INTUITIONISTIC FUZZY IDEALS OF BCK-ALGEBRAS

YOUNG BAE JUN and KYUNG HO KIM

(Received 16 February 2000)

Abstract

We consider the intuitionistic fuzzification of the concept of subalgebras and ideals in BCK-algebras, and investigate some of their properties. We introduce the notion of equivalence relations on the family of all intuitionistic fuzzy ideals of a BCK-algebra and investigate some related properties.

Keywords and phrases. (Intuitionistic) fuzzy subalgebra, (intuitionistic) fuzzy ideal, upper (respectively, lower) t-level cut, homomorphism.

2000 Mathematics Subject Classification. Primary 06F35, 03G25, 03E72.

1. Introduction. After the introduction of the concept of fuzzy sets by Zadeh [9] several researches were conducted on the generalizations of the notion of fuzzy sets. The idea of "intuitionistic fuzzy set" was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy set. The first author (together with Hong, Kim, Kim, Meng, Roh, and Song) considered the fuzzification of ideals and subalgebras in BCK-algebras (cf. [3, 4, 5, 6, 7, 8]). In this paper, using the Atanassov's idea, we establish the intuitionistic fuzzification of the concept of subalgebras and ideals in BCK-algebras, and investigate some of their properties. We introduce the notion of equivalence relations on the family of all intuitionistic fuzzy ideals of a BCK-algebra and investigate some related properties.
2. Preliminaries. First we present the fundamental definitions. By a BCK-algebra we mean a nonempty set X with a binary operation $*$ and a constant 0 satisfying the following conditions:
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0$,
(IV) $0 * x=0$,
(V) $x * y=0$ and $y * x=0$ imply that $x=y$
for all $x, y, z \in X$.
A partial ordering " \leq " on X can be defined by $x \leq y$ if and only if $x * y=0$.
A nonempty subset S of a BCK-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$. A nonempty subset I of a BCK-algebra X is called an ideal of X if
(i) $0 \in I$,
(ii) $x * y \in I$ and $y \in I$ imply that $x \in I$ for all $x, y \in X$.

By a fuzzy set μ in a nonempty set X we mean a function $\mu: X \rightarrow[0,1]$, and the complement of μ, denoted by $\bar{\mu}$, is the fuzzy set in X given by $\bar{\mu}(x)=1-\mu(x)$ for all $x \in X$. A fuzzy set μ in a BCK-algebra X is called a fuzzy subalgebra of X if $\mu(x * y) \geq$
$\min \{\mu(x), \mu(y)\}$ for all $x, y \in X$. A fuzzy set μ in a BCK-algebra X is called a fuzzy ideal of X if
(i) $\mu(0) \geq \mu(x)$ for all $x \in X$,
(ii) $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

An intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having the form

$$
\begin{equation*}
A=\left\{\left(x, \alpha_{A}(x), \beta_{A}(x)\right) \mid x \in X\right\} \tag{2.1}
\end{equation*}
$$

where the functions $\alpha_{A}: X \rightarrow[0,1]$ and $\beta_{A}: X \rightarrow[0,1]$ denote the degree of membership and the degree of nonmembership, respectively, and

$$
\begin{equation*}
0 \leq \alpha_{A}(x)+\beta_{A}(x) \leq 1 \quad \forall x \in X \tag{2.2}
\end{equation*}
$$

An intuitionistic fuzzy set $A=\left\{\left(x, \alpha_{A}(x), \beta_{A}(x)\right) \mid x \in X\right\}$ in X can be identified to an ordered pair $\left(\alpha_{A}, \beta_{A}\right)$ in $I^{X} \times I^{X}$. For the sake of simplicity, we shall use the symbol $A=\left(\alpha_{A}, \beta_{A}\right)$ for the IFS $A=\left\{\left(x, \alpha_{A}(x), \beta_{A}(x)\right) \mid x \in X\right\}$.
3. Intuitionistic fuzzy ideals. In what follows, let X denote a BCK-algebra unless otherwise specified.

DEFINITION 3.1. An IFS $A=\left(\alpha_{A}, \beta_{A}\right)$ in X is called an intuitionistic fuzzy subalgebra of X if it satisfies:
(IS1) $\alpha_{A}(x * y) \geq \min \left\{\alpha_{A}(x), \alpha_{A}(y)\right\}$,
(IS2) $\beta_{A}(x * y) \leq \max \left\{\beta_{A}(x), \beta_{A}(y)\right\}$, for all $x, y \in X$.

EXAMPLE 3.2. Consider a BCK-algebra $X=\{0, a, b, c\}$ with the following Cayley table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an IFS in X defined by

$$
\begin{align*}
& \alpha_{A}(0)=\alpha_{A}(a)=\alpha_{A}(c)=0.7>0.3=\alpha_{A}(b) \\
& \beta_{A}(0)=\beta_{A}(a)=\beta_{A}(c)=0.2<0.5=\beta_{A}(b) \tag{3.1}
\end{align*}
$$

Then $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy subalgebra of X.
Proposition 3.3. Every intuitionistic fuzzy subalgebra $A=\left(\alpha_{A}, \beta_{A}\right)$ of X satisfies the inequalities $\alpha_{A}(0) \geq \alpha_{A}(x)$ and $\beta_{A}(0) \leq \beta_{A}(x)$ for all $x \in X$.

Proof. For any $x \in X$, we have

$$
\begin{align*}
& \alpha_{A}(0)=\alpha_{A}(x * x) \geq \min \left\{\alpha_{A}(x), \alpha_{A}(x)\right\}=\alpha_{A}(x) \\
& \beta_{A}(0)=\beta_{A}(x * x) \leq \max \left\{\beta_{A}(x), \beta_{A}(x)\right\}=\beta_{A}(x) \tag{3.2}
\end{align*}
$$

This completes the proof.

DEFINITION 3.4. An IFS $A=\left(\alpha_{A}, \beta_{A}\right)$ in X is called an intuitionistic fuzzy ideal of X if it satisfies the following inequalities:
(IF1) $\alpha_{A}(0) \geq \alpha_{A}(x)$ and $\beta_{A}(0) \leq \beta_{A}(x)$,
(IF2) $\alpha_{A}(x) \geq \min \left\{\alpha_{A}(x * y), \alpha_{A}(y)\right\}$,
(IF3) $\beta_{A}(x) \leq \max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\}$, for all $x, y \in X$.

Example 3.5. Let $X=\{0,1,2,3,4\}$ be a BCK-algebra with the following Cayley table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	3	4	1	0

Define an IFS $A=\left(\alpha_{A}, \beta_{A}\right)$ in X as follows:

$$
\begin{align*}
\alpha_{A}(0)=\alpha_{A}(2)=1, & \alpha_{A}(1)=\alpha_{A}(3)=\alpha_{A}(4)=t, \\
\beta_{A}(0)=\beta_{A}(2)=0, & \beta_{A}(1)=\beta_{A}(3)=\beta_{A}(4)=s, \tag{3.3}
\end{align*}
$$

where $t \in[0,1], s \in[0,1]$, and $t+s \leq 1$. By routine calculation we know that $A=$ $\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X.

LemmA 3.6. Let an IFS $A=\left(\alpha_{A}, \beta_{A}\right)$ in X be an intuitionistic fuzzy ideal of X. If the inequality $x * y \leq z$ holds in X, then

$$
\begin{equation*}
\alpha_{A}(x) \geq \min \left\{\alpha_{A}(y), \alpha_{A}(z)\right\}, \quad \beta_{A}(x) \leq \max \left\{\beta_{A}(y), \beta_{A}(z)\right\} . \tag{3.4}
\end{equation*}
$$

Proof. Let $x, y, z \in X$ be such that $x * y \leq z$. Then $(x * y) * z=0$, and thus

$$
\begin{align*}
\alpha_{A}(x) & \geq \min \left\{\alpha_{A}(x * y), \alpha_{A}(y)\right\} \\
& \geq \min \left\{\min \left\{\alpha_{A}((x * y) * z), \alpha_{A}(z)\right\}, \alpha_{A}(y)\right\} \\
& =\min \left\{\min \left\{\alpha_{A}(0), \alpha_{A}(z)\right\}, \alpha_{A}(y)\right\} \\
& =\min \left\{\alpha_{A}(y), \alpha_{A}(z)\right\}, \\
\beta_{A}(x) & \leq \max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\} \tag{3.5}\\
& \leq \max \left\{\max \left\{\beta_{A}((x * y) * z), \beta_{A}(z)\right\}, \beta_{A}(y)\right\} \\
& =\max \left\{\max \left\{\beta_{A}(0), \beta_{A}(z)\right\}, \beta_{A}(y)\right\} \\
& =\max \left\{\beta_{A}(y), \beta_{A}(z)\right\},
\end{align*}
$$

this completes the proof.
Lemma 3.7. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic fuzzy ideal of X. If $x \leq y$ in X, then

$$
\begin{equation*}
\alpha_{A}(x) \geq \alpha_{A}(y), \quad \beta_{A}(x) \leq \beta_{A}(y), \tag{3.6}
\end{equation*}
$$

that is, α_{A} is order-reserving and β_{A} is order-preserving.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then $x * y=0$ and so

$$
\begin{align*}
& \alpha_{A}(x) \geq \min \left\{\alpha_{A}(x * y), \alpha_{A}(y)\right\}=\min \left\{\alpha_{A}(0), \alpha_{A}(y)\right\}=\alpha_{A}(y), \\
& \beta_{A}(x) \leq \max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\}=\max \left\{\beta_{A}(0), \beta_{A}(y)\right\}=\beta_{A}(y) . \tag{3.7}
\end{align*}
$$

This completes the proof.
Theorem 3.8. If $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X, then for any $x, a_{1}, a_{2}, \ldots, a_{n} \in X,\left(\cdots\left(\left(x * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}=0$ implies

$$
\begin{align*}
\alpha_{A}(x) & \geq \min \left\{\alpha_{A}\left(a_{1}\right), \alpha_{A}\left(a_{2}\right), \ldots, \alpha_{A}\left(a_{n}\right)\right\}, \\
\beta_{A}(x) & \leq \max \left\{\beta_{A}\left(a_{1}\right), \beta_{A}\left(a_{2}\right), \ldots, \beta_{A}\left(a_{n}\right)\right\} . \tag{3.8}
\end{align*}
$$

Proof. Using induction on n and Lemmas 3.6 and 3.7, the proof is straightforward.

Theorem 3.9. Every intuitionistic fuzzy ideal of X is an intuitionistic fuzzy subalgebra of X.

Proof. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic fuzzy ideal of X. Since $x * y \leq x$ for all $x, y \in X$, it follows from Lemma 3.7 that

$$
\begin{equation*}
\alpha_{A}(x * y) \geq \alpha_{A}(x), \quad \beta_{A}(x * y) \leq \beta_{A}(x), \tag{3.9}
\end{equation*}
$$

so by (IF2) and (IF3),

$$
\begin{align*}
& \alpha_{A}(x * y) \geq \alpha_{A}(x) \geq \min \left\{\alpha_{A}(x * y), \alpha_{A}(y)\right\} \geq \min \left\{\alpha_{A}(x), \alpha_{A}(y)\right\}, \\
& \beta_{A}(x * y) \leq \beta_{A}(x) \leq \max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\} \leq \max \left\{\beta_{A}(x), \beta_{A}(y)\right\} . \tag{3.10}
\end{align*}
$$

This shows that $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy subalgebra of X.
The converse of Theorem 3.9 may not be true. For example, the intuitionistic fuzzy subalgebra $A=\left(\alpha_{A}, \beta_{A}\right)$ in Example 3.2 is not an intuitionistic fuzzy ideal of X since

$$
\begin{equation*}
\beta_{A}(b)=0.5>0.2=\min \left\{\beta_{A}(b * a), \beta_{A}(a)\right\} . \tag{3.11}
\end{equation*}
$$

We now give a condition for an intuitionistic fuzzy subalgebra to be an intuitionistic fuzzy ideal.

Theorem 3.10. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic fuzzy subalgebra of X such that

$$
\begin{equation*}
\alpha_{A}(x) \geq \min \left\{\alpha_{A}(y), \alpha_{A}(z)\right\}, \quad \beta_{A}(x) \leq \max \left\{\beta_{A}(y), \beta_{A}(z)\right\} \tag{3.12}
\end{equation*}
$$

for all $x, y, z \in X$ satisfying the inequality $x * y \leq z$. Then $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X.

Proof. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic fuzzy subalgebra of X. Recall that $\alpha_{A}(0) \geq \alpha_{A}(x)$ and $\beta_{A}(0) \leq \beta_{A}(x)$ for all X. Since $x *(x * y) \leq y$, it follows from the hypothesis that

$$
\begin{equation*}
\alpha_{A}(x) \geq \min \left\{\alpha_{A}(x * y), \alpha_{A}(y)\right\}, \quad \beta_{A}(x) \leq \max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\} . \tag{3.13}
\end{equation*}
$$

Hence $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X.

LEMMA 3.11. An IFS $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X if and only if the fuzzy sets α_{A} and $\bar{\beta}_{A}$ are fuzzy ideals of X.

Proof. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic fuzzy ideal of X. Clearly, α_{A} is a fuzzy ideal of X. For every $x, y \in X$, we have

$$
\begin{align*}
\bar{\beta}_{A}(0) & =1-\beta_{A}(0) \geq 1-\beta_{A}(x)=\bar{\beta}_{A}(x), \\
\bar{\beta}_{A}(x) & =1-\beta_{A}(x) \geq 1-\max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\} \tag{3.14}\\
& =\min \left\{1-\beta_{A}(x * y), 1-\beta_{A}(y)\right\} \\
& =\min \left\{\bar{\beta}_{A}(x * y), \bar{\beta}_{A}(y)\right\} .
\end{align*}
$$

Hence $\bar{\beta}_{A}$ is a fuzzy ideal of X.
Conversely, assume that α_{A} and $\bar{\beta}_{A}$ are fuzzy ideals of X. For every $x, y \in X$, we get

$$
\begin{equation*}
\alpha_{A}(0) \geq \alpha_{A}(x), \quad 1-\beta_{A}(0)=\bar{\beta}_{A}(0) \geq \bar{\beta}_{A}(x)=1-\beta_{A}(x) \tag{3.15}
\end{equation*}
$$

that is, $\beta_{A}(0) \leq \beta_{A}(x) ; \alpha_{A}(x) \geq \min \left\{\alpha_{A}(x * y), \alpha_{A}(y)\right\}$ and

$$
\begin{align*}
1-\beta_{A}(x) & =\bar{\beta}_{A}(x) \geq \min \left\{\bar{\beta}_{A}(x * y), \bar{\beta}_{A}(y)\right\} \\
& =\min \left\{1-\beta_{A}(x * y), 1-\beta_{A}(y)\right\} \tag{3.16}\\
& =1-\max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\}
\end{align*}
$$

that is, $\beta_{A}(x) \leq \max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\}$. Hence $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X.

THEOREM 3.12. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an IFS in X. Then $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X if and only if $\square A=\left(\alpha_{A}, \bar{\alpha}_{A}\right)$ and $\diamond A=\left(\bar{\beta}_{A}, \beta_{A}\right)$ are intuitionistic fuzzy ideals of X.

Proof. If $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X, then $\alpha_{A}=\overline{\bar{\alpha}}_{A}$ and β_{A} are fuzzy ideals of X from Lemma 3.11, hence $\square A=\left(\alpha_{A}, \bar{\alpha}_{A}\right)$ and $\diamond A=\left(\bar{\beta}_{A}, \beta_{A}\right)$ are intuitionistic fuzzy ideals of X. Conversely, if $\square A=\left(\alpha_{A}, \bar{\alpha}_{A}\right)$ and $\diamond A=\left(\bar{\beta}_{A}, \beta_{A}\right)$ are intuitionistic fuzzy ideals of X, then the fuzzy sets α_{A} and $\bar{\beta}_{A}$ are fuzzy ideals of X, hence $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X.

For any $t \in[0,1]$ and a fuzzy set μ in a nonempty set X, the set

$$
\begin{equation*}
U(\mu ; t)=\{x \in X \mid \mu(x) \geq t\} \tag{3.17}
\end{equation*}
$$

is called an upper t-level cut of μ and the set

$$
\begin{equation*}
L(\mu ; t)=\{x \in X \mid \mu(x) \leq t\} \tag{3.18}
\end{equation*}
$$

is called a lower t-level cut of μ.
THEOREM 3.13. An IFS $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of X if and only if for all $s, t \in[0,1]$, the sets $U\left(\alpha_{A} ; t\right)$ and $L\left(\beta_{A} ; s\right)$ are either empty or ideals of X.

Proof. Let $A=\left(\alpha_{A}, \beta_{A}\right)$ be an intuitionistic fuzzy ideal of X and $U\left(\alpha_{A} ; t\right) \neq \varnothing \neq$ $L\left(\beta_{A} ; s\right)$ for any $s, t \in[0,1]$. It is clear that $0 \in U\left(\alpha_{A} ; t\right) \cap L\left(\beta_{A} ; s\right)$ since $\alpha_{A}(0) \geq t$ and $\beta_{A}(0) \leq s$. Let $x, y \in X$ be such that $x * y \in U\left(\alpha_{A} ; t\right)$ and $y \in U\left(\alpha_{A} ; t\right)$. Then $\alpha_{A}(x * y) \geq t$ and $\alpha_{A}(y) \geq t$. It follows that

$$
\begin{equation*}
\alpha_{A}(x) \geq \min \left\{\alpha_{A}(x * y), \alpha_{A}(y)\right\} \geq t \tag{3.19}
\end{equation*}
$$

so that $x \in U\left(\alpha_{A} ; t\right)$. Hence $U\left(\alpha_{A} ; t\right)$ is an ideal of X. Now let $x, y \in X$ be such that $x * y \in L\left(\beta_{A} ; s\right)$ and $y \in L\left(\beta_{A} ; s\right)$. Then $\beta_{A}(x * y) \leq s$ and $\beta_{A}(y) \leq s$, which imply that

$$
\begin{equation*}
\beta_{A}(x) \leq \max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\} \leq s . \tag{3.20}
\end{equation*}
$$

Thus $x \in L\left(\beta_{A} ; s\right)$, and therefore $L\left(\beta_{A} ; s\right)$ is an ideal of X. Conversely, assume that for each $t, s \in[0,1]$, the sets $U\left(\alpha_{A} ; t\right)$ and $L\left(\beta_{A} ; s\right)$ are either empty or ideals of X. For any $x \in X$, let $\alpha_{A}(x)=t$ and $\beta_{A}(x)=s$. Then $x \in U\left(\alpha_{A} ; t\right) \cap L\left(\beta_{A} ; s\right)$, and so $U\left(\alpha_{A} ; t\right) \neq \varnothing \neq L\left(\beta_{A} ; s\right)$. Since $U\left(\alpha_{A} ; t\right)$ and $L\left(\beta_{A} ; s\right)$ are ideals of X, therefore $0 \in$ $U\left(\alpha_{A} ; t\right) \cap L\left(\beta_{A} ; s\right)$. Hence $\alpha_{A}(0) \geq t=\alpha_{A}(x)$ and $\beta_{A}(0) \leq s=\beta_{A}(x)$ for all $x \in X$. If there exist $x^{\prime}, y^{\prime} \in X$ such that $\alpha_{A}\left(x^{\prime}\right)<\min \left\{\alpha_{A}\left(x^{\prime} * y^{\prime}\right), \alpha_{A}\left(y^{\prime}\right)\right\}$, then by taking

$$
\begin{equation*}
t_{0}=\frac{1}{2}\left(\alpha_{A}\left(x^{\prime}\right)+\min \left\{\alpha_{A}\left(x^{\prime} * y^{\prime}\right), \alpha_{A}\left(y^{\prime}\right)\right\}\right), \tag{3.21}
\end{equation*}
$$

we have

$$
\begin{equation*}
\alpha_{A}\left(x^{\prime}\right)<t_{0}<\min \left\{\alpha_{A}\left(x^{\prime} * y^{\prime}\right), \alpha_{A}\left(y^{\prime}\right)\right\} . \tag{3.22}
\end{equation*}
$$

Hence $x^{\prime} \notin U\left(\alpha_{A} ; t_{0}\right), x^{\prime} * y^{\prime} \in U\left(\alpha_{A} ; t_{0}\right)$ and $y^{\prime} \in\left(\alpha_{A} ; t_{0}\right)$, that is, $U\left(\alpha_{A} ; t_{0}\right)$ is not an ideal of X, which is a contradiction. Finally, assume that there exist $a, b \in X$ such that

$$
\begin{equation*}
\beta_{A}(a)>\max \left\{\beta_{A}(a * b), \beta_{A}(b)\right\} . \tag{3.23}
\end{equation*}
$$

Taking $s_{0}:=(1 / 2)\left(\beta_{A}(a)+\max \left\{\beta_{A}(a * b), \beta_{A}(b)\right\}\right)$, then

$$
\begin{equation*}
\max \left\{\beta_{A}(a * b), \beta_{A}(b)\right\}<s_{0}<\beta_{A}(a) . \tag{3.24}
\end{equation*}
$$

Therefore $a * b \in L\left(\beta_{A} ; s_{0}\right)$ and $b \in L\left(\beta_{A} ; s_{0}\right)$, but $a \notin L\left(\beta_{A} ; s_{0}\right)$, which is a contradiction, this completes the proof.

Let Λ be a nonempty subset of $[0,1]$.
Theorem 3.14. Let $\left\{I_{t} \mid t \in \Lambda\right\}$ be a collection of ideals of X such that
(i) $X=\cup_{t \in \Lambda} I_{t}$,
(ii) $s>t$ if and only if $I_{s} \subset I_{t}$ for all $s, t \in \Lambda$.

Then an IFS $A=\left(\alpha_{A}, \beta_{A}\right)$ in X defined by

$$
\begin{equation*}
\alpha_{A}(x):=\sup \left\{t \in \Lambda \mid x \in I_{t}\right\}, \quad \beta_{A}(x):=\inf \left\{t \in \Lambda \mid x \in I_{t}\right\} \tag{3.25}
\end{equation*}
$$

for all $x \in X$ is an intuitionistic fuzzy ideal of X.
Proof. According to Theorem 3.13, it is sufficient to show that $U\left(\alpha_{A} ; t\right)$ and $L\left(\beta_{A} ; s\right)$ are ideals of X for every $t \in\left[0, \alpha_{A}(0)\right]$ and $s \in\left[\beta_{A}(0), 1\right]$. In order to prove
that $U\left(\alpha_{A} ; t\right)$ is an ideal of X, we divide the proof into the following two cases:
(i) $t=\sup \{q \in \Lambda \mid q<t\}$,
(ii) $t \neq \sup \{q \in \Lambda \mid q<t\}$.

Case (i) implies that

$$
\begin{equation*}
x \in U\left(\alpha_{A} ; t\right) \Leftrightarrow x \in I_{q} \quad \forall q<t \Longleftrightarrow x \in \cap_{q<t} I_{q}, \tag{3.26}
\end{equation*}
$$

so that $U\left(\alpha_{A} ; t\right)=\cap_{q<t} I_{q}$, which is an ideal of X. For the case (ii), we claim that $U\left(\alpha_{A} ; t\right)=\cup_{q \geq t} I_{q}$. If $x \in \cup_{q \geq t} I_{q}$, then $x \in I_{q}$ for some $q \geq t$. It follows that $\alpha_{A}(x) \geq$ $q \geq t$, so that $x \in U\left(\alpha_{A} ; t\right)$. This shows that $\cup_{q \geq t} I_{q} \subseteq U\left(\alpha_{A} ; t\right)$. Now assume that $x \notin \cup_{q \geq t} I_{q}$. Then $x \notin I_{q}$ for all $q \geq t$. Since $t \neq \sup \{q \in \Lambda \mid q<t\}$, there exists $\varepsilon>0$ such that $(t-\varepsilon, t) \cap \Lambda=\varnothing$. Hence $x \notin I_{q}$ for all $q>t-\varepsilon$, which means that if $x \in I_{q}$, then $q \leq t-\varepsilon$. Thus $\alpha_{A}(x) \leq t-\varepsilon<t$, and so $x \notin U\left(\alpha_{A} ; t\right)$. Therefore $U\left(\alpha_{A} ; t\right) \subseteq \cup_{q \geq t} I_{q}$, and thus $U\left(\alpha_{A} ; t\right)=\cup_{q \geq t} I_{q}$ which is an ideal of X. Next we prove that $L\left(\beta_{A} ; s\right)$ is an ideal of X. We consider the following two cases:
(iii) $s=\inf \{r \in \Lambda \mid s<r\}$,
(iv) $s \neq \inf \{r \in \Lambda \mid s<r\}$.

For the case (iii), we have

$$
\begin{equation*}
x \in L\left(\beta_{A} ; s\right) \Longleftrightarrow x \in I_{r} \quad \forall s<r \Longleftrightarrow x \in \cap_{s<r} I_{r} \tag{3.27}
\end{equation*}
$$

and hence $L\left(\beta_{A} ; s\right)=\cap_{s<r} I_{r}$ which is an ideal of X. For the case (iv) there exists $\varepsilon>0$ such that $(s, s+\varepsilon) \cap \Lambda=\varnothing$. We will show that $L\left(\beta_{A} ; s\right)=\cup_{s \geq r} I_{r}$. If $x \in \cup_{s \geq r} I_{r}$, then $x \in I_{r}$ for some $r \leq s$. It follows that $\beta_{A}(x) \leq r \leq s$ so that $x \in L\left(\beta_{A} ; s\right)$. Hence $\cup_{s \geq r} I_{r} \subseteq L\left(\beta_{A} ; s\right)$. Conversely, if $x \notin \cup_{s \geq r} I_{r}$, then $x \notin I_{r}$ for all $r \leq s$, which implies that $x \notin I_{r}$ for all $r<s+\varepsilon$, that is, if $x \in I_{r}$, then $r \geq s+\varepsilon$. Thus $\beta_{A}(x) \geq s+\varepsilon>s$, that is, $x \notin L\left(\beta_{A} ; s\right)$. Therefore $L\left(\beta_{A} ; s\right) \subseteq \cup_{s \geq r} I_{r}$ and consequently $L\left(\beta_{A} ; s\right)=\cup_{s \geq r} I_{r}$ which is an ideal of X. This completes the proof.

A mapping $f: X \rightarrow Y$ of BCK-algebras is called a homomorphism if $f(x * y)=$ $f(x) * f(y)$ for all $x, y \in X$. Note that if $f: X \rightarrow Y$ is a homomorphism of BCKalgebras, then $f(0)=0$. Let $f: X \rightarrow Y$ be a homomorphism of BCK-algebras. For any $\operatorname{IFS} A=\left(\alpha_{A}, \beta_{A}\right)$ in Y, we define a new IFS $A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ in X by

$$
\begin{equation*}
\alpha_{A}^{f}(x):=\alpha_{A}(f(x)), \quad \beta_{A}^{f}(x):=\beta_{A}(f(x)) \quad \forall x \in X \tag{3.28}
\end{equation*}
$$

THEOREM 3.15. Let $f: X \rightarrow Y$ be a homomorphism of BCK-algebras. If an IFS $A=$ $\left(\alpha_{A}, \beta_{A}\right)$ in Y is an intuitionistic fuzzy ideal of Y, then an IFS $A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ in X is an intuitionistic fuzzy ideal of X.

Proof. We first have that

$$
\begin{align*}
& \alpha_{A}^{f}(x)=\alpha_{A}(f(x)) \leq \alpha_{A}(0)=\alpha_{A}(f(0))=\alpha_{A}^{f}(0), \tag{3.29}\\
& \beta_{A}^{f}(x)=\beta_{A}(f(x)) \geq \beta_{A}(0)=\beta_{A}(f(0))=\beta_{A}^{f}(0)
\end{align*}
$$

for all $x \in X$. Let $x, y \in X$. Then

$$
\begin{align*}
\min \left\{\alpha_{A}^{f}(x * y), \alpha_{A}^{f}(y)\right\} & =\min \left\{\alpha_{A}(f(x * y)), \alpha_{A}(f(y))\right\} \\
& =\min \left\{\alpha_{A}(f(x) * f(y)), \alpha_{A}(f(y))\right\} \\
& \leq \alpha_{A}(f(x))=\alpha_{A}^{f}(x), \\
\max \left\{\beta_{A}^{f}(x * y), \beta_{A}^{f}(y)\right\} & =\max \left\{\beta_{A}(f(x * y)), \beta_{A}(f(y))\right\} \tag{3.30}\\
& =\max \left\{\beta_{A}(f(x) * f(y)), \beta_{A}(f(y))\right\} \\
& \geq \beta_{A}(f(x))=\beta_{A}^{f}(x) .
\end{align*}
$$

Hence $A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ is an intuitionistic fuzzy ideal of X.
If we strengthen the condition of f, then we can construct the converse of Theorem 3.15 as follows.

Theorem 3.16. Let $f: X \rightarrow Y$ be an epimorphism of BCK-algebras and let $A=$ $\left(\alpha_{A}, \beta_{A}\right)$ be an IFS in Y. If $A^{f}=\left(\alpha_{A}^{f}, \beta_{A}^{f}\right)$ is an intuitionistic fuzzy ideal of X, then $A=\left(\alpha_{A}, \beta_{A}\right)$ is an intuitionistic fuzzy ideal of Y.

Proof. For any $x \in Y$, there exists $a \in X$ such that $f(a)=x$. Then

$$
\begin{align*}
& \alpha_{A}(x)=\alpha_{A}(f(a))=\alpha_{A}^{f}(a) \leq \alpha_{A}^{f}(0)=\alpha_{A}(f(0))=\alpha_{A}(0), \tag{3.31}\\
& \beta_{A}(x)=\beta_{A}(f(a))=\beta_{A}^{f}(a) \geq \beta_{A}^{f}(0)=\beta_{A}(f(0))=\beta_{A}(0)
\end{align*}
$$

Let $x, y \in Y$. Then $f(a)=x$ and $f(b)=y$ for some $a, b \in X$. It follows that

$$
\begin{align*}
\alpha_{A}(x) & =\alpha_{A}(f(a))=\alpha_{A}^{f}(a) \\
& \geq \min \left\{\alpha_{A}^{f}(a * b), \alpha_{A}^{f}(b)\right\} \\
& =\min \left\{\alpha_{A}(f(a * b)), \alpha_{A}(f(b))\right\} \\
& =\min \left\{\alpha_{A}(f(a) * f(b)), \alpha_{A}(f(b))\right\} \\
& =\min \left\{\alpha_{A}(x * y), \alpha_{A}(y)\right\}, \tag{3.32}\\
\beta_{A}(x) & =\beta_{A}(f(a))=\beta_{A}^{f}(a) \\
& \leq \max \left\{\beta_{A}^{f}(a * b), \beta_{A}^{f}(b)\right\} \\
& =\max \left\{\beta_{A}(f(a * b)), \beta_{A}(f(b))\right\} \\
& =\max \left\{\beta_{A}(f(a) * f(b)), \beta_{A}(f(b))\right\} \\
& =\max \left\{\beta_{A}(x * y), \beta_{A}(y)\right\} .
\end{align*}
$$

This completes the proof.
Let $\operatorname{IF}(X)$ be the family of all intuitionistic fuzzy ideals of X and let $t \in[0,1]$. Define binary relations U^{t} and L^{t} on $\operatorname{IF}(X)$ as follows:

$$
\begin{equation*}
(A, B) \in U^{t} \Leftrightarrow U\left(\alpha_{A} ; t\right)=U\left(\alpha_{B} ; t\right), \quad(A, B) \in L^{t} \Longleftrightarrow L\left(\beta_{A} ; t\right)=L\left(\beta_{B} ; t\right) \tag{3.33}
\end{equation*}
$$

respectively, for $A=\left(\alpha_{A}, \beta_{A}\right)$ and $B=\left(\alpha_{B}, \beta_{B}\right)$ in $\operatorname{IF}(X)$. Then clearly U^{t} and L^{t} are
equivalence relations on $\operatorname{IF}(X)$. For any $A=\left(\alpha_{A}, \beta_{A}\right) \in \operatorname{IF}(X)$, let $[A]_{U^{t}}$ (respectively, $[A]_{L^{t}}$) denote the equivalence class of A modulo U^{t} (respectively, L^{t}), and denote by $\operatorname{IF}(X) / U^{t}$ (respectively, $\operatorname{IF}(X) / L^{t}$) the system of all equivalence classes modulo U^{t} (respectively, L^{t}); so

$$
\begin{equation*}
\operatorname{IF}(X) / U^{t}:=\left\{[A]_{U^{t}} \mid A=\left(\alpha_{A}, \beta_{A}\right) \in \operatorname{IF}(X)\right\}, \tag{3.34}
\end{equation*}
$$

respectively,

$$
\begin{equation*}
\operatorname{IF}(X) / L^{t}:=\left\{[A]_{L^{t}} \mid A=\left(\alpha_{A}, \beta_{A}\right) \in \operatorname{IF}(X)\right\} . \tag{3.35}
\end{equation*}
$$

Now let $I(X)$ denote the family of all ideals of X and let $t \in[0,1]$. Define maps f_{t} and g_{t} from $\operatorname{IF}(X)$ to $I(X) \cup\{\varnothing\}$ by $f_{t}(A)=U\left(\alpha_{A} ; t\right)$ and $g_{t}(A)=L\left(\beta_{A} ; t\right)$, respectively, for all $A=\left(\alpha_{A}, \beta_{A}\right) \in \operatorname{IF}(X)$. Then f_{t} and g_{t} are clearly well defined.

Theorem 3.17. For any $t \in(0,1)$ the maps f_{t} and g_{t} are surjective from $\operatorname{IF}(X)$ to $I(X) \cup\{\varnothing\}$.

Proof. Let $t \in(0,1)$. Note that $\mathbf{0}_{\sim}=(\mathbf{0}, \mathbf{1})$ is in $\operatorname{IF}(X)$, where $\mathbf{0}$ and $\mathbf{1}$ are fuzzy sets in X defined by $\mathbf{0}(x)=0$ and $\mathbf{1}(x)=1$ for all $x \in X$. Obviously $f_{t}\left(\mathbf{0}_{\sim}\right)=U(\mathbf{0} ; t)=$ $\varnothing=L(\mathbf{1} ; t)=g_{t}\left(\mathbf{0}_{\sim}\right)$. Let $G(\neq \varnothing) \in I(X)$. For $G_{\sim}=\left(\chi_{G}, \bar{X}_{G}\right) \in \operatorname{IF}(X)$, we have $f_{t}\left(G_{\sim}\right)=$ $U\left(\chi_{G} ; t\right)=G$ and $g_{t}\left(G_{\sim}\right)=L\left(\bar{\chi}_{G} ; t\right)=G$. Hence f_{t} and g_{t} are surjective.

Theorem 3.18. The quotient sets $\operatorname{IF}(X) / U^{t}$ and $\operatorname{IF}(X) / L^{t}$ are equipotent to $I(X) \cup$ $\{\varnothing\}$ for every $t \in(0,1)$.
Proof. For $t \in(0,1)$ let f_{t}^{*} (respectively, g_{t}^{*}) be a map from $\operatorname{IF}(X) / U^{t}$ (respectively, $\left.\operatorname{IF}(X) / L^{t}\right)$ to $I(X) \cup\{\varnothing\}$ defined by $f_{t}^{*}\left([A]_{U^{t}}\right)=f_{t}(A)$ (respectively, $g_{t}^{*}\left([A]_{L^{t}}\right)=$ $\left.g_{t}(A)\right)$ for all $A=\left(\alpha_{A}, \beta_{A}\right) \in \operatorname{IF}(X)$. If $U\left(\alpha_{A} ; t\right)=U\left(\alpha_{B} ; t\right)$ and $L\left(\beta_{A} ; t\right)=L\left(\beta_{B} ; t\right)$ for $A=\left(\alpha_{A}, \beta_{A}\right)$ and $B=\left(\alpha_{B}, \beta_{B}\right)$ in $\operatorname{IF}(X)$, then $(A, B) \in U^{t}$ and $(A, B) \in L^{t}$; hence $[A]_{U^{t}}=[B]_{U^{t}}$ and $[A]_{L^{t}}=[B]_{L^{t}}$. Therefore the maps f_{t}^{*} and g_{t}^{*} are injective. Now let $G(\neq \varnothing) \in I(X)$. For $G_{\sim}=\left(\chi_{G}, \bar{X}_{G}\right) \in \operatorname{IF}(X)$, we have

$$
\begin{align*}
f_{t}^{*}\left(\left[G_{\sim}\right]_{U^{t}}\right) & =f_{t}\left(G_{\sim}\right)=U\left(X_{G} ; t\right)=G, \\
g_{t}^{*}\left(\left[G_{\sim}\right]_{L^{t}}\right) & =g_{t}\left(G_{\sim}\right)=L\left(\bar{\chi}_{G} ; t\right)=G . \tag{3.36}
\end{align*}
$$

Finally, for $\mathbf{0}_{\sim}=(\mathbf{0}, \mathbf{1}) \in \operatorname{IF}(X)$ we get

$$
\left.\begin{array}{rl}
f_{t}^{*}\left(\left[\mathbf{0}_{\sim}\right]_{U^{t}}\right) & =f_{t}\left(\mathbf{0}_{\sim}\right) \\
g_{t}^{*}\left(\left[\mathbf{0}_{\sim}\right]_{L^{t}}\right) & =g_{t}\left(\mathbf{0}_{\sim}\right) \tag{3.37}
\end{array}=L(\mathbf{0} ; t)=\varnothing, t\right)=\varnothing .
$$

This shows that f_{t}^{*} and g_{t}^{*} are surjective. This completes the proof.
For any $t \in[0,1]$, we define another relation R^{t} on $\operatorname{IF}(X)$ as follows:

$$
\begin{equation*}
(A, B) \in R^{t} \Longleftrightarrow U\left(\alpha_{A} ; t\right) \cap L\left(\beta_{A} ; t\right)=U\left(\alpha_{B} ; t\right) \cap L\left(\beta_{B} ; t\right) \tag{3.38}
\end{equation*}
$$

for any $A=\left(\alpha_{A}, \beta_{A}\right), B=\left(\alpha_{B}, \beta_{B}\right) \in \operatorname{IF}(X)$. Then the relation R^{t} is also an equivalence relation on $\operatorname{IF}(X)$.

Theorem 3.19. For any $t \in(0,1)$, the map $\phi_{t}: \operatorname{IF}(X) \rightarrow I(X) \cup\{\varnothing\}$ defined by $\phi_{t}(A)=f_{t}(A) \cap g_{t}(A)$ for each $A=\left(\alpha_{A}, \beta_{A}\right) \in \operatorname{IF}(X)$ is surjective.

Proof. Let $t \in(0,1)$. For $\mathbf{0}_{\sim}=(\mathbf{0}, \mathbf{1}) \in \operatorname{IF}(X)$,

$$
\begin{equation*}
\phi_{t}\left(\mathbf{0}_{\sim}\right)=f_{t}\left(\mathbf{0}_{\sim}\right) \cap g_{t}\left(\mathbf{0}_{\sim}\right)=U(\mathbf{0} ; t) \cap L(\mathbf{1} ; t)=\varnothing . \tag{3.39}
\end{equation*}
$$

For any $H \in \operatorname{IF}(X)$, there exists $H_{\sim}=\left(\chi_{H}, \bar{\chi}_{H}\right) \in \operatorname{IF}(X)$ such that

$$
\begin{equation*}
\phi_{t}\left(H_{\sim}\right)=f_{t}\left(H_{\sim}\right) \cap g_{t}\left(H_{\sim}\right)=U\left(\chi_{H} ; t\right) \cap L\left(\bar{\chi}_{H} ; t\right)=H . \tag{3.40}
\end{equation*}
$$

This completes the proof.
Theorem 3.20. For any $t \in(0,1)$, the quotient set $\operatorname{IF}(X) / R^{t}$ is equipotent to $I(X) \cup\{\varnothing\}$.

Proof. Let $t \in(0,1)$ and let $\phi_{t}^{*}: \operatorname{IF}(X) / R^{t} \rightarrow I(X) \cup\{\varnothing\}$ be a map defined by $\phi_{t}^{*}\left([A]_{R^{t}}\right)=\phi_{t}(A)$ for all $[A]_{R^{t}} \in \operatorname{IF}(X) / R^{t}$. If $\phi_{t}^{*}\left([A]_{R^{t}}\right)=\phi_{t}^{*}\left([B]_{R^{t}}\right)$ for any $[A]_{R^{t}}$, $[B]_{R^{t}} \in \operatorname{IF}(X) / R^{t}$, then $f_{t}(A) \cap g_{t}(A)=f_{t}(B) \cap g_{t}(B)$, that is, $U\left(\alpha_{A} ; t\right) \cap L\left(\beta_{A} ; t\right)=$ $U\left(\alpha_{B} ; t\right) \cap L\left(\beta_{B} ; t\right)$, hence $(A, B) \in R^{t}$. It follows that $[A]_{R^{t}}=[B]_{R^{t}}$ so that ϕ_{t}^{*} is injective. For $\mathbf{0}_{\sim}=(\mathbf{0}, \mathbf{1}) \in \operatorname{IF}(X)$,

$$
\begin{equation*}
\phi_{t}^{*}\left(\left[\mathbf{0}_{\sim}\right]_{R^{t}}\right)=\phi_{t}\left(\mathbf{0}_{\sim}\right)=f_{t}\left(\mathbf{0}_{\sim}\right) \cap g_{t}\left(\mathbf{0}_{\sim}\right)=U(\mathbf{0} ; t) \cap L(\mathbf{1} ; t)=\varnothing . \tag{3.41}
\end{equation*}
$$

If $H \in \operatorname{IF}(X)$, then for $H_{\sim}=\left(\chi_{H}, \bar{\chi}_{H}\right) \in \operatorname{IF}(X)$, we have

$$
\begin{equation*}
\phi_{t}^{*}\left(\left[H_{\sim}\right]_{R^{t}}\right)=\phi\left(H_{\sim}\right)=f_{t}\left(H_{\sim}\right) \cap g_{t}\left(H_{\sim}\right)=U\left(\chi_{H} ; t\right) \cap L\left(\bar{\chi}_{H} ; t\right)=H . \tag{3.42}
\end{equation*}
$$

Hence ϕ_{t}^{*} is surjective, this completes the proof.
Acknowledgement. The first author was supported by Korea Research Foundation Grant (KRF-99-005-D00003).

References

[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87-96. MR 87f:03151. Zbl 631.03040.
[2] ___ New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), no. 2, 137-142. CMP 1262 464. Zbl 824.04004.
[3] Y. B. Jun, A note on fuzzy ideals in BCK-algebras, Math. Japon. 42 (1995), no. 2, 333-335. CMP 1356 395. Zbl 834.06018.
[4] ___ Finite valued fuzzy ideals in BCK-algebras, J. Fuzzy Math. 5 (1997), no. 1, 111-114. CMP 1441 020. Zbl 868.06010.
[5] Characterizations of Noetherian BCK-algebras via fuzzy ideals, Fuzzy Sets and Systems 108 (1999), no. 2, 231-234. CMP 1720 432. Zbl 940.06014.
[6] Y. B. Jun, S. M. Hong, S. J. Kim, and S. Z. Song, Fuzzy ideals and fuzzy subalgebras of BCKalgebras, J. Fuzzy Math. 7 (1999), no. 2, 411-418. MR 2000c:06040. Zbl 943.06010.
[7] Y. B. Jun and E. H. Roh, Fuzzy commutative ideals of BCK-algebras, Fuzzy Sets and Systems 64 (1994), no. 3, 401-405. MR 95e:06051. Zbl 846.06011.
[8] J. Meng, Y. B. Jun, and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems 89 (1997), no. 2, 243-248. MR 98a:06033. Zbl 914.06009.
[9] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. MR 36\#2509. Zbl 139.24606.

Young Bae Jun: Department of Mathematics Education, Gyeongsang National UniVersity, Chinju 660-701, Korea
E-mail address: ybjun@nongae.gsnu.ac.kr
Kyung Ho Kim: Department of Mathematics, Chungju National University, Chungju 380-702, Korea

E-mail address: ghkim@gukwon. chungju.ac.kr

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

