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ABSTRACT . We shall prove that every fuzzy rational choice function is fuzzy regu-
lar (see Richter |6, p. 36]), count the total number of the fuzzy rational choice
functions on a set of four elements and consider a semigroup of all fuzzy rational

choice functions on a set.
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1. INTRODUCTION. We have 1introduced a rational choice function derived from a
fuzzy preference (see (2], [3], [4]). We shall establish two theorems (Theo-
rems 1 and 2) which are motivated from the following theorems:

THEOREM 4 (Richter [6]). There exists a total rational choice which is not
transitive rational.

THEOREM 6 (Richter ([6]). There exists a rational choice which is not total
rational.

We find that the number of all fuzzy rational choice functions on a set X = {a, b,

c, d} of four elements is equal to 57751 (see [2]. We shall consider a semigroup.

We note that in [4] there is a beautiful counting formula of the total number of

all final choice functions on a finite set.

2. DEFINITIONS AND THEOREMS.

Let X be a finite set with more than two elements. For definitions of a choice

function on X and a fuzzy binary relation (R, r) on X, we refer to [2] and [3].

DEFINITION 1 (2, p. 38]. Let (R, r) be a fuzzy relation X and let a ¢ X.
Define R(a)= {x ¢ X: aRx and rla,x) # O} and Re(a)= {x€¢ R(a): r(a,x) > -t—)
for % € (0,1)7. We define a function hp as follows: Let a ¢ A c X. Then ac¢
he(A) iff A < R ala). We add that he(®)= @, the empty set. Note that hs

is in general, not a choice function. Let h be a choice function on X. If there

exists a fuzzy relation (R, r) on X such that hg= h, then we shall say that h is
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fuzzy rational and (R, r) rationalizes h.

NOTATION 1. We denote by I(\) the set of all fuzzy binary relations on X. We

define I = 2 and C(X, I ) denotes the set of all choice functions h on X. let

(R, r) e F(X). We use (N, ¥) ¢ Rand x Ry when r(x,y) # 0. Let h g C(X, Z) be

a choice function on X. Define KF(th) = (R, r) e F(X): (R,r) rationalizes hj.
DEFINITION 2. h is said to be fuzzy transitive (total, reflexive) if there

exists (R, r) 1in ¢Fth) such that (R, r) 1s transitive (total, reflexive). (R,r)
F(X) is regular if (R,r) is reflexive, total and transitive. h is fuzzy regular
if there exists (R, r) ¢F(h) such that (R, r) is regular.

We shall prove the following theorem.

THEOREM 1. Every fuzzy rational choice function 1s fuzzy transitive.

PROOF . et h be a fuzzy rational choice tunction on X. Then F(h) is non-
empty and let (R, r) € F(h). Then h= hs. Suppose that (R, r) is not transi-
tive. Define 1{r‘} = {r(x,y) # 0: x,y e X} for (R, r). We can find a positivie
number to = 3K such that to ¢ (r}, where k is a positive integer. We define
a fuzzy relation (S, s) as follows: If r(x,y) # 0, then we put s(x,y)=r(x,y), and

if r(x,y)=0 then we put s(x,y)=te. IL is clear that (S,s) is a transitive fuzzy

relation on X. We show that hs=hs. To show this, we assume that hs#
hs . Then there exists a non-empty set A such that B = he(A) # hs(A)=C. We
can assume that ¢ ¢ C and a ¢ B. Then (a,x) ¢ S for all x ¢ A, s(a,x) => I%‘ >;+1—k

= to, and hence sl(a,x) # to . In view of {r} and to # {r}, it is clear that
s(a,x)=r(a,x) for all x € A, and hence a ¢ B. This contradicts a £B. A
similar proof for b € B and b #C brings a contradiction. Therefore B=C and
hr=hs =h. This proves Theorem 1.

THEOREM 2. Every fuzzy rational choice function h on X is fuzzy total.

PROOF. Let h be a fuzzy rational choice function on X. Then there exists (R,
r) such that hg=h. For x, y eXand x #y, it is clear that hs{x,y}<{x,y}.
Thus we have that either r(x,y) ; % or rly,x) 2 % Therefore (R,r) is total.
This proves Theorem 2.

COROLLARY 1. Every fuzzy rational choice function is regular. The proof
follows from Theorems 1 and 2.

3. A SEMIGROUP.
We begin with the following definition.

DEFINITION 3. Let (R, r) ¢ F(X) be a fuzzy relation. (R, r) is completely

total if r(a,b) # 0 and r(b,a) 2 O for all a,b ¢ X. A choice function h is fuzzy
completely total if there exists (R,r) e F(X) such that hgr=h and (R, r) is
completely total. h is fuzzy completely regular if there exists (R, r) such that
h=hg is fuzzy regular and fuzzy completely total.
We have considered a semigroup in [2] and [4]. We denote by CR(X) the set of all
completely regular fuzzy rational choice functions on X. By Theorem 4-(i)[2], we
have that hrhqg.hr v @+ hep,hq € CR(X). Thus we have the following theo-
rem.

THEOREM 3. CR(X) forms a semigroup under the binary operation defined by
hehe = hp VQ , hp,he € CR(X).

We note that if h e€CR(X), then there exists (P,p) such that h=hp and (P, p) is
regular and completely total.

PROOF . It is clear that the binary operation is associative. It is also
clear that PvQ = R (or(R, r)) is regular and completely total. Letting P U Q =
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e hetd) < A 1s a part of the defimition of he tsee Definition ). Wwe prove
that. hgtA) 1= non-empty wvhen A 1< non-empty. Wwe assume that A 7 # and ]\| =
m. Since hptA) £ ¢, there esists a ¢ he(a) and hence pia,x) __‘__],-_... for all
N € A, From r(a,\)=max i{pta,~i, gta,=)} 1t toltows that ria,x) ;m__l‘ for ali
N € A. This shows that a ¢ hg(a). ‘This proves Thecrem . m
The following example 1s to show that hpthe), the composite set function, 1is
not a fuzzy rational choice even though he and he are both fuzzy rational
choices on X.

EXAMPLE 1. Let \=ta, b, ct. Let 1k, ri)=irta,a)=r(b,b)=rtc.c)=1,
rla,bl=r(a,c)=rib,c)= -]5, rib,al=rtc,ai=r(c,b) = —i } and
(Q,q)={qla,a)=q(b,b)=qlc,c)=1, g(b,a)=qtc,a)=qlc,b)= %. qib,c)= -‘};‘ qla,b)=q(a,c)=
%)_ Then we can prove that there 1s not a fuzzy relation (P, p) such that
}DIP =hg the) .

We list the following theorem.

THEOREM 4. Let (r, r) be a tuzzy relation on \. A necessary and sufficient con-
dition for hsp to be a choice function on N 1s that for every non-empty subset A
of X there exists at least one member a iu A such that r(a,x) 2 1 for all x e A.

PROOF . We suppose that the condition holds tor (R,r). Let A # ¢ and assume

that there 1s a in A such that ra,x) _ 1 torr all ~ € A. Then Ac RlAl(a)
- JA

and a € hg(A). hrtA) & A 1s a part nI Ihp definition of hg. Thus hr 1s a

choice function on X. Suppose hg 1s a chowce on N, Then for each A # ¢ there

is a in A such that a e hcta) trom which we obtain that r(a,x) > 1 . This
proves Theorem 4. |A|

4. THE NUMBER OF ALL FUZZY RATIONAL CHOLCES ON fa,b,c,dl. Let X be a set of n

elements. We denote the number of all tuzzy rational choice functions on X by
hrex) (n). In [2] we showed that hrcyx)(3) = 93. In this section we announce
that hr(x)(4) = 57751. WE shall prove this in a separate paper. A justifica-
tion of hr(x) (4) = 57751 needs several pages.
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