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An autonomous underwater vehicle (AUV) has to solve two essential problems in underwater environment, namely, localization
and mapping. SLAM is one novel solution to estimate locations and maps simultaneously based on motion models and sensor
measurements. Sparse extended information filter (SEIF) is an effective algorithm to reduce storage and computational costs of
large-scalemaps in the SLAMproblem.However, there exists the inconsistency in the SEIF since the rank of the observabilitymatrix
of linearized error-state model in SLAM system is higher than that of the nonlinear SLAM system. By analyzing the consistency of
the SEIF-based SLAM from the perspective of observability, a SLAM based on SEIF with consistency constraint (SEIF-CC SLAM)
is developed to improve the estimator’s consistency.The proposed algorithm uses the first-ever available estimates to calculate SEIF
Jacobians for each of the state variables, called the First Estimates Jacobian (FEJ). Then, the linearized error-state model can keep
the same observability as the underlying nonlinear SLAM system. The capability of autonomous navigation with the proposed
algorithm is validated through simulations experiments and sea trials for a C-Ranger AUV. Experimental results show that the
proposed SEIF-CC SLAM algorithm yields more consistent and accurate estimates compared with the SEIF-based SLAM.

1. Introduction

The inconsistency problem in linearization-based autono-
mous navigation system has attracted significant concern.
The reason of inconsistency is analyzed from the perspec-
tive of observability. A consistency-constrained method is
adopted to guarantee the consistent observability and to
minimize the linear errors caused by the filter.

As a key technique of truly autonomous navigation,
simultaneous localization and mapping (SLAM) is the pro-
cess by which a mobile robot can incrementally build
consistent maps in an unknown environment and use the
maps to determine its own location at the same time [1].
It has played an important role in different domains, such
as autonomous underwater hull inspection [2], autonomous
underwater vehicle (AUV) in deep sea regions [3], unmanned
aerial vehicle (UAV), and miniature aerial vehicle (MAV) in
the sky [4], as well as autonomous driver-assistance-systems

in cars [5]. The SLAM problem involves an unknown and
uncertain environment description and sensors noise [6–13].
There are many algorithms developed to address this SLAM
problem in various forms, such as extended Kalman filter
(EKF) [9, 10], particle filter [11], and extended information
filter (EIF) [12, 13] based SLAM algorithms.

EKF-based SLAM has been proved to be widely popular
as a standard nonlinear state estimator for its simplicity [6, 7].
This algorithm uses the observable features to update robot’s
pose and estimate map. However, the quadratic complexity
of computational capacity is one shortcoming of EKF-based
SLAM in large-scale maps [14–16]. Extended information
filter (EIF) [17] is the dual form of EKF and is parameterized
by information matrix and information vector. It is found
that the information matrix is dominated by a small number
of diagonal elements while most off-diagonal elements are
close to zero [18]. So a sparse approximated representation of
information matrix is obtained by ignoring the conditional
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dependence relationships between the mobile robot and a
subset of the map, which is developed into a sparse variant of
the EIF, called the sparse extended information filter (SEIF)
[12, 19]. Due to the sparsification of SLAM information
matrix, SEIF can avoid EKF’s quadratic cost in computation
and memory. Therefore, SEIF has been successfully imple-
mented with real-world datasets and has been demonstrated
to be more scalable [20, 21].

However, the estimate of SEIF is prone to inconsistency
for two reasons. First and foremost, SEIF may easily become
overconfident due to the sparsification strategy [22]. Sec-
ondly, SEIF is based on single-point linearization as well as
EKF, which may cause the accumulation of errors and lead to
the estimated inconsistency [23–25]. Then, some approaches
have been developed to improve the inconsistency of SEIF-
based SLAM through the theoretical analysis. One method is
exactly sparse extended information filter (ESEIF) proposed
by Walter et al. [26], which is a typical approach referred
to as full SLAM [27, 28]. ESEIF keeps the exactly sparse
informationmatrix throughmarginalizing out the robot pose
and relocating the robot, which is both locally and globally
consistent [29]. But ESEIF is no longer computationally
tractable and also faces the same nonlinear problems as EKF.
Another method to improve the inconsistency is Huang’s
sparse local submap joining filter (SLSJF) [30], where a
sequence of small sized local submaps is represented in
the global coordinate frame and EIF is used to ensure that
the information matrix is exactly sparse. However, small
inconsistency in lots of local maps may result in large
inconsistency in the globalmap. Additional work in the SLSJF
is required to complete the local maps joining. In short,
ESEIF and SLSJF cannot concurrently have advantages of low
computational cost and consistency.

The observability of the nonlinear SLAM system was
analyzed by Lee et al. [31]. The nonlinear SLAM system
has three degrees of freedom, while the linearized error-
state system is a two-dimensional subspace. So the obtained
spurious information of linear SLAM system is the primary
cause of inconsistency. Huang et al. [32] proved that the
rank of the observation model’s Jacobians in the linearized
error-state system is higher than that of the nonlinear SLAM
system.The filter Jacobians are calculated using the first-ever
available estimates for each state variable, called the First
Estimates Jacobian (FEJ), which ensures that the observability
of error-state model is the same as the underlying nonlinear
SLAM systems. Simulations have also been demonstrated
that the FEJ-based EKF algorithm is superior to the standard
EKF in terms of accuracy and consistency [33].

In view of the quadratic complexity and inconsistency
of the EKF-based SLAM algorithm in the large-scale envi-
ronments, a novel SLAM algorithm based on SEIF with
the consistency constraint (SEIF-CC SLAM) is proposed to
improve the autonomous navigation capability of AUV in
this paper. SEIF is adopted to maintain the sparsification of
information matrix according to the low computational cost.
Meanwhile, the estimator’s consistency is constrained by the
FEJ algorithm so as to obtain the same dimension between
the linearized error-state system and the nonlinear SLAM
system. And the SEIF-CC SLAM will be compared with the

SEIF-based SLAM throughMonte Carlo simulations in terms
of accuracy and consistency.

Moreover, autonomous navigation experiment of the C-
Ranger AUV is employed to validate the reliability of the
proposed SEIF-CC SLAM algorithm in this paper. The C-
Ranger AUV is developed in Underwater Vehicle Laboratory
at Ocean University of China, which is equipped with a
number of sensors, such as DVL, gyro, digital compass,
AHRS, and GPS, as well as multibeam imaging sonar for
active sensing in underwater environment [34–36]. The
experimental results will show that the performance of the
proposed algorithm is superior to the SEIF-based algorithm
in terms of the consistency and accuracy based on the C-
Ranger AUV. Furthermore, SEIF-CC SLAM also preserves
the SEIF’s low computational cost and storage requirements.

The remainder of the paper is organized as follows.
The SEIF-based SLAM algorithm is presented briefly in
Section 2. And Section 3 will analyze the consistency of SEIF-
based SLAM. In Section 4, the proposed SEIF-CC SLAM
algorithm is described and its performance is compared
with SEIF-based SLAM through Monte Carlo simulations.
Section 5 introduces the basic framework of the C-Ranger
AUV platform as well as the onboard sensors.Then, results of
sea trials will be presented to validate the performance of the
proposed SEIF-CC SLAM algorithm. Finally, we summarize
the results and give the future work.

2. The SEIF-Based SLAM

2.1. Information Form. The system model of SLAM includes
the robot poses 𝑥

𝑡
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where the superscript “𝑇” refers to the transpose of a vector.
The robot aims to find a probabilistic estimate of the

state vector 𝜉
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in SLAM. The estimation problem transforms
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where 𝜇
𝑡
and Σ

𝑡
are the mean vector and covariance matrix

and𝑁 denotes the Gaussian distribution.
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Fundamental representation of SEIF is the information
vector 𝜂

𝑡
and information matrix Λ

𝑡
which substitute the

state vector and covariance matrix of EKF. According to the
dual representation for the Gaussian distribution [12], the
posterior probability distribution of 𝜉

𝑡
is also described by the

information matrix and information vector:
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In particular, the transformation between the state represen-
tations in EKF and the information form in EIF is got via the
following formulas:
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2.2. The Motion and Observation Model. According to the
system state at time 𝑡, the motion model of the robot at time
𝑡 + 1 is as follows:
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Taylor expansion of the motion model is as follows:
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.

The system state of the robot is estimated according to the
velocity V

𝑡
and the attitude information 𝜃V𝑡, which is provided

by the velocity sensor and attitude sensor individually. The
Jacobian matrix 𝐹
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can be presented (in this paper, the

subscripts 𝑡 | 𝑡 and 𝑡 + 1 | 𝑡 refer to the state’s update and
prediction step at time 𝑡, resp.):
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where 𝐶(⋅) denotes the 2 × 2 rotation matrix and Δ𝑃
𝑅
𝑡+1
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the velocity-based increment of the robot’s position estimate
between time steps 𝑡 and 𝑡 + 1:
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The observation model of the mobile robot is analyzed in
the following. The approximation of the nonlinear observa-
tion function is derived from its first-order Taylor expansion.
Assuming that the global position of the 𝑖th landmark is
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The linearized observation model describes the direct
measurement model of relative-position between features
and robot.The relative-position is obtained by imaging sonar.

2.3. Some Related Steps of SEIF-Based SLAM. This paper
mainly aims to improve the consistency of SEIF from the
perspective of observability without changing the sparsifica-
tion strategy; so the motion, update, and augmentation step
related to the consistency analysis are introduced briefly.

2.3.1.Motion Step. Motion step is to predict the robot’s state at
time 𝑡+1 according to one at time 𝑡. Given information vector
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2.3.2. Update Step. The state estimationwill be updated when
a feature is repeatedly observed. The updated information
matrix Λ
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and information vector 𝜂
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can be expressed:
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where ∇ℎ
𝑡
expresses the Jacobian of ℎ corresponding to the

landmark position relative to robot and elements of 𝐻
𝑡
are

nonzero only at positions associated with 𝑥
𝑡
and 𝐿

𝑡
.

2.3.3. Augmentation Step. Thestate augmentation stepwill be
implemented if a feature is observed for the first time. In the
process of state augmentation, the robot’s observation model
and its first-order Taylor expansion form are as follows:
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The mean of state 𝜇
𝑡
is employed in update and sparsi-

fication steps; so the mean is recovered after update step by
information vector and information matrix: 𝜇

𝑡
= Λ
−1

𝑡
𝜂
𝑡
.

3. Consistency Analysis of SEIF-Based SLAM

In general, the system model of the real SLAM is higher
dimension, highly nonlinear, and coupled. SEIF-based SLAM
algorithm is significantly inconsistent because of the pruning
strategy and linearization. Consistency problemof the system
model should be reanalyzed from the observable perspective.

Comparing the observability of the SEIF system with the
nonlinear system, it is evident to discern a fundamental
deficiency caused by the first-order Taylor expansion of the
motion and observation model. The observability of the
real and linearized SLAM system is analyzed based on the
observability rank condition [33]. They do not possess the
same observable rank so as to lead to the inconsistency.

3.1. Nonlinear Observability Analysis for SLAM. The Lie
derivative is employed to deduce the observability matrix
with a single landmark in order to analyze the observability
of the nonlinear SLAM system.

Based on the kinematicmodel of the robot, the increment
of system state in time interval (𝑡, 𝑡 + 1] is given by
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where V
𝑡
and 𝜔

𝑡
are the linear velocity and rotational velocity,

respectively. They are the control inputs.
Considering the robot-to-landmark measurement as the

relative-position measurement, the position of the landmark
relative to the robot at time 𝑡 is
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cos (𝜃V𝑡) (𝑥𝐿 − 𝑥V𝑡) + sin (𝜃V𝑡) (𝑦𝐿 − 𝑦V𝑡)
− sin (𝜃V𝑡) (𝑥𝐿 − 𝑥V𝑡) + cos (𝜃V𝑡) (𝑦𝐿 − 𝑦V𝑡)

]

󳨐⇒ 𝑧
𝑡
= [

ℎ
1

ℎ
2

] .

(23)

The Lie derivative of a function ℎ along an analytic vector
field 𝑓 is defined as

𝐿
𝑓
ℎ = (𝑑ℎ)

𝑇
𝑓. (24)

So the first-order Lie derivative of ℎ
1
and ℎ

2
along 𝑓

1
and 𝑓

2

can be calculated:

𝐿
𝑓
1

ℎ
1
= −1,

𝐿
𝑓
1

ℎ
2
= 0,

𝐿
𝑓
2

ℎ
1
= − sin (𝜃V𝑡) (𝑥𝐿 − 𝑥V𝑡) + cos (𝜃V𝑡) (𝑦𝐿 − 𝑦V𝑡) ,

𝐿
𝑓
2

ℎ
2
= − cos (𝜃V𝑡) (𝑥𝐿 − 𝑥V𝑡) − sin (𝜃V𝑡) (𝑦𝐿 − 𝑦V𝑡) .

(25)
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Then, the second-order Lie derivatives are as follows:

𝐿
𝑓
2

(𝐿
𝑓
2

ℎ
1
) = − cos (𝜃V𝑡) (𝑥𝐿 − 𝑥V𝑡)

− sin (𝜃V𝑡) (𝑦𝐿 − 𝑦V𝑡) ,

𝐿
𝑓
1

(𝐿
𝑓
2

ℎ
2
) = 1,

𝐿
𝑓
2

(𝐿
𝑓
2

ℎ
2
) = − sin (𝜃V𝑡) (𝑥𝐿 − 𝑥V𝑡)

+ cos (𝜃V𝑡) (𝑦𝐿 − 𝑦V𝑡) .

(26)

The second-order Lie derivatives of other functions are
equal to zeros.Obviously, the second-order Lie derivatives are
the linear forms of the first-order ones. It is easy to find that
the higher-order Lie derivatives can also express the linear
form of the first-order ones; so the space spanned G can be
denoted:

G = span {𝐿𝑓
1

ℎ
1
𝐿
𝑓
1

ℎ
2
𝐿
𝑓
2

ℎ
1
𝐿
𝑓
2

ℎ
2} . (27)

Therefore, the observability matrix 𝑑G with one land-
mark in the underlying nonlinear SLAM system is got as

𝑑G

=

[

[

[

[

[

[

[

[

[

[

[

[

sin 𝜃V𝑡 cos 𝜃V𝑡

− cos 𝜃V𝑡 sin 𝜃V𝑡

−Δ𝑥
𝐿
cos 𝜃V𝑡 − Δ𝑦𝐿 sin 𝜃V𝑡 Δ𝑥𝐿 sin 𝜃V𝑡 − Δ𝑦𝐿 cos 𝜃V𝑡

− sin 𝜃V𝑡 cos 𝜃V𝑡

− cos 𝜃V𝑡 − sin 𝜃V𝑡

]

]

]

]

]

]

]

]

]

]

]

]

𝑇

,

(28)

where Δ𝑥
𝐿
= 𝑥
𝐿
− 𝑥V𝑡 and Δ𝑦𝐿 = 𝑦

𝐿
− 𝑦V𝑡, respectively.

The rank of the observability matrix of the nonlinear SLAM
system is 2. So the rank of the observability matrix with𝑀-
dimensional landmarks is 2𝑀 in the nonlinear SLAMsystem.

3.2. Local Observability of SEIF-Based SLAM. SEIF and EIF
are the information form of EKF based on single-point
linearization in the SLAM framework. So they also have
the same observability matrix. Assuming one landmark is
observed between time steps 𝑡 and 𝑡 + 𝑚, the local observ-
ability matrix during𝑚 time intervals can be defined:

𝐷 =

[

[

[

[

[

[

[

[

[

[

𝐻
𝑡

𝐻
𝑡+1
𝐹
𝑡

.

.

.

𝐻
𝑡+𝑚
𝐹
𝑡+𝑚−1

⋅ ⋅ ⋅ 𝐹
𝑡

]

]

]

]

]

]

]

]

]

]

. (29)

Here, 𝐹
𝑖
and𝐻

𝑖
have been given in the formulas (7), (16), and

(17), respectively. Formula (29) can be expanded:

𝐷 =

[

[

[

[

[

[

[

[

𝐻
𝑅
𝑡

𝐻
𝐿
𝑡

𝐻
𝑅
𝑡+1

𝐹
𝑡

𝐻
𝐿
𝑡+1

.

.

.

.

.

.

𝐻
𝑅
𝑡+𝑚

𝐹
𝑡+𝑚−1

⋅ ⋅ ⋅ 𝐹
𝑡
𝐻
𝐿
𝑡+𝑚

]

]

]

]

]

]

]

]

= Diag (𝐻
𝐿
𝑡

, . . . , 𝐻
𝐿
𝑡+𝑚

)

⋅

[

[

[

[

[

[

[

[

𝐻
−1

𝐿
𝑡

𝐻
𝑅
𝑡

𝐼
2

𝐻
−1

𝐿
𝑡+1

𝐻
𝑅
𝑡+1

𝐹
𝑡

𝐼
2

.

.

.

.

.

.

𝐻
−1

𝐿
𝑡+𝑚

𝐻
𝑅
𝑡+𝑚

𝐹
𝑡+𝑚−1

⋅ ⋅ ⋅ 𝐹
𝑡
𝐼
2

]

]

]

]

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑈

,

(30)

where Diag(⋅) expresses the block-diagonal matrix. It is
nonsingular; so the rank of 𝑈 is equivalent to the rank of 𝐷,
rank(𝐷) = rank(𝑈).

3.2.1. Ideal SEIF-Based SLAM. As known, the evaluated filter
Jacobian is derived by using the linearized error-state model.
In studying the observability of ideal SEIF, the filter Jacobian
is evaluated using the true state variables to substitute the
mean 𝜇

𝑡
.

According to formula (7), 𝐹
𝑡+1
𝐹
𝑡
is got as follows:

𝐹
𝑡+1
𝐹
𝑡

= [

𝐼
2

𝐽 (𝑃
𝑅
𝑡+2

− 𝑃
𝑅
𝑡+1

)

0
1×2

1

][

𝐼
2

𝐽 (𝑃
𝑅
𝑡+1

− 𝑃
𝑅
𝑡

)

0
1×2

1

]

= [

𝐼
2

𝐽 (𝑃
𝑅
𝑡+2

− 𝑃
𝑅
𝑡

)

0
1×2

1

] .

(31)

So the following formula (32) can be induced:

𝐹
𝑡+𝑖−1

𝐹
𝑡+𝑖−2

⋅ ⋅ ⋅ 𝐹
𝑡
= [

𝐼
2

𝐽 (𝑃
𝑅
𝑡+𝑖

− 𝑃
𝑅
𝑡

)

0
1×2

1

] . (32)

Formula (33) can be deduced by means of formulas (17)
and (32) (the superscript “ ”̆ is used to denote the true state
values):

𝐻̆
−1

𝐿
𝑡+𝑖

𝐻̆
𝑅
𝑡+𝑖

𝐹̆
𝑡+𝑖−1

⋅ ⋅ ⋅ 𝐹̆
𝑡
= 𝐶
−𝑇
(𝜃V
𝑡+𝑖

) (∇
̆
ℎ
𝑡+𝑖
)

−1

⋅ ((∇
̆
ℎ
𝑡+𝑖
) 𝐶
𝑇
(𝜃V
𝑡+𝑖

) [−𝐼
2
−𝐽 (𝑃
𝐿
− 𝑃
𝑅
𝑡+1

)])

⋅ [

𝐼
2

𝐽 (𝑃
𝑅
𝑡+𝑖

− 𝑃
𝑅
𝑡

)

0
1×2

1

] = 𝐶 (𝜃V
𝑡+𝑖

)

⋅ (−𝐶
𝑇
(𝜃V
𝑡+𝑖

) [𝐼
2
𝐽 (𝑃
𝐿
− 𝑃
𝑅
𝑡

)])

= − [𝐼
2
𝐽 (𝑃
𝐿
− 𝑃
𝑅
𝑡

)] .

(33)
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Now, the matrix 𝑈̆ can be derived:

𝑈̆ =

[

[

[

[

[

[

[

[

[

[

[

−𝐼
2
−𝐽 (𝑃
𝐿
− 𝑃
𝑅
𝑡

) 𝐼
2

−𝐼
2
−𝐽 (𝑃
𝐿
− 𝑃
𝑅
𝑡

) 𝐼
2

.

.

.

.

.

.

.

.

.

−𝐼
2
−𝐽 (𝑃
𝐿
− 𝑃
𝑅
𝑡

) 𝐼
2

]

]

]

]

]

]

]

]

]

]

]

. (34)

The rank of the above matrix is 2, rank(𝑈̆) = 2, which
is equivalent to the rank of the actual nonlinear SLAM
system.Therefore, the ideal SEIF-based SLAM and the actual
nonlinear SLAM system have the similar observability.

3.2.2. Actual SEIF-Based SLAM. The actual state variables
are usually unknown in the observability analysis of SEIF-
based SLAM; so the filter Jacobians are calculated bymeans of
linearized error-statemodel; that is, Jacobians are evaluated at
the mean 𝜇

𝑡
of the state after update. Similar to formulas (32)

and (33), the expression can be derived:

𝐹
𝑡+𝑖−1

𝐹
𝑡+𝑖−2

⋅ ⋅ ⋅ 𝐹
𝑡
= [

𝐼
2

𝐽 (𝑃̂
𝑅
𝑡+2|𝑡+1

− 𝑃̂
𝑅
𝑡+1|𝑡+1

)

0
1×2

1

][

𝐼
2

𝐽 (𝑃̂
𝑅
𝑡+1|𝑡

− 𝑃̂
𝑅
𝑡|𝑡

)

0
1×2

1

]

=
[

[

[

𝐼
2

𝐽(𝑃̂
𝑅
𝑡+𝑖|𝑡+𝑖−1

− 𝑃̂
𝑅
𝑡|𝑡

+

𝑡+𝑖−2

∑

𝑗=𝑡

(𝑃̂
𝑅
𝑗+1|𝑗

− 𝑃̂
𝑅
𝑗+1|𝑗+1

))

0
1×2

1

]

]

]

𝐻
−1

𝐿
𝑡+𝑖

𝐻
𝑅
𝑡+𝑖

𝐹
𝑡+𝑖−1

⋅ ⋅ ⋅ 𝐹
𝑡
= −𝐶
−𝑇
(𝜃V
𝑡+𝑖|𝑡+𝑖−1

) (∇ℎ
𝑡+𝑖
)
−1

(∇ℎ
𝑡+𝑖
) 𝐶
𝑇
(𝜃V
𝑡+𝑖|𝑡+𝑖−1

)

⋅ [𝐼
2
𝐽 (𝑃
𝐿
𝑡+𝑖|𝑡+𝑖−1

− 𝑃
𝑅
𝑡+𝑖|𝑡+𝑖−1

)]
[

[

[

𝐼
2

𝐽(𝑃̂
𝑅
𝑡+𝑖|𝑡+𝑖−1

− 𝑃̂
𝑅
𝑡|𝑡

+

𝑡+𝑖−2

∑

𝑗=𝑡

(𝑃̂
𝑅
𝑗+1|𝑗

− 𝑃̂
𝑅
𝑗+1|𝑗+1

))

0
1×2

1

]

]

]

= [𝐼
2
𝐽(𝑃
𝐿
𝑡+𝑖|𝑡+𝑖−1

− 𝑃̂
𝑅
𝑡|𝑡

+

𝑡+𝑖−2

∑

𝑗=𝑡

(𝑃̂
𝑅
𝑗+1|𝑗

− 𝑃̂
𝑅
𝑗+1|𝑗+1

))] .

(35)

Now, the matrix 𝑈 can be written:

𝑈

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝐼
2

−𝐽 (𝑃
𝐿
𝑡|𝑡−1

− 𝑃̂
𝑅
𝑡|𝑡−1

) 𝐼
2

−𝐼
2

−𝐽 (𝑃
𝐿
𝑡+1|𝑡

− 𝑃̂
𝑅
𝑡|𝑡

) 𝐼
2

−𝐼
2

−𝐽 (𝑃
𝐿
𝑡+2|𝑡+1

− 𝑃̂
𝑅
𝑡|𝑡

+ (𝑃̂
𝑅
𝑡+1|𝑡

− 𝑃̂
𝑅
𝑡+1|𝑡+1

)) 𝐼
2

.

.

.

.

.

.

.

.

.

−𝐼
2
−𝐽(𝑃

𝐿
𝑡+𝑖|𝑡+𝑖−1

− 𝑃̂
𝑅
𝑡|𝑡

+

𝑡+𝑖−2

∑

𝑗=𝑡

(𝑃̂
𝑅
𝑗+1|𝑗

− 𝑃̂
𝑅
𝑗+1|𝑗+1

)) 𝐼
2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(36)

The rank of the linearized error-state model’s observabil-
ity matrix is equal to 3, rank(𝑈) = 3. But the nonlinear
observability matrix is two-dimensional according to for-
mula (30). So the SEIF-based SLAM whose Jacobians are
evaluated at themean 𝜇

𝑡
has one spurious information, which

leads to the inconsistency. It is necessary to select special
linearization points in order to guarantee the correct rank of
observability matrix for each state variable.

4. A SLAM Algorithm Based on SEIF with
Consistency Constraint

4.1. The Consistency Constraint. The FEJ-based EKF estima-
tor can improve the estimator’s consistency [33]. Its main
idea is to choose the first-ever available estimates as the
linearization points in terms of all the state variables. The
modified measure in EKF can analogously be used in SEIF
since SEIF is an information filter form of the EKF. The
consistency of SEIF is constrained by FEJ so as to obtain
the same dimensionality between the state and observation
model.

The updated estimate 𝑃̂
𝑅
𝑡|𝑡

is replaced by the position
estimate 𝑃̂

𝑅
𝑡|𝑡−1

in the Jacobian matrix of the state. So formula
(7) can be written as

𝐹
󸀠

𝑡
= [

𝐼
2

𝐽 (𝑃̂
𝑅
𝑡+1|𝑡

− 𝑃̂
𝑅
𝑡|𝑡−1

)

0
1×2

1

] . (37)

The mean will be recovered after motion step for 𝑃̂
𝑅
𝑡|𝑡−1

.
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Require: waypoints
Global INFmatrix INFvector 𝑋predict 𝑍obs //global variables
[𝑋true 𝑍obs] = Initialization (0); //initialize global variables
Threshold = 8; //The limited number of active features

WHILE waypoints not 0DO //main loop
𝑋true := vehicle model(𝑋true, V, 𝑔, 𝑑𝑡); //new vehicle pose
Add random noise to nominal control values: [V𝑛, 𝑔𝑛] ← (V, 𝑔, 𝑄)
//Motion model
Predict FEJ(V𝑛, 𝑔𝑛, 𝑄, 𝑑𝑡) //prediction

Predict state 𝑃̂
𝑅𝑡+1|𝑡

Compute 𝐹󸀠
𝑡
← Equation (37) //estimate at𝑋predict

Compute 𝑢
𝑡
Ψ Ω ← Equation (12) with 𝐹󸀠

𝑡

Predict information matrix Λ
𝑡+1|𝑡

← Equation (10)
Predict information vector 𝜂

𝑡+1|𝑡
← Equation (11)

Mean recovery:𝑋predict ← Λ
−1

𝑡
𝜂
𝑡

Get observations 𝑍obs: set of rang-bearing observation
Add random measurement noise 𝑍obs ← (𝑍obs, 𝑅)

//Data association
//𝑖𝑑𝑓: index tags for each landmark;
[𝑧old, 𝑧new, 𝑖𝑑𝑓] = Data associate(𝑍obs, 𝑅,GATrej,GATaug);
//Update step
IF 𝑧old not empty THEN //𝑧old is not a new feature

Observe Update(𝑧old, 𝑖𝑑𝑓, 𝑅)
FOR 𝑖 from 1 to size(𝑍obs, 2) DO

Compute𝐻󸀠
𝑅𝑡
← Equation (38)

Compute 𝑢 ← Equation (15)
Compute Λ

𝑡+1
← Equation (13)

Compute 𝜂
𝑡+1

← Equation (14)
END FOR

END IF
//Augmentation step
IF 𝑧new not empty THEN //new feature
SEIF Augment(𝑧new,𝑊)

Compute 𝐺 at𝑋predict
Compute 𝑢 ← Equation (21)
Compute Λ

𝑡+!
← Equation (19)

Compute 𝜂
𝑡+1

← Equation (20)
END IF
Recover mean𝑋predict ← Λ

−1

𝑡
𝜂
𝑡

IF the number of active features >Threshold THEN
SEIF Sparse(); //sparsification

END IF
ENDWHILE

Algorithm 1: The SEIF-CC SLAM algorithm.

Assuming that a landmarkwas first observed at time 𝑡, the
measurement Jacobian can be written as

𝐻
󸀠

𝑅
𝑡

= (∇ℎ
𝑡
) 𝐶
𝑇
(
̂
𝜃V
𝑡|𝑡−1

) [−𝐼
2
−𝐽 (𝑃̂
𝐿
𝑡|𝑡

− 𝑃̂
𝑅
𝑡|𝑡−1

)] . (38)

4.2. Algorithm Process. The proposed SLAM based on SEIF
with consistency constraint (SEIF-CC SLAM) with pseu-
docode is provided in Algorithm 1. And main differences
are the motion and measurement step compared with SEIF-
based SLAM.

4.3. Observability of SEIF-CC SLAM. To verify the consis-
tency of the proposed algorithm, the rank of the observability

matrix is calculated. FEJ is employed to estimate the robot
position in the filter Jacobians. And the landmark estimate
observed at the first time is utilized to compute the measure-
ment Jacobian matrix𝐻󸀠

𝑅
𝑡

at the evaluated point. As a result,
the observability matrix of this new filter can be presented:

𝑈
󸀠
=

[

[

[

[

[

[

[

[

−𝐼
2
−𝐽 (𝑃̂
𝐿
𝑡|𝑡

− 𝑃̂
𝑅
𝑡|𝑡−1

) 𝐼
2

−𝐼
2
−𝐽 (𝑃̂
𝐿
𝑡|𝑡

− 𝑃̂
𝑅
𝑡|𝑡−1

) 𝐼
2

.

.

.

.

.

.

.

.

.

−𝐼
2
−𝐽 (𝑃̂
𝐿
𝑡|𝑡

− 𝑃̂
𝑅
𝑡|𝑡−1

) 𝐼
2

]

]

]

]

]

]

]

]

. (39)
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Figure 1: The simulation path and environment.

It can be easily proven that the rank of𝑈󸀠 is 2, rank(𝑈󸀠) =
2. Thus, the dimension of the linearized error-state system
model is the same as that of the nonlinear observable system
by means of the SEIF-CC SLAM algorithm. Similarly, it can
be shown that the observabilitymatrix𝑈󸀠 is of rank 2𝑀when
there are 𝑀 landmarks included in the state system. FEJ is
used in SEIF to ensure the consistency without changing the
sparse formation of links, which plays the role of consistency
constraint.

4.4. Simulation Experiment. The performance of SEIF-CC
SLAM is compared with SEIF-based SLAM through Monte
Carlo simulations. 50 Monte Carlo simulations with both
SEIF and SEIF-CC are conducted, respectively, under the
same environments and the same basic parameters. The nor-
malized estimation error squared (NEES) and the root mean
square (RMS) are used to evaluate the filters consistency and
accuracy, respectively [37], which is defined as follows:

Average NEES = 1

𝑁MC

𝑁MC

∑

𝑖=1

(𝑥
𝑖
− 𝑥
𝑖
)
𝑇

𝑆
−1

𝑖
(𝑥
𝑖
− 𝑥
𝑖
) ,

RMS = √ 1

𝑛
𝑥

𝑛
𝑥

∑

𝑖=1

(𝑥
𝑖
− 𝑥
𝑖
)
2

𝑛

,

(40)

where 𝑥
𝑖
is the ground truth for the state vector, 𝑥

𝑖
and 𝑆

are the estimated state and covariance matrix, 𝑛
𝑥
represents

the dimension of 𝑥, and 𝑁MC is the times of Monte Carlo
simulations.

The simulation path and environment are shown in the
Figure 1, where 134 point features are randomly distributed
in the environment. The robot moves at a constant velocity
of 4m/s and is able to observe the limited number of
neighboring features. All simulations apply with individual
compatibility nearest-neighbour (ICNN) data association.
The rejected gate is 5 and the augmented gate is 30. And the
number of active features in SEIF is limited to 8. Both control
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Figure 2: Average NEES of the robot position errors.

inputs and sensor measurements are added by additive white
Gaussian noise.

The performance of each algorithm is evaluated by the
average NEES and RMS errors of robot position, as well
as the heading’s RMS errors, respectively. The RMS errors
show the accuracy of a given estimator, and NEES is used to
characterize the filter consistency. Specifically, NEES follows
a Chi-square distribution with 𝑛

𝑥
degrees of freedom [37],

where 𝑛
𝑥
is the dimension of 𝑥. So the average NEES for

robot position must have an upper bound indicated by the
horizontal line 2.6 and a lower bound by 1.5 if a filter is
consistent with the 95%probability density in 50MonteCarlo
runs [37]. All filters are used to process the same data and set
the same parameters.The selected filters in the simulation are
(1) the ideal SEIF, (2) the SEIF, and (3) the SEIF-CC.

From Figure 2, it can be seen that the average NEES error
of robot position for the ideal SEIF is always between the
intervals [2.4, 2.6], and SEIF-CC’s NEES is a little higher
than the ideal SEIF’s NEES and much lower than the SEIF’s
NEES.This result indicates that the observability of the SEIF-
CC’s error-state system in SLAM has a significant effect on
consistency.

Figures 3 and 4 present the RMS errors of robot position
and heading, respectively. The RMS errors position and
heading in ideal SEIF are always low of 8.0 and 0.1, while their
RMS errors in SEIF are high of 8.0 and 0.095, respectively.
But the SEIF-CC’s RMS errors are superior to their SEIF’s
RMS and inferior to ideal SEIF’s RMS errors.The comparative
results of RMS indicate that the proposed SEIF-CC SLAM
performs more accurate estimations than the SEIF-based
SLAM.

5. C-Ranger AUV and Sea Trial

5.1. C-Ranger AUV. As Figure 5 shown, the C-Ranger is an
open-frame-structure vehiclewith the size of 1.6m long, 1.3m
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Figure 3: RMS errors for the robot position.
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Figure 4: RMS errors for the robot heading.

wide, and 1.1m high, the gross drainage tonnage of 208 L,
and the maximum work depth of 100m. The total weight
of C-Ranger is about 206 kg when it works at full load. The
maximal speed is close to 3 knots (1.5m/s). The continuous
running time can reach 8 hours when C-Ranger travels at the
speed of 1 knot and is fully charged.

The AUV system is composed of two electronic cabins
and five underwater propeller thrusters. The top cabin is
referred to as instrument cabin to host sensors, includ-
ing two PC104 industrial computer units, the inner-hull
parametermonitormodule, the communicationmodule, and
peripherals for data processing. The bottom cabin is the
battery cabin which contains li-ion battery packs, battery
management module, and motion driven module. C-Ranger
has five degrees of freedom (DOF), including yaw, pitch, roll,

Figure 5: C-Ranger in deployment.

heave, and surge, which ensures the goodmaneuverability. In
addition, there are five propeller thrusters in the C-Ranger.
The two horizontal thrusters are equipped in the belly of C-
Ranger and parallel to the bow direction, which are used to
supply the horizontal propulsion and dominate the freedoms
of yaw and surge.Meanwhile, the other three vertical ones are
applied for offering the vertical propulsion and regulating the
freedom of roll, pitch, and heave.

5.2. Onboard Sensors. There are some internal sensors
installed on C-Ranger, such as gyroscope, digital compass,
pressure sensor, and AHRS (Attitude and Heading Reference
System). In addition, there are also some external sensors,
including sonar, altimeter, GPS, CCD camera, and DVL
(Doppler Velocity Log).

A multibeam imaging sonar (Gemini 720i) is installed
at the front top of C-Ranger, working at the frequency of
720 kHz. It is the principal sensor of C-Ranger to provide
active sensing of environment features for its real-time, crisp
imagery of the underwater scene ahead.

In the navigation course of C-Ranger AUV, the vehicle
velocity relative to the seabed is acquired by theNavQuest600
DVL installed at the rear bottom of vehicle; the DVL’s work
frequency and maximum velocity are 600 kHz and 20 knots,
respectively. The attitude and angular velocity information
are acquired from theAHRS and gyroscope. In particular, the
AHRS’s ranges of heading angle and acceleration are 0∘∼360∘
and ±2 g, respectively.

A high-precision GPS is installed at the top postmedian
of C-Ranger with 1.1m (CEP) accuracy and 20Hz maximum
data update rate. The GPS system is regarded as a perfect
benchmark for the purpose of algorithm comparison.

5.3. SLAM for C-Ranger. The vehicle position can be
expressed by its position andheading at time 𝑡, and the feature
is described by its 𝑥 and 𝑦 coordinate in the global coordinate
system.

At time 𝑡, the control inputs and observations of AUV are
as follows:

𝑈
𝑡
= {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑡
} = {𝑈

𝑡−1
, 𝑢
𝑡
}

𝑍
𝑡
= {𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑡
} = {𝑍

𝑡−1
, 𝑧
𝑡
} .

(41)
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Figure 6:The true environment of Tuandao Bay and GPS trajectory
with the satellite image.

Assuming that the variables 𝐿, 𝑉, 𝜃, Δ𝑇 denote vehicle
length, vehicle velocity, rotation angle, and sampling interval,
respectively, the motion model of AUV is as follows:

𝑥
𝑡+1

= (

𝑥V𝑡 + Δ𝑇𝑉 cos (𝜃 + 𝜃V𝑡)
𝑦V𝑡 + Δ𝑇𝑉 sin (𝜃 + 𝜃V𝑡)

𝜃V𝑡 +
Δ𝑇𝑉 sin (𝜃)

𝐿

) + 𝑞
𝑡
. (42)

Assuming that the global position of the 𝑖th feature is
(𝑥
𝑖
, 𝑦
𝑖
)
𝑇 for the measurements of sonar, the observation

model of AUV can be formed by the range and bearing from
the vehicle to feature:

𝑧
𝑡
= (

𝑧
𝛾𝑡

𝑧
𝛼𝑡

)

= (

√(𝑥
𝑖
− 𝑥V𝑡)

2

+ (𝑦
𝑖
− 𝑦V𝑡)

2

arctan(
𝑦
𝑖
− 𝑦V𝑡

𝑥
𝑖
− 𝑥V𝑡

) − 𝜃V𝑡

)+(

𝑤
𝛾𝑡

𝑤
𝛼𝑡

) ,

(43)

where 𝑤
𝛾𝑡
and 𝑤

𝛼𝑡
are the observation Gaussian noise, 𝑤

𝛾𝑡
∼

𝑁(0, 𝑅
𝛾
), 𝑤
𝛼𝑡
∼ 𝑁(0, 𝑅

𝛼
).

5.4. Sea Trial. The real-world experiment was performed
at Tuandao Bay (Qingdao, China). The onboard sensors
provided speed and heading angle information to predict the
AUV position. At the same time, the multibeam imaging
sonar perceived the environment, so that the appropriate
environment feature points can be extracted and used for
building an environmental global map. AUV traveled under-
water with a certain depth; so the bidimensional vehicle-
landmark model is adopted in underwater environment.

Figure 6 shows the trajectory (the red line) of C-Ranger
measured by GPS, and the starting point is marked by a
yellow five-pointed star. The trajectory is regarded as ground
truth used to compare the effectiveness of algorithms.The C-
Ranger’s sailing speed was about 1 knot in the experiment.

The imaging sonar was configured to 120∘ field of view
with scanning range of 100 meters. The pretreatment of
the raw data measured by sonar includes denoising and
sparsifying redundancy features; so the remaining features
were not affecting the positioning accuracy. At the same time,
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Figure 7: Paths comparison for GPS, SEIF, and SEIF-CC.

the image distorted problem caused by the vehicle’s motion
was also considered in the real-world application. For the C-
Ranger AUV, an effectual position feedback technique was
adopted to correct the distorted image [36].

Figure 7 shows clear path comparison results for GPS (the
red line), SEIF (the green line), and the SEIF-CC (the blue
line). It can be seen that the path deviation of the proposed
SEIF-CC SLAM relative to GPS is smaller than that of the
SEIF-based SLAM.

Figures 8 and 9 present the average NEES and RMS errors
of SEIF and SEIF-CC relative to GPS data, respectively. It
can be seen that the NEES error of SEIF-CC is almost low
of 10, but the SEIF’s NEES is far higher than the SEIF-CC’s
NEES. So the consistency of the SEIF-CC SLAM algorithm
is superior to the SEIF-based SLAM in sea trial. According
to Figure 9, the RMS errors of SEIF-CC and SEIF are rising
at the beginning, but the general trend of RMS error of SEIF
is also upward while the SEIF-CC’s error curve is dropt after
a period of time. Therefore, the SEIF-CC SLAM algorithm is
an efficient one with better consistency and accuracy in real-
world environments.

6. Conclusion and Future Work

SEIF-based SLAM has been proposed to build large-scale
maps. However, the state estimation will suffer from global
inconsistency due to SEIF’s pruning strategy. What is more,
the SEIF is also subject to the linearized error. So a SLAM
algorithm based on SEIF with consistency constraint is
proposed to improve the autonomous navigation capability of
AUV in this paper. The “First Estimates Jacobian” is adopted
to constrain the SEIF’s consistency. SEIF-CC SLAMperforms
better in terms of consistency and accuracy, because the
observablematrix of this error-state systemhas the same rank
as that of the nonlinear system. The NEES and RMS errors
of SEIF-CC are compared with those of SEIF through Monte
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Figure 9: The RMS error comparison between SEIF and SEIF-CC
relative to GPS. The GPS data has been used as ground truth.

Carlo simulations and sea trials of C-Ranger AUV navigation
in Tuandao Bay. The experimental results demonstrated that
the SEIF-CC SLAM applied to AUV navigation can improve
the consistency and accuracy compared with SEIF-based
SLAM.

More work is required to further improve the consistency
of SEIF in underwater large-scale environment implementa-
tions. There are two sources that caused estimation errors.
One is that the approximation is linearized; the other is
that the Jacobians are evaluated at estimates, which are not
at the true values. Moreover, information-based compact
pose SLAM is one method to address the first error source
[38]. This method can reduce computational cost and delay
inconsistency by means of keeping nonredundant poses and
highly informative links. In addition, square root cubature

information filter (SRCIF) was proposed for nonlinear state
estimation [39], which provided a more accurate filtering to
solve a wider range of nonlinear systems. Further methods
will be used to improve the navigation accuracy of the C-
Ranger AUV.
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