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ABSTRACT. We shall prove that every fuzzy rational choice function is fuzzy regu-

lar (see Richter [6, p. 36] ), count the total number of the fuzzy rational choice

ftmctions on a set. of four elements and consider a semigroup of all fuzzy ratlonal

choice functions on a set.
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I. INqT{ODUCTION. We have ntroduced a rational choice function derived from a

fuzzy preference (see [2], [3], [4]). We shall establish two theorems (Theo-

rems and 2) which are motivated from the following theorems:

THEOREM 4 (Richter [6]). There exists a total rational choice which is not

transitive rational.

THEOI 6 (Richter [6]). There exists a rational choice which is not total

rational.

We find that the number of all fuzzy rational choice functions on a set X {a, b,

c, d} of four elements is equal to 57751 (see [2]. We shall consider a semigroup.

We note that in [4] there is a beautiful counting formula of the total number of

all final choice functions on a finite set,.

2. DEFINITIONS AND THEOREMS.

Let X be a finite set with more than two elements. For definitions of a choice

function on X and a fuzzy binary relation (R, r) on X, we refer to [2] and [3].

DEFINITION [2, p. 38]. Let (R, r) be a fuzzy relation X and let a e X.

Define

for

h (A)

is in

exists

R(a)= Ix
(0,1)].

X" aRx and rta,x) 0| and R, (a)= {x R(a)" r(a,x) _-> }
We define a function h as follows" Let a A _c X. Then

iff A R a(a). We add that ha(0)= O, the empty set. Note that h

general, not a choice function. Let h be a choice function on X. If there

a fuzzy relation (R, r) on X such that h,= h, then we shall say that h is
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fuzz. l’ational and (R, r)’attonalzes h.

NOTATION I. We denoto by F(X) the set of all fuzzy binary relations on X. We

define Z 2 and C(:<. Z denotes lh, s,l ,I" all -hoic,, fmctons h on X. I.et

(R, r) e F(X). e use (x,)-I e R td x R .hen rl..,y) g O. I.1. h a t’lX, Z)

a choice I’ction on X. t’ine F(h} {(R, r) e F(X}" (R,r) rationalizes h}.

DEFINITI 2. h ks said to Ix, fuzzy t[’ansitixe (Iol, reflexive} if there

exists {R, r) in aF(h) such that (R, r) s l.Faltsillx. (tol, reflexive). (R,r)

F(X) is regular if (R,r} is reflexive, t}ta] tnd trsittve, h is fuzz)’ regular

if there exists {R, r) uF(B) such that (R, r} is t’eglar.

We shall prove the followira theorem.

DDI 1. Every f,,zzy rat ional :hoce fct ion is fuzzy trsitive.

PF. I,t h a fuzzy ratiorml choice t’mction on X. Then F(h) is non-

empty d let {R, r) a F{h). Then h= h,. Supse that {R, r) is not trsi-

tire. fine {r} {r(x,y) O" x,ye X} for (R, r). We ea find a sitivie
1

nr n+k such that % {r i, where k is a sitive integer. We define

a fuzzy relation IS, s) a follows" If r(x,t} # O, then we t s(x,yl:r{x,y},

if r{x,y):O then we put s(x,y}:%. It is clear that {S,s} is a trsitive fuzzy

relation on X. We sho that h,:hs. To sho this, ue assm that h

hs. en there exists a non-empty set % sh that B h (A) hs(A)=C. We
1c ss that e e C d a g B. Then {,x} S for all x A, s(a,x} >k, d hence s{a,xl # . In view of it} [ {r}, it is clear that

s(a,x}=r{a,x) for all x e A, here a a B. is eontiets a B. A

silu prmf for b e B b C bris a tietion. efore B:C

h=hs =h. is proves eorem 1.

2. Every fuzzy mtiol choice fmetion h on X is fuzzy tol.

F. t h a fuzzy rtioI choice fraction on X. en there exists

r) smh that h=h. For x, y e X a x # y, it is clear that h {x,y}f{x,y}.
1 1m we Mve that either r{x,y) $ or r{y,x) erefore {R,r) is toI.

2
is proves eor 2.

Y 1. Every fuzzy mtiol choice fetion is reDIsr. e
foIlo fr mr 2.

3. A SI.

We gin ith the followia definition.

DIRIIS 3. t {R, r} F(X) a fuzy relation. {R, r} is elely

tol if r(a,b) # 0 r(b,al , 0 fo 11 ,b e X. A choi ftion h is fuzzy

e@letely 1 if there exists (R,r) a F{X} smh tt h,=h (R, r} is

e@letely tol. h is fuzzy cpletely relar if em exists {R, r} smh t

h=h is fuzzy eDl a fuzzy eapletely tol.

We Mve coir a smgroup in [2] a [4]. We note by @{X} the set of 11

empletely re,at fzy mtiol choice fetio on X. By 4-( i 2 ],

hve that hh c_h u , h,h e (X}. we Mve the folloia -rem,

3. (X} fore a sgm er the bi omtion defin by

We note tht if h e(X), then there exists (P,p) smh tt h=h (P, p) is

relar a epletely toni.

F. It is clear that the bi omtion is ssmiative. It is aIso

clear tMt p u@ R {or(R, r I} is regular a cpletely tol. ttia P U
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, hlA A s a part :! te defn ion of h. e fntion 1). e prove

that. hlA) s. no-(ml)ly t:o -. ror-empy, to asse that A md ],]
m. Since hlA) . .t,’ xt,t nvtA) and hnc’e pa,x) ! for

x e A. From rla,xl=Inax Ipta,-., qta,?.l It lrll.)t:s l[lat r(a,x) 1 for all
mx A. Thi shows that a h t-l. ’lha I)t’ov’s The,,rem

The f] 1o: xplo s to shot. that: he tho I, th,-- r-om)s te sot fction,

not a fuzzy rat onai chotc.e x on thoagt h, and h0 are N)th fuzzy rational

.hoees on X.

1. Lt X=la, t, c Let IR,
1rla,bt=rla,c’l=rlb,cl= )- rlb,al=rc,al=rle,bl

4
and

1
{O,q)=lqla,a}=q{b,b)-qlc,c}=l, qlb,a)=q(’,al=qlo,bl-, qlb,cl-j-, qla,b)=qla,e)-

l_. Then we c prove that there s not a fuzzy relation IP, pl such that

e lst the foIlo-’trN theorem.

NODI 4. Let Ir, r be a uzz3 fetal t,t n X..a necessary d sufficient con-

dttion for h to a -hotoe ftmc’t,n r X s thai for every non-empty subset

of X there exists at least otto memr a tt A such that rla,xl 1 for alI x c

PF. e supso that the -ondt,t tvlds for IR,ri. Let . # d asse

that there s a in _a such that ra,x 1 r all x A. Then A i
d a s hlAI, hl,41 ,4 s a lrt=hor definition of h. Thus hl Is a

choice fotion on X. Supse h s a ’t,te X. Then for each A # 0 there

is a in k such that a hr 14 Irom dc,h ;- obt,atn that ria,x} 1 This

proves eorem 4. ]A
4. OK iZZ$ ]iN cHOICES ON la,h,c,dl. Let X a set of n

elents. We denote the ntr of all Iuzzy rar tol choice fcttons on X by

hrx) In). In [2] we show that hr(x) t3) 93. In ths stion we oce

that hrx) 4) 57751. shall prove this in a serrate r. A .)ustifica-

tion of hr(x) (4) 57751 ne several ges.
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