INTUITIONISTIC FUZZY IDEALS OF BCK-ALGEBRAS

YOUNG BAE JUN and KYUNG HO KIM

(Received 16 February 2000)

ABSTRACT. We consider the intuitionistic fuzzification of the concept of subalgebras and ideals in BCK-algebras, and investigate some of their properties. We introduce the notion of equivalence relations on the family of all intuitionistic fuzzy ideals of a BCK-algebra and investigate some related properties.

Keywords and phrases. (Intuitionistic) fuzzy subalgebra, (intuitionistic) fuzzy ideal, upper (respectively, lower) *t*-level cut, homomorphism.

2000 Mathematics Subject Classification. Primary 06F35, 03G25, 03E72.

1. Introduction. After the introduction of the concept of fuzzy sets by Zadeh [9] several researches were conducted on the generalizations of the notion of fuzzy sets. The idea of "intuitionistic fuzzy set" was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy set. The first author (together with Hong, Kim, Kim, Meng, Roh, and Song) considered the fuzzification of ideals and subalgebras in BCK-algebras (cf. [3, 4, 5, 6, 7, 8]). In this paper, using the Atanassov's idea, we establish the intuitionistic fuzzification of the concept of subalgebras and ideals in BCK-algebras, and investigate some of their properties. We introduce the notion of equivalence relations on the family of all intuitionistic fuzzy ideals of a BCK-algebra and investigate some related properties.

2. Preliminaries. First we present the fundamental definitions. By a *BCK-algebra* we mean a nonempty set X with a binary operation * and a constant 0 satisfying the following conditions:

(I) ((x * y) * (x * z)) * (z * y) = 0,

(II) (x * (x * y)) * y = 0,

- (III) x * x = 0,
- (IV) 0 * x = 0,

(V) x * y = 0 and y * x = 0 imply that x = y

for all $x, y, z \in X$.

A partial ordering " \leq " on *X* can be defined by $x \leq y$ if and only if x * y = 0. A nonempty subset *S* of a BCK-algebra *X* is called a *subalgebra* of *X* if $x * y \in S$ whenever $x, y \in S$. A nonempty subset *I* of a BCK-algebra *X* is called an *ideal* of *X* if

(i) $0 \in I$,

(ii) $x * y \in I$ and $y \in I$ imply that $x \in I$ for all $x, y \in X$.

By a *fuzzy set* μ in a nonempty set X we mean a function $\mu : X \to [0,1]$, and the complement of μ , denoted by $\bar{\mu}$, is the fuzzy set in X given by $\bar{\mu}(x) = 1 - \mu(x)$ for all $x \in X$. A fuzzy set μ in a BCK-algebra X is called a *fuzzy subalgebra* of X if $\mu(x * y) \ge 1$

 $\min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. A fuzzy set μ in a BCK-algebra X is called a *fuzzy ideal* of X if

(i) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(ii) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

An intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having the form

$$A = \{ (x, \alpha_A(x), \beta_A(x)) \mid x \in X \},$$
(2.1)

where the functions $\alpha_A : X \to [0,1]$ and $\beta_A : X \to [0,1]$ denote the degree of membership and the degree of nonmembership, respectively, and

$$0 \le \alpha_A(x) + \beta_A(x) \le 1 \quad \forall x \in X.$$
(2.2)

An intuitionistic fuzzy set $A = \{(x, \alpha_A(x), \beta_A(x)) | x \in X\}$ in X can be identified to an ordered pair (α_A, β_A) in $I^X \times I^X$. For the sake of simplicity, we shall use the symbol $A = (\alpha_A, \beta_A)$ for the IFS $A = \{(x, \alpha_A(x), \beta_A(x)) | x \in X\}$.

3. Intuitionistic fuzzy ideals. In what follows, let *X* denote a BCK-algebra unless otherwise specified.

DEFINITION 3.1. An IFS $A = (\alpha_A, \beta_A)$ in *X* is called an *intuitionistic fuzzy subalgebra* of *X* if it satisfies:

(IS1) $\alpha_A(x * y) \ge \min\{\alpha_A(x), \alpha_A(y)\},\$

(IS2) $\beta_A(x * y) \le \max\{\beta_A(x), \beta_A(y)\},\$

for all $x, y \in X$.

EXAMPLE 3.2. Consider a BCK-algebra $X = \{0, a, b, c\}$ with the following Cayley table:

*	0	а	b	С
0	0	0	0	0
а	а	0	0	а
b	b	а	0	b
С	С	С	С	0

Let $A = (\alpha_A, \beta_A)$ be an IFS in *X* defined by

$$\alpha_A(0) = \alpha_A(a) = \alpha_A(c) = 0.7 > 0.3 = \alpha_A(b),$$

$$\beta_A(0) = \beta_A(a) = \beta_A(c) = 0.2 < 0.5 = \beta_A(b).$$
(3.1)

Then $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy subalgebra of *X*.

PROPOSITION 3.3. Every intuitionistic fuzzy subalgebra $A = (\alpha_A, \beta_A)$ of X satisfies the inequalities $\alpha_A(0) \ge \alpha_A(x)$ and $\beta_A(0) \le \beta_A(x)$ for all $x \in X$.

PROOF. For any $x \in X$, we have

$$\alpha_A(0) = \alpha_A(x * x) \ge \min\{\alpha_A(x), \alpha_A(x)\} = \alpha_A(x),$$

$$\beta_A(0) = \beta_A(x * x) \le \max\{\beta_A(x), \beta_A(x)\} = \beta_A(x).$$
(3.2)

This completes the proof.

840

DEFINITION 3.4. An IFS $A = (\alpha_A, \beta_A)$ in *X* is called an *intuitionistic fuzzy ideal* of *X* if it satisfies the following inequalities:

(IF1) $\alpha_A(0) \ge \alpha_A(x)$ and $\beta_A(0) \le \beta_A(x)$, (IF2) $\alpha_A(x) \ge \min\{\alpha_A(x \ast y), \alpha_A(y)\}$, (IF3) $\beta_A(x) \le \max\{\beta_A(x \ast y), \beta_A(y)\}$, for all $x, y \in X$.

EXAMPLE 3.5. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the following Cayley table:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	3	4	1	0

Define an IFS $A = (\alpha_A, \beta_A)$ in *X* as follows:

$$\begin{aligned} \alpha_A(0) &= \alpha_A(2) = 1, & \alpha_A(1) = \alpha_A(3) = \alpha_A(4) = t, \\ \beta_A(0) &= \beta_A(2) = 0, & \beta_A(1) = \beta_A(3) = \beta_A(4) = s, \end{aligned}$$
 (3.3)

where $t \in [0,1]$, $s \in [0,1]$, and $t + s \le 1$. By routine calculation we know that $A = (\alpha_A, \beta_A)$ is an *intuitionistic fuzzy ideal* of *X*.

LEMMA 3.6. Let an IFS $A = (\alpha_A, \beta_A)$ in X be an intuitionistic fuzzy ideal of X. If the inequality $x * y \le z$ holds in X, then

$$\alpha_A(x) \ge \min\{\alpha_A(y), \alpha_A(z)\}, \qquad \beta_A(x) \le \max\{\beta_A(y), \beta_A(z)\}.$$
(3.4)

PROOF. Let $x, y, z \in X$ be such that $x * y \le z$. Then (x * y) * z = 0, and thus

$$\begin{aligned} \alpha_{A}(x) &\geq \min \left\{ \alpha_{A}(x \ast y), \alpha_{A}(y) \right\} \\ &\geq \min \left\{ \min \left\{ \alpha_{A}((x \ast y) \ast z), \alpha_{A}(z) \right\}, \alpha_{A}(y) \right\} \\ &= \min \left\{ \min \left\{ \alpha_{A}(0), \alpha_{A}(z) \right\}, \alpha_{A}(y) \right\} \\ &= \min \left\{ \alpha_{A}(y), \alpha_{A}(z) \right\}, \\ \beta_{A}(x) &\leq \max \left\{ \beta_{A}(x \ast y), \beta_{A}(y) \right\} \\ &\leq \max \left\{ \max \left\{ \beta_{A}((x \ast y) \ast z), \beta_{A}(z) \right\}, \beta_{A}(y) \right\} \\ &= \max \left\{ \max \left\{ \beta_{A}(0), \beta_{A}(z) \right\}, \beta_{A}(y) \right\} \\ &= \max \left\{ \beta_{A}(y), \beta_{A}(z) \right\}, \end{aligned}$$
(3.5)

this completes the proof.

LEMMA 3.7. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy ideal of X. If $x \le y$ in X, then

$$\alpha_A(x) \ge \alpha_A(y), \qquad \beta_A(x) \le \beta_A(y), \qquad (3.6)$$

that is, α_A is order-reserving and β_A is order-preserving.

PROOF. Let $x, y \in X$ be such that $x \le y$. Then x * y = 0 and so

$$\alpha_{A}(x) \ge \min \left\{ \alpha_{A}(x \ast y), \alpha_{A}(y) \right\} = \min \left\{ \alpha_{A}(0), \alpha_{A}(y) \right\} = \alpha_{A}(y),$$

$$\beta_{A}(x) \le \max \left\{ \beta_{A}(x \ast y), \beta_{A}(y) \right\} = \max \left\{ \beta_{A}(0), \beta_{A}(y) \right\} = \beta_{A}(y).$$
(3.7)

This completes the proof.

THEOREM 3.8. If $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X, then for any $x, a_1, a_2, ..., a_n \in X$, $(\cdots ((x * a_1) * a_2) * \cdots) * a_n = 0$ implies

$$\alpha_A(x) \ge \min\{\alpha_A(a_1), \alpha_A(a_2), \dots, \alpha_A(a_n)\},$$

$$\beta_A(x) \le \max\{\beta_A(a_1), \beta_A(a_2), \dots, \beta_A(a_n)\}.$$
(3.8)

PROOF. Using induction on n and Lemmas 3.6 and 3.7, the proof is straightforward.

THEOREM 3.9. Every intuitionistic fuzzy ideal of X is an intuitionistic fuzzy subalgebra of X.

PROOF. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy ideal of *X*. Since $x * y \le x$ for all $x, y \in X$, it follows from Lemma 3.7 that

$$\alpha_A(x*y) \ge \alpha_A(x), \qquad \beta_A(x*y) \le \beta_A(x), \tag{3.9}$$

so by (IF2) and (IF3),

$$\alpha_A(x * y) \ge \alpha_A(x) \ge \min \{ \alpha_A(x * y), \alpha_A(y) \} \ge \min \{ \alpha_A(x), \alpha_A(y) \}, \beta_A(x * y) \le \beta_A(x) \le \max \{ \beta_A(x * y), \beta_A(y) \} \le \max \{ \beta_A(x), \beta_A(y) \}.$$
(3.10)

This shows that $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy subalgebra of *X*.

The converse of Theorem 3.9 may not be true. For example, the intuitionistic fuzzy subalgebra $A = (\alpha_A, \beta_A)$ in Example 3.2 is not an intuitionistic fuzzy ideal of *X* since

$$\beta_A(b) = 0.5 > 0.2 = \min\{\beta_A(b*a), \beta_A(a)\}.$$
(3.11)

We now give a condition for an intuitionistic fuzzy subalgebra to be an intuitionistic fuzzy ideal.

THEOREM 3.10. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy subalgebra of X such that

$$\alpha_A(x) \ge \min\{\alpha_A(y), \alpha_A(z)\}, \qquad \beta_A(x) \le \max\{\beta_A(y), \beta_A(z)\}$$
(3.12)

for all $x, y, z \in X$ satisfying the inequality $x * y \le z$. Then $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X.

PROOF. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy subalgebra of *X*. Recall that $\alpha_A(0) \ge \alpha_A(x)$ and $\beta_A(0) \le \beta_A(x)$ for all *X*. Since $x * (x * y) \le y$, it follows from the hypothesis that

$$\alpha_A(x) \ge \min\{\alpha_A(x*y), \alpha_A(y)\}, \qquad \beta_A(x) \le \max\{\beta_A(x*y), \beta_A(y)\}.$$
(3.13)

Hence $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of *X*.

LEMMA 3.11. An IFS $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X if and only if the fuzzy sets α_A and $\bar{\beta}_A$ are fuzzy ideals of X.

PROOF. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy ideal of *X*. Clearly, α_A is a fuzzy ideal of *X*. For every $x, y \in X$, we have

$$\bar{\beta}_{A}(0) = 1 - \beta_{A}(0) \ge 1 - \beta_{A}(x) = \bar{\beta}_{A}(x),$$

$$\bar{\beta}_{A}(x) = 1 - \beta_{A}(x) \ge 1 - \max\{\beta_{A}(x * y), \beta_{A}(y)\}$$

$$= \min\{1 - \beta_{A}(x * y), 1 - \beta_{A}(y)\}$$

$$= \min\{\bar{\beta}_{A}(x * y), \bar{\beta}_{A}(y)\}.$$
(3.14)

Hence $\bar{\beta}_A$ is a fuzzy ideal of *X*.

Conversely, assume that α_A and $\bar{\beta}_A$ are fuzzy ideals of *X*. For every $x, y \in X$, we get

$$\alpha_A(0) \ge \alpha_A(x), \qquad 1 - \beta_A(0) = \beta_A(0) \ge \beta_A(x) = 1 - \beta_A(x), \qquad (3.15)$$

that is, $\beta_A(0) \leq \beta_A(x)$; $\alpha_A(x) \geq \min\{\alpha_A(x * y), \alpha_A(y)\}$ and

$$1 - \beta_A(x) = \bar{\beta}_A(x) \ge \min\{\bar{\beta}_A(x * y), \bar{\beta}_A(y)\} = \min\{1 - \beta_A(x * y), 1 - \beta_A(y)\} = 1 - \max\{\beta_A(x * y), \beta_A(y)\},$$
(3.16)

that is, $\beta_A(x) \le \max{\{\beta_A(x \ast y), \beta_A(y)\}}$. Hence $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of *X*.

THEOREM 3.12. Let $A = (\alpha_A, \beta_A)$ be an IFS in X. Then $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X if and only if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are intuitionistic fuzzy ideals of X.

PROOF. If $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X, then $\alpha_A = \overline{\alpha}_A$ and β_A are fuzzy ideals of X from Lemma 3.11, hence $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are intuitionistic fuzzy ideals of X. Conversely, if $\Box A = (\alpha_A, \overline{\alpha}_A)$ and $\Diamond A = (\overline{\beta}_A, \beta_A)$ are intuitionistic fuzzy ideals of X, then the fuzzy sets α_A and $\overline{\beta}_A$ are fuzzy ideals of X, hence $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X. \Box

For any $t \in [0,1]$ and a fuzzy set μ in a nonempty set *X*, the set

$$U(\mu;t) = \{x \in X \mid \mu(x) \ge t\}$$
(3.17)

is called an *upper t-level cut* of μ and the set

$$L(\mu;t) = \{ x \in X \mid \mu(x) \le t \}$$
(3.18)

is called a *lower t-level cut* of μ .

THEOREM 3.13. An IFS $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of X if and only if for all $s, t \in [0,1]$, the sets $U(\alpha_A;t)$ and $L(\beta_A;s)$ are either empty or ideals of X.

PROOF. Let $A = (\alpha_A, \beta_A)$ be an intuitionistic fuzzy ideal of X and $U(\alpha_A; t) \neq \emptyset \neq L(\beta_A; s)$ for any $s, t \in [0, 1]$. It is clear that $0 \in U(\alpha_A; t) \cap L(\beta_A; s)$ since $\alpha_A(0) \ge t$ and $\beta_A(0) \le s$. Let $x, y \in X$ be such that $x * y \in U(\alpha_A; t)$ and $y \in U(\alpha_A; t)$. Then $\alpha_A(x * y) \ge t$ and $\alpha_A(y) \ge t$. It follows that

$$\alpha_A(x) \ge \min\left\{\alpha_A(x*y), \alpha_A(y)\right\} \ge t \tag{3.19}$$

so that $x \in U(\alpha_A;t)$. Hence $U(\alpha_A;t)$ is an ideal of *X*. Now let $x, y \in X$ be such that $x * y \in L(\beta_A;s)$ and $y \in L(\beta_A;s)$. Then $\beta_A(x * y) \le s$ and $\beta_A(y) \le s$, which imply that

$$\beta_A(x) \le \max\left\{\beta_A(x*y), \beta_A(y)\right\} \le s.$$
(3.20)

Thus $x \in L(\beta_A; s)$, and therefore $L(\beta_A; s)$ is an ideal of *X*. Conversely, assume that for each $t, s \in [0,1]$, the sets $U(\alpha_A; t)$ and $L(\beta_A; s)$ are either empty or ideals of *X*. For any $x \in X$, let $\alpha_A(x) = t$ and $\beta_A(x) = s$. Then $x \in U(\alpha_A; t) \cap L(\beta_A; s)$, and so $U(\alpha_A; t) \neq \emptyset \neq L(\beta_A; s)$. Since $U(\alpha_A; t)$ and $L(\beta_A; s)$ are ideals of *X*, therefore $0 \in$ $U(\alpha_A; t) \cap L(\beta_A; s)$. Hence $\alpha_A(0) \ge t = \alpha_A(x)$ and $\beta_A(0) \le s = \beta_A(x)$ for all $x \in X$. If there exist $x', y' \in X$ such that $\alpha_A(x') < \min\{\alpha_A(x' * y'), \alpha_A(y')\}$, then by taking

$$t_0 = \frac{1}{2} (\alpha_A(x') + \min \{ \alpha_A(x' * y'), \alpha_A(y') \}),$$
(3.21)

we have

$$\alpha_A(x') < t_0 < \min\{\alpha_A(x' * y'), \alpha_A(y')\}.$$
(3.22)

Hence $x' \notin U(\alpha_A; t_0)$, $x' * y' \in U(\alpha_A; t_0)$ and $y' \in (\alpha_A; t_0)$, that is, $U(\alpha_A; t_0)$ is not an ideal of *X*, which is a contradiction. Finally, assume that there exist $a, b \in X$ such that

$$\beta_A(a) > \max\left\{\beta_A(a \ast b), \beta_A(b)\right\}.$$
(3.23)

Taking $s_0 := (1/2)(\beta_A(a) + \max\{\beta_A(a * b), \beta_A(b)\})$, then

$$\max\{\beta_A(a*b), \beta_A(b)\} < s_0 < \beta_A(a).$$
(3.24)

Therefore $a * b \in L(\beta_A; s_0)$ and $b \in L(\beta_A; s_0)$, but $a \notin L(\beta_A; s_0)$, which is a contradiction, this completes the proof.

Let Λ be a nonempty subset of [0,1].

THEOREM 3.14. Let $\{I_t \mid t \in \Lambda\}$ be a collection of ideals of X such that (i) $X = \bigcup_{t \in \Lambda} I_t$, (ii) s > t if and only if $I_s \subset I_t$ for all $s, t \in \Lambda$.

Then an IFS $A = (\alpha_A, \beta_A)$ *in X defined by*

$$\alpha_A(x) := \sup \{ t \in \Lambda \mid x \in I_t \}, \qquad \beta_A(x) := \inf \{ t \in \Lambda \mid x \in I_t \}$$
(3.25)

for all $x \in X$ is an intuitionistic fuzzy ideal of X.

PROOF. According to Theorem 3.13, it is sufficient to show that $U(\alpha_A; t)$ and $L(\beta_A; s)$ are ideals of *X* for every $t \in [0, \alpha_A(0)]$ and $s \in [\beta_A(0), 1]$. In order to prove

that $U(\alpha_A;t)$ is an ideal of *X*, we divide the proof into the following two cases:

(i) $t = \sup\{q \in \Lambda \mid q < t\},\$

(ii) $t \neq \sup\{q \in \Lambda \mid q < t\}.$

Case (i) implies that

$$x \in U(\alpha_A; t) \Longleftrightarrow x \in I_q \quad \forall q < t \Longleftrightarrow x \in \cap_{q < t} I_q, \tag{3.26}$$

so that $U(\alpha_A;t) = \bigcap_{q < t} I_q$, which is an ideal of *X*. For the case (ii), we claim that $U(\alpha_A;t) = \bigcup_{q \ge t} I_q$. If $x \in \bigcup_{q \ge t} I_q$, then $x \in I_q$ for some $q \ge t$. It follows that $\alpha_A(x) \ge q \ge t$, so that $x \in U(\alpha_A;t)$. This shows that $\bigcup_{q \ge t} I_q \subseteq U(\alpha_A;t)$. Now assume that $x \notin \bigcup_{q \ge t} I_q$. Then $x \notin I_q$ for all $q \ge t$. Since $t \neq \sup\{q \in \Lambda \mid q < t\}$, there exists $\varepsilon > 0$ such that $(t - \varepsilon, t) \cap \Lambda = \emptyset$. Hence $x \notin I_q$ for all $q > t - \varepsilon$, which means that if $x \in I_q$, then $q \le t - \varepsilon$. Thus $\alpha_A(x) \le t - \varepsilon < t$, and so $x \notin U(\alpha_A;t)$. Therefore $U(\alpha_A;t) \subseteq \bigcup_{q \ge t} I_q$, and thus $U(\alpha_A;t) = \bigcup_{q \ge t} I_q$ which is an ideal of *X*. Next we prove that $L(\beta_A;s)$ is an ideal of *X*. We consider the following two cases:

(iii) $s = \inf\{r \in \Lambda \mid s < r\},\$

(iv) $s \neq \inf \{ r \in \Lambda \mid s < r \}.$

For the case (iii), we have

$$x \in L(\beta_A; s) \Longleftrightarrow x \in I_r \quad \forall s < r \Longleftrightarrow x \in \cap_{s < r} I_r, \tag{3.27}$$

and hence $L(\beta_A; s) = \bigcap_{s < r} I_r$ which is an ideal of *X*. For the case (iv) there exists $\varepsilon > 0$ such that $(s, s + \varepsilon) \cap \Lambda = \emptyset$. We will show that $L(\beta_A; s) = \bigcup_{s \ge r} I_r$. If $x \in \bigcup_{s \ge r} I_r$, then $x \in I_r$ for some $r \le s$. It follows that $\beta_A(x) \le r \le s$ so that $x \in L(\beta_A; s)$. Hence $\bigcup_{s \ge r} I_r \subseteq L(\beta_A; s)$. Conversely, if $x \notin \bigcup_{s \ge r} I_r$, then $x \notin I_r$ for all $r \le s$, which implies that $x \notin I_r$ for all $r < s + \varepsilon$, that is, if $x \in I_r$, then $r \ge s + \varepsilon$. Thus $\beta_A(x) \ge s + \varepsilon > s$, that is, $x \notin L(\beta_A; s)$. Therefore $L(\beta_A; s) \subseteq \bigcup_{s \ge r} I_r$ and consequently $L(\beta_A; s) = \bigcup_{s \ge r} I_r$ which is an ideal of *X*. This completes the proof.

A mapping $f : X \to Y$ of BCK-algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$. Note that if $f : X \to Y$ is a homomorphism of BCK-algebras, then f(0) = 0. Let $f : X \to Y$ be a homomorphism of BCK-algebras. For any IFS $A = (\alpha_A, \beta_A)$ in Y, we define a new IFS $A^f = (\alpha_A^f, \beta_A^f)$ in X by

$$\alpha_A^f(x) := \alpha_A(f(x)), \quad \beta_A^f(x) := \beta_A(f(x)) \quad \forall x \in X.$$
(3.28)

THEOREM 3.15. Let $f : X \to Y$ be a homomorphism of BCK-algebras. If an IFS $A = (\alpha_A, \beta_A)$ in Y is an intuitionistic fuzzy ideal of Y, then an IFS $A^f = (\alpha_A^f, \beta_A^f)$ in X is an intuitionistic fuzzy ideal of X.

PROOF. We first have that

$$\alpha_A^f(x) = \alpha_A(f(x)) \le \alpha_A(0) = \alpha_A(f(0)) = \alpha_A^f(0),$$

$$\beta_A^f(x) = \beta_A(f(x)) \ge \beta_A(0) = \beta_A(f(0)) = \beta_A^f(0)$$
(3.29)

for all $x \in X$. Let $x, y \in X$. Then

$$\min \{ \alpha_A^f(x * y), \alpha_A^f(y) \} = \min \{ \alpha_A(f(x * y)), \alpha_A(f(y)) \}$$

$$= \min \{ \alpha_A(f(x) * f(y)), \alpha_A(f(y)) \}$$

$$\leq \alpha_A(f(x)) = \alpha_A^f(x),$$

$$\max \{ \beta_A^f(x * y), \beta_A^f(y) \} = \max \{ \beta_A(f(x * y)), \beta_A(f(y)) \}$$

$$= \max \{ \beta_A(f(x) * f(y)), \beta_A(f(y)) \}$$

$$\geq \beta_A(f(x)) = \beta_A^f(x).$$

(3.30)

Hence $A^f = (\alpha_A^f, \beta_A^f)$ is an intuitionistic fuzzy ideal of *X*.

If we strengthen the condition of f, then we can construct the converse of Theorem 3.15 as follows.

THEOREM 3.16. Let $f : X \to Y$ be an epimorphism of BCK-algebras and let $A = (\alpha_A, \beta_A)$ be an IFS in Y. If $A^f = (\alpha_A^f, \beta_A^f)$ is an intuitionistic fuzzy ideal of X, then $A = (\alpha_A, \beta_A)$ is an intuitionistic fuzzy ideal of Y.

PROOF. For any $x \in Y$, there exists $a \in X$ such that f(a) = x. Then

$$\begin{aligned} &\alpha_A(x) = \alpha_A(f(a)) = \alpha_A^f(a) \le \alpha_A^f(0) = \alpha_A(f(0)) = \alpha_A(0), \\ &\beta_A(x) = \beta_A(f(a)) = \beta_A^f(a) \ge \beta_A^f(0) = \beta_A(f(0)) = \beta_A(0). \end{aligned}$$
(3.31)

Let $x, y \in Y$. Then f(a) = x and f(b) = y for some $a, b \in X$. It follows that

$$\begin{aligned} \alpha_A(x) &= \alpha_A(f(a)) = \alpha_A^f(a) \\ &\geq \min \left\{ \alpha_A^f(a * b), \alpha_A^f(b) \right\} \\ &= \min \left\{ \alpha_A(f(a * b)), \alpha_A(f(b)) \right\} \\ &= \min \left\{ \alpha_A(f(a) * f(b)), \alpha_A(f(b)) \right\} \\ &= \min \left\{ \alpha_A(x * y), \alpha_A(y) \right\}, \end{aligned}$$
(3.32)
$$\beta_A(x) &= \beta_A(f(a)) = \beta_A^f(a) \\ &\leq \max \left\{ \beta_A^f(a * b), \beta_A^f(b) \right\} \\ &= \max \left\{ \beta_A(f(a * b)), \beta_A(f(b)) \right\} \\ &= \max \left\{ \beta_A(f(a) * f(b)), \beta_A(f(b)) \right\} \\ &= \max \left\{ \beta_A(x * y), \beta_A(y) \right\}. \end{aligned}$$

This completes the proof.

Let IF(X) be the family of all intuitionistic fuzzy ideals of *X* and let $t \in [0,1]$. Define binary relations U^t and L^t on IF(X) as follows:

$$(A,B) \in U^t \Leftrightarrow U(\alpha_A;t) = U(\alpha_B;t), \qquad (A,B) \in L^t \Leftrightarrow L(\beta_A;t) = L(\beta_B;t), \qquad (3.33)$$

respectively, for $A = (\alpha_A, \beta_A)$ and $B = (\alpha_B, \beta_B)$ in IF(X). Then clearly U^t and L^t are

equivalence relations on IF(*X*). For any $A = (\alpha_A, \beta_A) \in \text{IF}(X)$, let $[A]_{U^t}$ (respectively, $[A]_{L^t}$) denote the equivalence class of *A* modulo U^t (respectively, L^t), and denote by IF(*X*)/ U^t (respectively, IF(*X*)/ L^t) the system of all equivalence classes modulo U^t (respectively, L^t); so

$$\mathrm{IF}(X)/U^{t} := \{ [A]_{U^{t}} \mid A = (\alpha_{A}, \beta_{A}) \in \mathrm{IF}(X) \},$$
(3.34)

respectively,

$$\mathrm{IF}(X)/L^{t} := \{ [A]_{L^{t}} \mid A = (\alpha_{A}, \beta_{A}) \in \mathrm{IF}(X) \}.$$
(3.35)

Now let I(X) denote the family of all ideals of X and let $t \in [0,1]$. Define maps f_t and g_t from IF(X) to $I(X) \cup \{\emptyset\}$ by $f_t(A) = U(\alpha_A; t)$ and $g_t(A) = L(\beta_A; t)$, respectively, for all $A = (\alpha_A, \beta_A) \in IF(X)$. Then f_t and g_t are clearly well defined.

THEOREM 3.17. For any $t \in (0,1)$ the maps f_t and g_t are surjective from IF(X) to $I(X) \cup \{\emptyset\}$.

PROOF. Let $t \in (0,1)$. Note that $\mathbf{0}_{\sim} = (\mathbf{0},\mathbf{1})$ is in IF(*X*), where $\mathbf{0}$ and $\mathbf{1}$ are fuzzy sets in *X* defined by $\mathbf{0}(x) = 0$ and $\mathbf{1}(x) = 1$ for all $x \in X$. Obviously $f_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) = \emptyset = L(\mathbf{1};t) = g_t(\mathbf{0}_{\sim})$. Let $G(\neq \emptyset) \in I(X)$. For $G_{\sim} = (\chi_G, \bar{\chi}_G) \in \text{IF}(X)$, we have $f_t(G_{\sim}) = U(\chi_G;t) = G$ and $g_t(G_{\sim}) = L(\bar{\chi}_G;t) = G$. Hence f_t and g_t are surjective.

THEOREM 3.18. The quotient sets $IF(X)/U^t$ and $IF(X)/L^t$ are equipotent to $I(X) \cup \{\emptyset\}$ for every $t \in (0,1)$.

PROOF. For $t \in (0,1)$ let f_t^* (respectively, g_t^*) be a map from IF(*X*)/*U*^{*t*} (respectively, IF(*X*)/*L*^{*t*}) to $I(X) \cup \{\emptyset\}$ defined by $f_t^*([A]_{U^t}) = f_t(A)$ (respectively, $g_t^*([A]_{L^t}) = g_t(A)$) for all $A = (\alpha_A, \beta_A) \in \text{IF}(X)$. If $U(\alpha_A; t) = U(\alpha_B; t)$ and $L(\beta_A; t) = L(\beta_B; t)$ for $A = (\alpha_A, \beta_A)$ and $B = (\alpha_B, \beta_B)$ in IF(*X*), then $(A, B) \in U^t$ and $(A, B) \in L^t$; hence $[A]_{U^t} = [B]_{U^t}$ and $[A]_{L^t} = [B]_{L^t}$. Therefore the maps f_t^* and g_t^* are injective. Now let $G(\neq \emptyset) \in I(X)$. For $G_{\sim} = (\chi_G, \overline{\chi}_G) \in \text{IF}(X)$, we have

$$f_t^*([G_{\sim}]_{U^t}) = f_t(G_{\sim}) = U(\chi_G; t) = G, g_t^*([G_{\sim}]_{L^t}) = g_t(G_{\sim}) = L(\bar{\chi}_G; t) = G.$$
(3.36)

Finally, for $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in \mathrm{IF}(X)$ we get

$$\begin{aligned} f_t^*([\mathbf{0}_{\sim}]_{U^t}) &= f_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) = \emptyset, \\ g_t^*([\mathbf{0}_{\sim}]_{L^t}) &= g_t(\mathbf{0}_{\sim}) = L(\mathbf{0};t) = \emptyset. \end{aligned}$$
(3.37)

This shows that f_t^* and g_t^* are surjective. This completes the proof.

For any $t \in [0, 1]$, we define another relation R^t on IF(*X*) as follows:

$$(A,B) \in \mathbb{R}^t \iff U(\alpha_A;t) \cap L(\beta_A;t) = U(\alpha_B;t) \cap L(\beta_B;t)$$
(3.38)

for any $A = (\alpha_A, \beta_A)$, $B = (\alpha_B, \beta_B) \in IF(X)$. Then the relation R^t is also an equivalence relation on IF(*X*).

THEOREM 3.19. For any $t \in (0,1)$, the map $\phi_t : \operatorname{IF}(X) \to I(X) \cup \{\emptyset\}$ defined by $\phi_t(A) = f_t(A) \cap g_t(A)$ for each $A = (\alpha_A, \beta_A) \in \operatorname{IF}(X)$ is surjective.

PROOF. Let $t \in (0, 1)$. For $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in \mathrm{IF}(X)$,

$$\phi_t(\mathbf{0}_{\sim}) = f_t(\mathbf{0}_{\sim}) \cap g_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) \cap L(\mathbf{1};t) = \emptyset.$$
(3.39)

For any $H \in IF(X)$, there exists $H_{\sim} = (\chi_H, \bar{\chi}_H) \in IF(X)$ such that

$$\phi_t(H_{\sim}) = f_t(H_{\sim}) \cap g_t(H_{\sim}) = U(\chi_H; t) \cap L(\bar{\chi}_H; t) = H.$$
(3.40)

This completes the proof.

THEOREM 3.20. For any $t \in (0,1)$, the quotient set $IF(X)/R^t$ is equipotent to $I(X) \cup \{\emptyset\}$.

PROOF. Let $t \in (0,1)$ and let $\phi_t^* : \operatorname{IF}(X)/R^t \to I(X) \cup \{\emptyset\}$ be a map defined by $\phi_t^*([A]_{R^t}) = \phi_t(A)$ for all $[A]_{R^t} \in \operatorname{IF}(X)/R^t$. If $\phi_t^*([A]_{R^t}) = \phi_t^*([B]_{R^t})$ for any $[A]_{R^t}$, $[B]_{R^t} \in \operatorname{IF}(X)/R^t$, then $f_t(A) \cap g_t(A) = f_t(B) \cap g_t(B)$, that is, $U(\alpha_A; t) \cap L(\beta_A; t) = U(\alpha_B; t) \cap L(\beta_B; t)$, hence $(A, B) \in R^t$. It follows that $[A]_{R^t} = [B]_{R^t}$ so that ϕ_t^* is injective. For $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in \operatorname{IF}(X)$,

$$\phi_t^*([\mathbf{0}_{\sim}]_{R^t}) = \phi_t(\mathbf{0}_{\sim}) = f_t(\mathbf{0}_{\sim}) \cap g_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) \cap L(\mathbf{1};t) = \emptyset.$$
(3.41)

If $H \in IF(X)$, then for $H_{\sim} = (\chi_H, \bar{\chi}_H) \in IF(X)$, we have

$$\phi_t^*([H_{\sim}]_{R^t}) = \phi(H_{\sim}) = f_t(H_{\sim}) \cap g_t(H_{\sim}) = U(\chi_H; t) \cap L(\bar{\chi}_H; t) = H.$$
(3.42)

Hence ϕ_t^* is surjective, this completes the proof.

ACKNOWLEDGEMENT. The first author was supported by Korea Research Foundation Grant (KRF-99-005-D00003).

REFERENCES

- K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems 20 (1986), no. 1, 87–96. MR 87f:03151. Zbl 631.03040.
- [2] _____, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems
 61 (1994), no. 2, 137-142. CMP 1 262 464. Zbl 824.04004.
- Y. B. Jun, A note on fuzzy ideals in BCK-algebras, Math. Japon. 42 (1995), no. 2, 333-335.
 CMP 1 356 395. Zbl 834.06018.
- [4] _____, Finite valued fuzzy ideals in BCK-algebras, J. Fuzzy Math. 5 (1997), no. 1, 111-114.
 CMP 1 441 020. Zbl 868.06010.
- [5] _____, Characterizations of Noetherian BCK-algebras via fuzzy ideals, Fuzzy Sets and Systems 108 (1999), no. 2, 231–234. CMP 1 720 432. Zbl 940.06014.
- [6] Y. B. Jun, S. M. Hong, S. J. Kim, and S. Z. Song, *Fuzzy ideals and fuzzy subalgebras of BCK-algebras*, J. Fuzzy Math. 7 (1999), no. 2, 411–418. MR 2000c:06040. Zbl 943.06010.
- [7] Y. B. Jun and E. H. Roh, *Fuzzy commutative ideals of BCK-algebras*, Fuzzy Sets and Systems 64 (1994), no. 3, 401-405. MR 95e:06051. Zbl 846.06011.

- [8] J. Meng, Y. B. Jun, and H. S. Kim, *Fuzzy implicative ideals of BCK-algebras*, Fuzzy Sets and Systems 89 (1997), no. 2, 243–248. MR 98a:06033. Zbl 914.06009.
- [9] L. A. Zadeh, *Fuzzy sets*, Information and Control 8 (1965), 338-353. MR 36#2509. Zbl 139.24606.

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Chinju $660\math{-}701, Korea$

E-mail address: ybjun@nongae.gsnu.ac.kr

KYUNG HO KIM: DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, CHUNGJU 380-702, KOREA

E-mail address: ghkim@gukwon.chungju.ac.kr

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

International Journal of Mathematics and Mathematical Sciences

Journal of **Function Spaces**

International Journal of Stochastic Analysis

