectangle set {𝑅

1
, 𝑅
2
, . . . , 𝑅

𝑛
}; then

the mathematical model of this problem can be described as
follows. Find a solutionX = (𝑥

𝑖
, 𝑦
𝑖
, 𝜃
𝑖
| 𝑖 = 1, 2, . . . , 𝑛)

𝑇 andX
satisfies Formulas (1)–(4). Consider

min 𝑓 (X) (1)

s.t. int (𝑅
𝑖
) ∩ int (𝑅

𝑗
) = Ø, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗 (2)

int (𝑅
𝑖
) ∩ int (𝑅

𝑐
) = int (𝑅

𝑖
) 𝑖 = 1, 2, . . . , 𝑛 (3)

𝐽 (𝑋) =
√
(

𝑛

∑

𝑖=1

𝑚
𝑖
𝑥
𝑖
)

2

+ (

𝑛

∑

𝑖=1

𝑚
𝑖
𝑦
𝑖
)

2

≤ 𝛿.
(4)
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Figure 2: The definition of a rectangle.
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Figure 3: The orthogonal rectangle packing scheme.

In Formula (1), 𝑓(X) denotes the radius of the enveloping
circle of the scheme X whose circular center is at (0, 0).
Formula (2) indicates that there is no overlap region between
two rectangles 𝑅

𝑖
and 𝑅

𝑗
. Formula (3) indicates that all

rectangles are contained in the container. In Formulas (2)
and (3), int(𝑅

𝑖
) denotes the interior region of the rectangle

𝑅
𝑖
. Formula (4) means that the static imbalance 𝐽(X) of the

solution X is less than its threshold 𝛿, where 𝛿 > 0.

3. Compact and Feasible Solution Strategy

Based on the potential energy function of the embedded
degree between two circles,Huang et al. [38–40] proposed the
quasiphysical strategy and its variants for the circle packing
problem. Inspired by the quasiphysical idea, we suggest a
compact and feasible strategy for BCOURP.

3.1. Embedded Degree Function and Related Properties. Xu et
al. [34] defined the embeddeddegrees between two rectangles
and between the rectangle and container by Definitions 3 and
4, respectively.

Definition 3. Let 𝑟
𝑖
and 𝑟
𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 ̸= 𝑗) denote

the radii of the circumscribed circles of two rectangles 𝑅
𝑖

and 𝑅
𝑗
, respectively, and 𝑑

𝑖𝑗
(see Figure 4(a)) the embedded

degree between them (see Figure 4(a)); then 𝑑
𝑖𝑗

can be
calculated by

𝑑
𝑖𝑗

=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑟



𝑖
+ 𝑟



𝑗

−
√
(𝑥
𝑖
− 𝑥
𝑗
)

2

+ (𝑦
𝑖
− 𝑦
𝑗
)

2

if 𝑅
𝑖
and 𝑅

𝑗
overlap

(𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗)

0 otherwise.
(5)

Definition 4. Let 𝑅
𝑐
and 𝑟
𝑖
(𝑖 = 1, 2, . . . , 𝑛) denote the radii

of the container and circumscribed circle of the rectangle
𝑅
𝑖
, respectively, and 𝑑

0𝑖
(see Figure 4(b)) the embedded
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Figure 5: The embedded degree between two rectangles in the critical state.

degree between the rectangle and container; then 𝑑
0𝑖
can be

calculated by

𝑑
0𝑖

=

{
{
{

{
{
{

{

√𝑥

2

𝑖
+ 𝑦

2

𝑖
+ 𝑟



𝑖
− 𝑅
𝑐

if 𝑅
𝑖
overlap with the container

(𝑖 = 1, 2, . . . , 𝑛)

0 otherwise.
(6)

Both of the above two embedded degree functions are dis-
continuous in the critical state from overlapping to separat-
ing, as has been discussed by Stoyan and Yaskov [41]. For
example, as shown in Figure 5, bymoving one rectangle along
a direction, two rectangles with the overlap area of 10−5 (state
1) are changed into 𝑅

𝑖
(2.5, 5, 6, 5, 30, 0

∘

) and 𝑅
𝑗
(0, 0, 5, 4,

20, 90

∘

) (state 2). By Formula (5), we know that 𝑑
𝑖𝑗
= 𝑟
𝑖
+

𝑟
𝑗
− 𝑂
𝑖
𝑂
𝑗
≈ 1.52 for state 1, but 𝑑

𝑖𝑗
= 0 for state 2. So, 𝑑

𝑖𝑗
in

Definition 3 is discontinuous where 𝑑
𝑖𝑗
= 0 (𝑖, 𝑗 = 1, 2, . . . , 𝑛

and 𝑖 ̸= 𝑗). Similarly, 𝑑
0𝑖
(𝑖 = 1, 2, . . . , 𝑛) in Definition 4 is also

discontinuous (see Figure 6). Owing to their discontinuity,
it is difficult to select an appropriate step length to obtain the
feasible and compact layout scheme for the gradient iteration
of CA-PSLS. Inspired by [41], Definitions 5 and 6 are given
for the considered QPDAA.

Definition 5. For two rectangles 𝑅
𝑖
and 𝑅

𝑗
(𝜃
𝑖
, 𝜃
𝑗
= 0

∘ or 90∘,
𝑖, 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 ̸= 𝑗) (shown in Figure 7), let 𝑟

𝑖
and 𝑟
𝑗
be

the radii of their circumscribed circles, respectively, and let
𝑑
𝑖𝑗
denote their embedded degree; then 𝑑

𝑖𝑗
can be calculated

by

𝑑
𝑖𝑗

=

{
{
{
{
{
{

{
{
{
{
{
{

{

(𝑟
𝑖
+ 𝑟
𝑗
)

((log𝑢
(𝑎𝑖+𝑎𝑗)

)

2

+ (logV
(𝑏𝑖+𝑏𝑗)

)

2

+ 1)

, If 0 < 𝑢 ≤ 1,

0 < V ≤ 1
0 Otherwise.

(7)
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Figure 6: The embedded degree between the rectangle and container in the critical state.
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In Formula (7), 𝑢 = (𝑎
𝑖
+𝑎
𝑗
−2|𝑥
𝑖
−𝑥
𝑗
|)/(𝑎
𝑖
+𝑎
𝑗
), V = (𝑏

𝑖
+𝑏
𝑗
−

2|𝑦
𝑖
−𝑦
𝑗
|)/(𝑏
𝑖
+𝑏
𝑗
). Here, if 𝜃

𝑖
= 0

∘, 𝑎
𝑖
= 𝑙
𝑖
, 𝑎
𝑗
= 𝑙
𝑗
, 𝑏
𝑖
= 𝑤
𝑖
, and

𝑏
𝑗
= 𝑤
𝑗
(see Figure 7(a)); otherwise, 𝑎

𝑖
= 𝑤
𝑖
, 𝑎
𝑗
= 𝑤
𝑗
, 𝑏
𝑖
= 𝑙
𝑖
,

and 𝑏
𝑗
= 𝑙
𝑗
(see Figure 7(b)).

In Formula (7), the embedded degree between two
rectangles is the moving distance of the rectangle 𝑅

𝑗
from

an overlap state with the stationary 𝑅
𝑖
to the separation state

along the direction from the center (𝑥
𝑖
, 𝑦
𝑖
) to the center

(𝑥
𝑗
, 𝑦
𝑗
). If 𝑅

𝑖
and 𝑅

𝑗
are two squares, and the center of 𝑅

𝑗
is

on the diagonal line of 𝑅
𝑖
and enough close to its center (i.e.,

𝑥
𝑖
→ 𝑥
𝑗
and 𝑦

𝑖
→ 𝑦
𝑗
), the moving distance of 𝑅

𝑗
from

the initial state (shown in Figure 8(a)) to the separate state
(shown in Figure 8(b)) along the direction of their diagonal
lines is about 𝑟

𝑖
+ 𝑟
𝑗
. Thus in the initial state, their embedded

degree 𝑑
𝑖𝑗
is close to the maximal value 𝑟

𝑖
+ 𝑟
𝑗
. In addition,

when 2|𝑥
𝑖
−𝑥
𝑗
| → 𝑎

𝑖
+𝑎
𝑗
and/or 2|𝑦

𝑖
−𝑦
𝑗
| → 𝑏

𝑖
+𝑏
𝑗
, 𝑢 → 0

and/or V → 0. That is, 𝑑
𝑖𝑗
→ 0.

Definition 6. For the rectangle 𝑅
𝑖
(𝜃
𝑖
= 0

∘ or 90∘, 𝑖 =
1, 2, . . . , 𝑛) and the circle container (0, 0, 𝑅

𝑐
) as shown in

Figure 7, let 𝑑
0𝑖
denote the embedded degree between the

rectangle 𝑅
𝑖
and container; then 𝑑

0𝑖
can be calculated by

𝑑
0𝑖
=

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

√
(






𝑥
𝑖






+

𝑙
𝑖

2

)

2

+ (






𝑦
𝑖






+

𝑤
𝑖

2

)

2

− 𝑅
𝑐

√
(






𝑥
𝑖






+

𝑙
𝑖

2

)

2

+ (






𝑦
𝑖






+

𝑤
𝑖

2

)

2

> 𝑅
𝑐

0

√
(






𝑥
𝑖






+

𝑙
𝑖

2

)

2

+ (






𝑦
𝑖






+

𝑤
𝑖

2

)

2

≤ 𝑅c

(𝑖 = 1, 2, . . . , 𝑛) .

(8)

The geometric interpretation of Definition 6 is that when
the farthest vertex of the rectangle 𝑅

𝑖
(𝑖 = 1, 2, . . . , 𝑛) from

the coordinate origin is within the container, their embedded
degree 𝑑

0𝑖
= 0; otherwise it is the length of the straight line

segment pointed by 𝑑
0𝑖
in Figure 9.

For embedded degree functions in Definitions 3 and 5,
their geometric figures are two curved semi-cone surfaces
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Figure 8: The geometric interpretation of definition of the embedded degree between two rectangles.

shown in Figures 10(a) and 10(b), respectively, where it is
obvious that there is a gap between the semi-cone surface and
𝑥𝑜𝑦 plane in Figure 10(a) but there is no gap between them
in Figure 10(b). It is not difficult to assert that the difference
of geometric figures of two embedded degree functions in
Definitions 4 and 6 is the same as the above one. After
describing Lemma 7,we propose properties of two embedded
degree functions in Definitions 5 and 6, respectively.

Lemma 7. If a binary function 𝑓(𝑥, 𝑦) is continuous for each
variable in a domain, respectively, and is monotonous for the
variable 𝑥 or 𝑦, then the function 𝑓(𝑥, 𝑦) is continuous in the
domain.

Property 1. ∀𝑖, 𝑗 ∈ I
𝑛
, let𝑅
𝑖
and𝑅

𝑗
(𝑖 ̸= 𝑗 and 𝜃

𝑖
, 𝜃
𝑗
= 0

∘ or 90∘)
be two rectangles, and the domain D = {𝑢 ≤ 1 and V ≤ 1}.
Then 𝑑

𝑖𝑗
(𝑢, V) in Definition 5 is a continuous binary function

in the domainD.

Proof. ∀𝑖, 𝑗 ∈ I
𝑛
and 𝑖 ̸= 𝑗, set D

1
= {(𝑢, V) | 0 < 𝑢 ≤

1 and 0 < V ≤ 1}. From Definition 5, we know that the
function 𝑑

𝑖𝑗
(𝑢, V) is continuous on bothD

1
andD−D

1
. Here,

we prove that it is continuous on the domain D
2
{(𝑢, V) |

(𝑢, V) ∈ D and 𝑢 = 0 or V = 0}.
For (𝑢, V) ∈ D

1
,

lim
𝑢→0

𝑑
𝑖𝑗
(𝑢, V) = lim

𝑢→0

𝑟
𝑖
+ 𝑟
𝑗

(log𝑢
𝑎𝑖+𝑎𝑗

)

2

+ (logV
𝑏𝑖+𝑏𝑗

)

2

+ 1

= 0. (9)

Simultaneously,

lim
V→0
𝑑
𝑖𝑗
(𝑢, V) = lim

𝑢→0,V→0
𝑑
𝑖𝑗
(𝑢, V) = 0 for (𝑢, V) ∈ D

1
.

(10)

This is because
𝜕𝑑
𝑖𝑗
(𝑢, V)
𝜕𝑢

=

− (𝑟
𝑖
+ 𝑟
𝑗
) (𝑎
𝑖
+ 𝑎
𝑗
) log𝑢
𝑎𝑖+𝑎𝑗

𝑢 ln (𝑎
𝑖
+ 𝑎
𝑗
) ((log𝑢

𝑎𝑖+𝑎𝑗

)

2

+ (logV
𝑏𝑖+𝑏𝑗

)

2

+ 1)

2
> 0

for (𝑢, V) ∈ D
1
.

(11)

According to Lemma 7, the binary function 𝑑
𝑖𝑗
(𝑢, V) is

continuous on the domain D
2
. Therefore, 𝑑

𝑖𝑗
(𝑢, V) is con-

tinuous on the domainD.

Property 2. ∀𝑖, 𝑗 ∈ In and 𝑖 ̸= 𝑗, for the container with the
radius 𝑅

𝑐
and rectangle 𝑅

𝑖
(𝜃
𝑖
= 0

∘ or 90∘, 𝑖 = 1, 2, . . . , 𝑛), set
𝑢 = 𝑥

𝑖
and V = 𝑦

𝑖
; then the binary function 𝑑

0𝑖
in Definition

6 is continuous on the domain D
3
{(𝑢, V) | −∞ < 𝑢 <

+∞ and −∞ < V < +∞}.

3.2. Extruded Force and Energy Function. In order to quickly
decrease the overlapping area of the rectangle packing system,
we define the extruded forces between two rectangles and
between the rectangle and container.

Definition 8. Let 𝑅
𝑖
and 𝑅

𝑗
be two rectangles with the

embedded degree 𝑑
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 ̸= 𝑗). Then the

extruded force →𝐹
𝑗𝑖
between 𝑅

𝑖
and 𝑅

𝑗
is calculated by

→

𝐹
𝑗𝑖
=

𝛼𝑑
𝑗𝑖

→

𝑑
𝑗𝑖









→

𝑑
𝑗𝑖









(𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗) . (12)

Definition 9. Let 𝑅
𝑖
(𝑖 = 1, 2, . . . , 𝑛) and 𝑅

𝑐
denote the

rectangle 𝑖 and container.Then the extruded force→𝐹
0𝑖
between

𝑅
𝑖
and 𝑅

𝑐
can be calculated by Formula (13), whose direction
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Figure 9: The schematic diagram overlapped between the orthogonal rectangle and container.
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Figure 10: The curved semi-cone surface of the embedded degree of two orthogonal rectangles.

is the direction from the center of the container to the further-
most rectangular vertex (see Figure 6):

→

𝐹
0𝑖
=

𝛽𝑑
0𝑖

→

𝑑
0𝑖









→

𝑑
0𝑖









(𝑖 = 1, 2, . . . , 𝑛) . (13)

By experiments, we can know that 𝛼 > 𝛽.
So, the extruded resultant force →𝐹

𝑖
of 𝑅
𝑖
(𝑖 = 1, 2, . . . , 𝑛) in

the rectangle packing scheme can be calculated by

→

𝐹
𝑖
=

𝑛

∑

𝑗=0,𝑖 ̸=𝑗

→

𝐹
𝑗𝑖
. (14)

Definition 10. Let 𝐸
𝑗𝑖
and 𝐸

0𝑖
(𝑖, 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 ̸= 𝑗)

denote extruded potential energies of 𝑅
𝑖
with respect to 𝑅

𝑗

and the container, respectively. Then 𝐸
𝑗𝑖
can be calculated by

Formula (15), where𝑑
𝑖𝑗
and𝑑
𝑖0
denote two embedded degrees

between two rectangles 𝑅
𝑖
and 𝑅

𝑗
and between the rectangles

𝑅
𝑖
and container:

𝐸
𝑗𝑖
= 𝑑

2

𝑗𝑖
(𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑛, 𝑖 ̸= 𝑗) . (15)

Definition 11. The total extruded potential energy 𝐸
𝑖
of𝑅
𝑖
can

be calculated by

𝐸
𝑖
=

𝑛

∑

𝑗=0,𝑗 ̸=𝑖

𝐸
𝑗𝑖

(𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗) . (16)

Let 𝑆
𝑖
be the area of the rectangle 𝑅

𝑖
; then 𝐸

𝑖
and 𝐸

𝑖
/𝑆
𝑖

(𝑖 = 1, 2, . . . , 𝑛) are its absolute and relative extruded potential
energies, respectively.

3.3. Compact and Feasible Solution Strategy. By predetermin-
ing envelope radius 𝑅

0
of this problem, the extruded force

and direction can be calculated by Formula (13).The extruded
force of the envelope circle makes each rectangle close to the
center of the container in the direction. For each rectangle,
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Table 1: Parameters of rectangles for five layout examples.

Example 1 (length, width, mass) (8, 6, 12), (8, 8, 16), (10, 6, 15), (12, 4, 12), (6, 6, 9)
Example 2 (length, width, mass) (8, 6, 12), (8, 8, 16), (10, 6, 15), (10, 8, 20), (10, 10, 25), (12, 6, 18)
Example 3 (length, width, mass) (8, 6, 12), (8, 8, 16), (10, 6, 15), (10, 8, 20), (10, 10, 25), (12, 6, 18), (12, 4, 12), (12, 8, 24) (12, 10, 30)

Example 4 (length, width, mass) (8, 5, 10), (4, 8, 8), (10, 6, 15), (7, 8, 14), (10, 3, 7.5), (12, 6, 18), (12, 4, 12), (12, 6, 18), (8, 10, 20), (7, 3, 6),
(8, 6, 6), (8, 3, 15), (10, 6, 20), (10, 8, 17.5), (10, 7, 15), (12, 5, 15), (12, 4, 12), (10, 8, 20), (12, 10, 30), (6, 6, 9)

Example 5

(length, width, mass) (26, 26, 8), (22, 28, 16), (20, 30, 16), (20, 34, 15), (34, 22, 17), (20, 32, 15), (30, 20, 14), (28, 26, 15),
(20, 28, 14), (26, 38, 13), (34, 30, 12), (26, 36, 17), (30, 34, 12), (28, 24, 17) (32, 24, 10), (30, 38, 11), (30, 20, 18), (22, 22, 17),
(30, 32, 11), (28, 28, 10), (20, 38, 18), (22, 30, 13) (32, 32, 14), (26, 26, 17), (34, 20, 14), (26, 32, 18), (38, 22, 19), (36, 34, 18),
(36, 24, 13), (26, 30, 15) (26, 38, 12), (30, 38, 19), (28, 24, 15), (38, 34, 19), (26, 20, 14), (32, 36, 16), (28, 22, 13), (24, 28, 19),
(38, 22, 17), (20, 38, 16)

the extruded forces of all others with respect to the rectangle
drive away themselves to relieve the pressure in respective
direction and their extruded resultant force is calculated by
Formula (12). In this paper, the above two steps are used
to decrease the overlapping area of the packing scheme and
make it compact.

4. Dynamic Adjustment Strategy

Considering the problem of the low efficiency and possible
local optimum (e.g., large static imbalance) of the iteration of
two steps in Section 3.3, we propose Property 3 and dynamic
adjustment strategy for QPDAA.

4.1. Related Property. For optimizing the static imbalance of
the layout scheme, we introduce Property 3.

Property 3. Assume 𝐴
1
(𝑥
𝑚
, 𝑦
𝑚
) is the mass center of

an orthogonal packing scheme X
1
of this problem and

𝐴
1
(𝑥
𝑚
, 𝑦
𝑚
) ̸= (0, 0) and X

2
is another scheme obtained by

interchanging centers of two rectangles𝑅
𝑖
with amass𝑚

𝑖
and

𝑅
𝑗
(𝑖, 𝑗 ∈ I

𝑛
and 𝑖 ̸= 𝑗) with a mass 𝑚

𝑗
in X
1
. If 𝑚

𝑗
> 𝑚
𝑖
,

𝑑
𝑗
> 𝑑
𝑖
, centers (𝑥

𝑖
, 𝑦
𝑖
) and (𝑥

𝑖
, 𝑦
𝑖
) satisfy Formula (17), then

𝐽(X
1
) > 𝐽(X

2
), where 𝑑

𝑘
= (𝑥

2

𝑘
+ 𝑦

2

𝑘
)

1/2 (𝑘 = 𝑖, 𝑗):

2 (𝑥
𝑗
− 𝑥
𝑖
) 𝑥
𝑚

𝑛

∑

𝑘=1

𝑚
𝑘
+2 (𝑦

𝑗
− 𝑦
𝑖
) 𝑦
𝑚

𝑛

∑

𝑘=1

𝑚
𝑘
> (𝑚
𝑗
− 𝑚
𝑖
) 𝑑

2

𝑖𝑗
.

(17)

In Formula (17), 𝑑
𝑖𝑗
= ((𝑥
𝑗
− 𝑥
𝑖
)

2

+ (𝑦
𝑗
− 𝑦
𝑖
)

2

)

1/2.

Proof . Consider

∵ 𝐽

2

(𝑋
1
) = (

𝑛

∑

𝑘=1

𝑚
𝑘
𝑥
𝑘
)

2

+ (

𝑛

∑

𝑘=1

𝑚
𝑘
𝑦
𝑘
)

2

𝐽

2

(𝑋
2
) = (

𝑛

∑

𝑘=1

𝑚
𝑘
𝑥
𝑘
− 𝑚
𝑖
𝑥
𝑖
− 𝑚
𝑗
𝑥
𝑗
+ 𝑚
𝑖
𝑥
𝑗
+ 𝑚
𝑗
𝑥
𝑖
)

2

+ (

𝑛

∑

𝑘=1

𝑚
𝑘
𝑦
𝑘
− 𝑚
𝑖
𝑦
𝑖
− 𝑚
𝑗
𝑦
𝑗
+ 𝑚
𝑖
𝑦
𝑗
+ 𝑚
𝑗
𝑦
𝑖
)

2

∴ 𝐽

2

(𝑋
1
) − 𝐽

2

(𝑋
2
)

= (𝑚
𝑖
𝑥
𝑖
+ 𝑚
𝑗
𝑥
𝑗
− 𝑚
𝑖
𝑥
𝑗
− 𝑚
𝑗
𝑥
𝑖
)

× (2

𝑛

∑

𝑘=1

𝑚
𝑘
𝑥
𝑘
− 𝑚
𝑖
𝑥
𝑖
− 𝑚
𝑗
𝑥
𝑗
+ 𝑚
𝑖
𝑥
𝑗
+ 𝑚
𝑗
𝑥
𝑖
)

+ (𝑚
𝑖
𝑦
𝑖
+ 𝑚
𝑗
𝑦
𝑗
− 𝑚
𝑖
𝑦
𝑗
− 𝑚
𝑗
𝑦
𝑖
)

× (2

𝑛

∑

𝑘=1

𝑚
𝑘
𝑦
𝑘
− 𝑚
𝑖
𝑦
𝑖
− 𝑚
𝑗
𝑦
𝑗
+ 𝑚
𝑖
𝑦
𝑗
+ 𝑚
𝑗
𝑦
𝑖
)

2

= (𝑚
𝑖
− 𝑚
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)

× [2𝑥
𝑚

𝑛

∑

𝑘=1

𝑚
𝑘
𝑥
𝑘
− (𝑚
𝑖
− 𝑚
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)]

+ (𝑚
𝑖
− 𝑚
𝑗
) (𝑦
𝑖
− 𝑦
𝑗
)

× [2𝑦
𝑚

𝑛

∑

𝑘=1

𝑚
𝑘
𝑦
𝑘
− (𝑚
𝑖
− 𝑚
𝑗
) (𝑦
𝑖
− 𝑦
𝑗
)]

= 2 (𝑥
𝑗
− 𝑥
𝑖
) 𝑥
𝑚

𝑛

∑

𝑘=1

𝑚
𝑘
+ 2 (𝑦

𝑗
− 𝑦
𝑖
) 𝑦
𝑚

𝑛

∑

𝑘=1

𝑚
𝑘

− (𝑚
𝑗
− 𝑚
𝑖
) 𝑑

2

𝑖𝑗
> 0.

(18)

Property 3 indicates that, for selecting rectangle 𝑅
𝑖
∈ X
1
,

we can find a rectangle 𝑅
𝑗
in the sector area 𝐴

1
𝑂𝐴
2
with

an angle 𝜑 (shown as in Figure 11) and interchange them to
obtain X

2
whose static imbalance is less than X

1
. Here, the

angle 𝜑 satisfies

2

𝑛

∑

𝑘=1

𝑚
𝑘
(𝑥

2

𝑚
+ 𝑦

2

𝑚
)

1/2

[(𝑥
𝑗
− 𝑥
𝑖
)

2

+ (𝑦
𝑗
− 𝑦
𝑖
)

2

]

1/2

cos (𝜑)

= (𝑚
𝑗
− 𝑚
𝑖
) 𝑑

2

𝑖𝑗
.

(19)

4.2. Dynamic Adjustment Strategy. Let X = (𝑥
𝑘
, 𝑦
𝑘
, 𝜃
𝑘
| 𝑘 =

1, 2, . . . , 𝑛); we consider the following dynamic adjustment
strategy.



Mathematical Problems in Engineering 9

Table 2: Performance comparisons of four algorithms.

Example number Size Algorithm Average 𝑟 Standard deviation Minimal 𝑟 Maximal 𝑟 Average 𝑡/𝑠

1 5
GA + HA [35] 11.7703 0.0335 11.7597 11.8655 0.242
CA-PSLS [34] 12.2181 0.5214 11.5443 13.0982 11.657

QPDAA 11.6756 0.0235 11.4737 11.8533 0.953

2 6
IGA [44] — — 14.62000 — 18.000

CA-PSLS [34] 15.19402 — 14.39625 — 19.904
QPDAA 14.68374 — 14.344996 14.909841 4.963

3 9
GA + HA [35] 18.1709 0.2361 17.8988 18.6041 1.262
CA-PSLS [34] 20.0899 1.1957 18.3758 22.0803 58.126

QPDAA 18.2461 0.0694 17.6880 18.5983 1.110

4 20
GA + HA [35] 23.2713 0.4728 22.6396 24.0605 9.989
CA-PSLS [34] 32.7216 4.0065 27.2863 38.5048 321.071

QPDAA 22.8368 0.0222 22.3510 23.7884 2.625

5 40
GA [35] 119.2396 1.5087 115.836 120.7099 62.795

CA-PSLS [34] 253.4165 43.8096 195.5914 306.2740 1367.573
QPDAA 119.1383 0.6887 115.6252 120.5102 3.375

Ri

Rj

A1(xm, ym)

O(0, 0)

𝜑

R1

R2

A2(xj − xi, yj − yi)

Figure 11: The geometric area of Formula (17).

Table 3: The layout schemes of the proposed QPDAA for
Examples 1 and 2.

Example 1 Example 2
𝑖 𝑥

𝑖
𝑦
𝑖

𝑖 𝑥
𝑖

𝑦
𝑖

1 5.017966 −4.093750 1 −5.810001 −7.386930
2 4.932835 2.906250 2 5.686532 6.537550
3 −3.982034 −4.093750 3 8.827469 −0.519116
4 −5.067165 0.906250 4 3.371405 −7.538003
5 −2.067165 5.906250 5 −3.346021 6.667169

6 −7.636339 −1.338337

4.2.1. Rectangle-Interchanging. According to Property 3, the
static imbalance of the packing scheme can be decreased by
interchanging positions of two rectangles.

Two rectangles, 𝑅
𝑖
with a smaller mass and 𝑅

𝑗
with a

larger mass (𝑖, 𝑗 ∈ I
𝑛
, 𝑑
𝑖
< 0.5𝑅

0
, 0.5𝑅
0
< 𝑑
𝑗
< 𝑅
0
), are

selected from X. If 𝑅
𝑖
and 𝑅

𝑗
satisfy Formula (17), then we

update X by 𝑥
𝑖
↔ 𝑥
𝑗
, 𝑦
𝑖
↔ 𝑦
𝑗
, 𝜃
𝑖
↔ 𝜃
𝑗
.

Table 4: The layout schemes of the proposed QPDAA for
Example 3.

𝑖 𝑥
𝑖

𝑦
𝑖

1 0.074698 −3.832386
2 2.329571 3.285391
3 4.944505 −10.373944
4 3.514680 11.503878
5 11.343280 1.762618
6 −6.074076 −9.903838
7 10.077353 −5.359918
8 −10.295647 −2.839607
9 −7.690402 6.187573

4.2.2. Rotation andOff-Trap. (i) A rectanglewith a larger pain
degree is found out fromX and is rotated 90∘ round its center
counterclockwise direction to relieve its pain. (ii) A rectangle
with a larger pain degree is found out fromX and is moved to
such a place in the container where its pain degree is smaller.
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Table 5:The layout scheme of the proposedQPDAA for Example 4.

𝑖 𝑥
𝑖

𝑦
𝑖

1 2.275791 −8.061370
2 0.693375 15.930070
3 8.143939 8.438630
4 −4.806625 15.930070
5 −5.021757 −17.061370
6 5.978243 −15.573636
7 0.275791 −3.561370
8 −12.856061 7.930070
9 −5.724209 −10.561370
10 6.193375 17.938630
11 −16.608718 1.930070
12 7.143939 3.938630
13 −7.608718 1.930070
14 16.143939 1.426364
15 −1.856061 8.430070
16 9.143939 13.938630
17 3.391282 0.438630
18 −14.724209 −5.069930
19 12.275791 −7.573636
20 −12.724209 −12.069930

We know that the role of (ii) is similar to a construction of the
nonisomorphic layout pattern [42, 43].

4.2.3. Center Translation. If its mass center 𝑃
𝑚
(𝑥
𝑚
, 𝑦
𝑚
) ̸=

𝑂(0, 0), then X = (𝑥
𝑘
− 𝑥
𝑚
, 𝑦
𝑘
− 𝑦
𝑚
, 𝜃
𝑘
| 𝑘 = 1, 2, . . . , 𝑛).

5. The Proposed Algorithm

Through an organic combination of the compact and feasi-
ble solution strategy and dynamic adjustment strategy, we
present QPDAA for BCOURP.

Let 𝑅
0
and 𝑟∗ be the predetermined value and an allow-

able maximum of the envelope radius of the solution, respec-
tively; 𝑛 is the number of rectangles. 𝑃

𝑚
(𝑥
𝑚
, 𝑦
𝑚
), 𝑓(X), and

𝐸(X) denote the mass center, envelope radius, and extruded
potential energy of the packing scheme X, respectively.
𝐸
𝑘
(X) (𝑘 = 1, 2, . . . , 𝑛) is the extruded potential energy of

the rectangle 𝑅
𝑘
; ℎ is the step length; 𝑁 is the maximum

translation times. Then steps of the proposed QPDAA are
shown in Algorithm 1.

6. Experiments and Analysis

6.1. Experiments. The proposed QPDAA is coded in VC++
6.0 and carried on a Pentium 3GHZ PC with 512MB
memory. CA-PSLS [34], GA-HA [35] are coded in VC++ 6.0
and two algorithms are carried on a Pentium 1.83GHZ with
512MBmemory; IGA [44] is carried on an IBM586 166MHz.

Experiment 1. Five examples are taken from [33, 35] and are
used in testing the performance of the proposed QPDAA.

Table 6:The layout scheme of the proposedQPDAA for Example 5.

𝑖 𝑥
𝑖

𝑦
𝑖

1 −20.484058 −97.670716
2 96.802177 −23.135827
3 −32.957579 −3.670716
4 −17.484058 −67.670716
5 −34.765848 92.329284
6 −16.197823 −34.670716
7 49.515942 −85.946702
8 −5.847798 30.463901
9 24.515942 −86.536099
10 −55.957579 −24.941525
11 −93.957579 1.531453
12 22.042421 4.053298
13 23.234152 85.053298
14 71.802177 −25.946702
15 −71.484058 −59.468547
16 92.042421 9.864173
17 23.152202 57.053298
18 3.515942 −83.536099
19 −32.847798 65.329284
20 −41.484058 −57.941525
21 −32.957579 30.329284
22 66.042421 1.053298
23 9.802177 −56.536099
24 −4.765848 88.463901
25 −59.957579 4.058475
26 −4.847798 59.463901
27 12.802177 −29.536099
28 −86.957579 −30.468547
29 52.515942 −63.946702
30 −64.765848 69.531453
31 44.802177 −32.946702
32 −85.957579 35.531453
33 86.152202 40.864173
34 57.234152 69.864173
35 21.152202 32.053298
36 −6.957579 −0.536099
37 −56.957579 25.058475
38 −45.484058 −85.941525
39 53.152202 35.053298
40 45.042421 5.053298

Data of all examples are shown in Table 1. For the proposed
algorithm, we take 𝛼 = 18, 𝛽 = 56, 𝜀 = 10−20, ℎ = 0.8,
𝛿 = 6, and 𝑁 = 120, respectively. For Examples 1–5, we
take 𝑅

0
= 11.4, 14.3, 17.5, 22.3, and 115.5 and take 𝑟∗ = 1.05𝑅

0
,

1.05𝑅
0
, 1.07𝑅

0
, 1.07𝑅

0
, and 1.05𝑅

0
, respectively. Running the

proposedQPDAA30 times for each example (the success rate
is 100%), we show its average running time, average envelope
radius, standard variance of the radius, and the maximum
andminimum envelope radii in Table 2; for each example, its
layout scheme diagraph is shown in Figure 12; the other data
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Table 7: The effect of parameters 𝑅
0
and 𝑟∗ on the optimal radius and running time for the proposed QPDAA.

Experiment number 1 2 3 4 5
Size 5 6 9 20 40
𝑅
0

11.4 14.3 17.5 22.3 115.5
r∗ 1.05𝑅

0
1.05𝑅

0
1.07𝑅

0
1.07R0 1.05𝑅

0

The optimal radius 11.4737 14.344996 17.6880 22.3510 115.6252
Running time 0.953 3.5872 1.110 2.625 2.625
𝑅
0

11.4 14.3 17.5 22.06 114.8
r∗ 1.02𝑅

0
1.02𝑅
0

1.03𝑅
0

1.01𝑅
0

1.01𝑅
0

The optimal radius 11.450458 14.309924 17.597856 22.141009 115.042385
Running time 1.297 8.963 7.906 12.920 17.125

Definite X, X
1
, X
2
, 𝑅
0
, 𝑟∗, ℎ, 𝜀, 𝑘, 𝑗,𝑁, 𝛼, 𝛽, 𝛿 and initialize 𝛿 = 6, ℎ = 0.8, 𝜀 = 10−20, 𝛼 = 18, 𝛽 = 56, 𝑘 = 0, 𝑗 = 0,𝑁 = 120;

Do
{

Randomly generate X
1
with the envelope radius 𝑅

0
and calculate 𝐸(X

1
); 𝑗 = 0;

If (𝐸(X
1
) < 𝜀)

Continue;
Else break;
While (1)
{ Do

{ 𝑗 = 𝑗 + 1; for 𝑖 = 1, 2, . . . , 𝑛, calculate →𝐹
𝑖
of 𝑅
𝑖
and X

2𝑖
= X
1𝑖
+ ℎ ⋅

→

𝐹
𝑖
;

Calculate 𝐸(X
2
) and 𝑓(X

2
);

If (𝐸(X
2
) < 𝜀 and 𝑓(X

2
) ≤ 𝑟

∗) {X = X
2
; 𝑗 = 𝑁 + 1}

Else if (𝐸(X
2
) ≥ 𝜀){Calculate |∇𝐸| = ((1/𝑛)∑𝑛

𝑖=1
|

→

𝐹
𝑗𝑖
|

2

)

1/2

;X
1
= X
2
; }

Else if (𝑓(X
2
) > 𝑟

∗

) {𝑗 = −1; break;}
}While (|∇𝐸| < 1 and 𝑗 < 𝑁);
If (𝑗 = −1 or 𝑗 > 𝑁) break;
If (𝐽(X

2
) > 𝛿) find 𝑅

𝑖
and 𝑅

𝑗
which satisfy formula (17) in X

2
and 𝑥

𝑖
↔ 𝑥
𝑗
, 𝑦
𝑖
↔ 𝑦
𝑗
, 𝜃
𝑖
↔ 𝜃
𝑗
;

Find 𝑝 so that 𝐸
𝑝
(X
2
)/𝑆
𝑝
= max{𝐸

𝑖
(X
2
)/𝑆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛};

If (𝑘 ̸= 𝑝) {by rotating 𝑅
𝑝
, X
1
is obtained;

If (𝐸
𝑝
(X
1
) > 0.75𝐸

𝑝
(X
2
)) update X

1
by moving (𝑥

𝑝
, 𝑦
𝑝
), 𝑘 = 𝑝;}

Else find 𝑞 so that 𝐸
𝑞
(X
2
) = min{𝐸

𝑖
(X
2
), 𝑖 = 1, 2, . . . , 𝑛}, and update X

1
by rotating 𝑅

𝑝
;

If (𝐸
𝑞
(X
1
) > 0.75𝐸

𝑞
(X
2
)), update X

1
by moving (𝑥

𝑞
, 𝑦
𝑞
) out, 𝑘 = 𝑞;

}

} while (𝑓(X
1
) > 𝑟

∗);
Calculate the mass center 𝑃

𝑚
(𝑥
𝑚
, 𝑦
𝑚
), and X = (𝑥

𝑘
− 𝑥
𝑚
, 𝑦
𝑘
− 𝑦
𝑚
, 𝜃
𝑘
| 𝑘 = 1, 2, . . . , 𝑛), and calculate 𝑓(X);

Output the layout scheme X and envelope radius 𝑓(X);
End the algorithm.

Algorithm 1

Table 8: The optimal layout schemes of Examples 1 and 2 for the
proposed QPDAA.

𝑖
𝑥
𝑖

𝑦
𝑖

𝑖 𝑥
𝑖

𝑦
𝑖

1 −2.954693 −5.470039 1 4.948526 8.054106

2 5.045307 −2.429991 2 4.903437 −6.945894

3 −2.408844 4.570009 3 −4.140424 −8.010294

4 −4.954693 −0.429991 4 5.911271 1.054106

5 5.591156 4.570009 5 −4.088729 5.989706
6 −5.096563 −2.010294

in Table 2 is taken from [33–35]. The optimal layout schemes
of the proposed QPDAA are shown in Tables 3, 4, 5, and 6 for
5 examples.

Experiment 2. For testing the effects of𝑅
0
and 𝑟∗ on themin-

imal radius and running time with the proposed QPDAA,
we take another set of 𝑅

0
and 𝑟∗ (five examples and other

parameters are the same as those of Experiment 1) and run
the proposed QPDAA procedure 30 times for each example.
The minimal radii and running times are given in Table 7.
Their layout schemes and layout diagraphs are shown in
Tables 8, 9, 10, and 11 and Figure 13. It can be found from
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Figure 12: The layout diagraphs of five examples for the proposed QPDAA.
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Figure 13: The optimal layout scheme diagraphs of five examples for the proposed QPDAA.

Table 9:The optimal layout schemes of Example 3 for the proposed
QPDAA.

𝑖 𝑥
𝑖

𝑦
𝑖

1 8.952825 −8.127957
2 11.192355 3.872043
3 −11.893145 0.866506
4 −7.807645 7.896834
5 −7.161996 −7.133494
6 11.084588 −2.235259
7 −0.893145 0.866506
8 1.838004 −10.127957
9 2.125081 10.168689

Table 7 that changing values of 𝑅
0
and 𝑟∗ we can obtain the

packing scheme with a smaller envelop radius, but it costs
more time for each example. So, values 𝑅

0
and 𝑟∗ in Experi-

ment 1 can be applied to make a tradeoff between the compu-
tational effectiveness and solution quality.

In order to further test the effectiveness of the proposed
QPDAA, we consider Experiment 3.

Experiment 3. Numbers of rectangles (generated randomly)
of three examples are 50, 55, and 60 and their lengths and
widths are between 20 and 40. For the proposed QPDAA,
we take 𝛼 = 18, 𝛽 = 56, 𝜀 = 10−20, ℎ = 0.8, 𝛿 = 10,
𝑁 = 120, 𝑅

0
= 125.9, 133.8, 137.2, and 𝑟∗ = 126.8, 134.6, 138.8

for Examples 1–3, respectively. For GA + HA, the population
size, mutation probability, and max number of the iteration
are 30, 0.125, and 50, respectively. By running HA + GA
and the proposed QPDAA 30 times for three examples, res-
pectively, their optimal envelop radii and average times are
shown in Table 12, respectively. The optimal packing scheme
diagrams of GA + HA and the proposed QPDAA are shown
in Figures 14(a)–14(c) and Figures 14(d)–14(f). We can know
from Table 12 that both the solution quality and computa-
tional quality of the proposed QPDAA are obviously higher
than those of GA + HA.

Note that, in Experiment 3, the procedure of GA + HA
is coded by author and is carried on a Pentium 3GHZ with
512MB memory.

6.2. Analysis. From data of Tables 2, 7, and 12, we know
that the solution quality of the proposed QPDAA algorithm
is higher than those of CA-PSLS and GA-HA. Compared
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(a) GA HA for 50 rectangles
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(b) GA HA for 55 rectangles
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(c) GA HA for 60 rectangles
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(d) QPDAA for 50 rectangles

1

2

7

947

18

38

52
51

55

54

53

3

4

5

6

8

10

41

42

43 44

45

46

48

49

50

11

12

13

14

15

16
17

19

20
21

22

23

24
25

26

27

28
29

30

31

32

33
34

35

3637
39

40

(e) QPDAA for 55 rectangles
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(f) QPDAA for 60 rectangles

Figure 14: Packing scheme diagrams of GA + HA and the proposed QPDAA for Experiment 3.

with those of CA-PSLS, embedded degree functions of the
proposed QPDAA can make the layout scheme more com-
pact. Due to the fixed candidate positions of GA + HA, it is
difficult to find the best position for some rectangles close
to the marginal region of the container. The deficiency of a
mechanism of decreasing the static balance in the process of
packing rectangles also limits the solution quality of GA +
HA.The experimental results illustrate the effectiveness of the
proposed QPDAA.

The computational efficiency of the proposed QPDAA is
one magnitude higher than those of CA-PSLS. There are two
reasons. (i) Owing to orthogonal packing, searching the opti-
mal solution in the 2D solution of the proposed QPDAA is
easier than that in the 3D solution space of CA-PSLS. (ii) In
order to improve the solution quality ofCA-PSLS, PSO is used
to optimize the feasible solution obtained through the gra-
dient method based on two discontinuous embedded degree
functions, but the proposed QPDAA need not do the PSO
optimization without reducing its solution quality. Except
for Example 1, the computational efficiency of the proposed
QPDAA is higher than that of GA + HA. And with the
increase of the size of the packing problem, the advantage of
the proposed QPDAA is more obvious. This is because com-
putational complexities of the extruded resultant force and
potential energy are 𝑂(𝑛) in this paper, but the computa-
tional complexity of noninterference judgment is 𝑂(𝑛2). In

addition, for GA + HA, with the increasing of the number
of rectangles, the number of candidate positions of each
rectangle increases dramatically. These reasons lead to the
computational efficiency of the proposed QPDAA higher
than that of GA + HA for the BCOURP with a large size.

7. Conclusions

Taking the layout design of a satellite module as the appli-
cation background, we have proposed the QPDAA for the
BCOURP problem in this paper. Two continuous embedded
functions between orthogonal rectangles and between the
rectangle and container are constructed to overcome the
weakness of embedded functions in [34]. And the suggestion
of the extruded resultant force formula and the potential
energy function of the rectangle packing system based on the
proposed embedded functions make solving the BCOURP
problem simple and effective as solving the circle packing
problem [37–40].The proposed dynamic adjustment strategy
can quickly decrease the static imbalance of the packing
scheme and make the iteration skip the local optimum. The
experiment results show that the proposed QPDAA is supe-
rior to existing algorithms in performance for the BCOURP
problem, especially for the BCOURP problem with the large
size. The next work is to extend the above algorithm into
solving the 3D satellite module payload packing problem.
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Table 10:The optimal layout scheme of Example 4 for the proposed
QPDAA.

𝑖 𝑥
𝑖

𝑦
𝑖

1 −7.913018 −16.1629110
2 −11.4301555 13.766710
3 −2.797531 7.599405
4 14.854397 8.176985
5 3.751568 4.136671
6 −14.476432 −7.582581
7 13.305438 −9.941647
8 −8.088653 −7.608034
9 3.747621 15.611128
10 −2.290583 −18.311460
11 −5.543514 1.554382
12 11.758080 13.883226
13 −14.800586 1.537640
14 16.662225 0.074950
15 −3.889690 15.762332
16 −13.867726 7.136671
17 −2.96.2478 −7.489430
18 6.210196 −4.937357
19 5.257463 −14.032250
20 8.273430 7.563706

Appendices

A. HA + GA [35]

Input the length, width, and mass of the rectangle 𝐹
𝑖
(𝑖 =

1, 2, . . . , 𝑛) in turn, initialize the number 𝑁 of the maximal
iteration times, and generate their placing sequence set
{𝑡(𝑖), 𝑖 = 1, 2, . . . , 𝑛}.

Step 1. Set 𝑘 = 1.

Step 2. Set the center of 𝐹
𝑡(1)

at (0, 0) and its long side is
parallel to 𝑥

1
-axis, 𝑖 = 2, 𝑗 = 1.

Step 3. For 𝑗 = 1, 2, . . . , 𝑖 − 1, calculate centers and direction
angles of 16 candidate positions (see Figure 1) of the rectangle
𝐹
𝑡(𝑖)

with respect to the rectangle 𝐹
𝑡(𝑗)

. From its candidate
positions eliminate unfeasible ones and calculate the optimal
one (i.e., compared with other feasible candidate positions, it
makes the packing scheme of the first 𝑖 rectangles have less
envelop radius).

Step 4. If 𝑖 < 𝑛 then update the current packing scheme, 𝑖++,
and go to Step 3; otherwise, go to Step 5.

Step 5. If 𝑘 < 𝑁 then update the optimal packing scheme
and use GA to generate a new placing sequence set {𝑡(𝑖), 𝑖 =
1, 2, . . . , 𝑛} and go to Step 2; otherwise, go to Step 6.

Step 6. Output the optimal packing scheme and envelop
radius; algorithm ends.

Table 11: The optimal layout scheme of Example 5 for the proposed
QPDAA.

𝑖 𝑥
𝑖

𝑦
𝑖

1 −35.716569 −20.219336
2 19.295868 92.929139
3 −66.464390 −69.791544
4 −0.799905 −80.612101
5 −8.704132 97.929139
6 −38.754325 −49.219336
7 60.543358 20.832873
8 47.933196 −29.082316
9 −42.456642 21.911290
10 −6.576451 43.929139
11 4.543358 7.350623
12 60.568942 −69.995791
13 −74.792262 52.886007
14 57.004507 44.832873
15 33.5433588 0.917684
16 97.933196 −2.928148
17 71.933196 −4.167127
18 14.886008 67.929139
19 −41.5764518 50.911290
20 −93.27781098 23.736930
21 −67.7165699 −2.088710
22 90.543358 27.071852
23 −41.704132 81.911290
24 −65.456642 20.911290
25 −58.7543259 −29.088710
26 28.423549 35.350623
27 0.535610 −101.612101
28 48.2958689 75.832873
29 −80.754325 −36.263070
30 −9.113992 71.929139
31 28.245675 −56.649377
32 79.933196 −36.928148
33 81.004507 52.071852
34 −37.464390 −82.649377
35 29.200095 −79.649377
36 −6.716569 −25.649377
37 20.283431 −29.082316
38 −98.716569 −4.263070
39 −9.754325 −54.649377
40 −22.456642 11.780664

B. Results of Experiment 2

See Tables 8, 9, 10, and 11 and Figure 13.
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Table 12: The effect of 𝑅
0
and 𝑟∗ on the optimal radius and running time for the proposed QPDAA.

Example number Size HA + GA QPDAA
The optimal radius Running time (s) The optimal radius Running time (s)

1 50 127.667244 30.170088 126.567311 13.345431
2 55 134.844782 42.654031 134.105091 19.056438
3 60 139.072606 66.908203 137.833657 37.01790
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