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Over the last decades, the increasingwater demand has caused a number of problems, towhich reservoir operation optimization has
been suggested as one of the best solutions. In this research, a model based onmixed integer linear programming (MILP) technique
is developed for the systematic operation of multireservoirs that are used to cater for the different needs of the Tehran-Karaj plain.
These reservoirs include Laar, Latian, and Karaj dams. The system configuration was accomplished through the nodes and arcs
of the network flow model approach and system component implementation including sources, consumption, junctions, and the
physical and hydraulic relationship between them. The following were performed via comprehensive developed software: system
configuration, objective function and constraints formulation, linearization, determining penalty values, and setting priorities for
each node and arc in the system. A comparison between the MILP developed model’s results against the periodic data shows
21.7% less overflow, 11.6% more outflow, and 15.9% more reservoir storage, respectively. The outcome of the MILP-based modeling
indicates superior performance to the historical period.

1. Introduction

Water scarcity has become a serious concern in the process
of urbanization and socioeconomic development, specifically
in metropolis cities in which water resources are limited [1].
Therefore, in order to control and optimize surface water
resource utilization, several large dam and water transfer
projects have been created or are being designed and imple-
mented in most countries worldwide including Iran. Thus, it
is crucial to pay particular attention to the projects’ effective
operation to obtain the utmost benefits and satisfaction from
all the goals set earlier.

Uneven periodic and spatial distribution of fresh water
and increasing population and social welfare have led to a
rising need for water in Iran, principally in Tehran.

The limited resources of surface water supplied from the
reservoirs of Laar, Latian, and Karaj are not sufficient to
cover the water needs of this metropolitan city. Therefore
in order to meet the demands, underground aquifers are

significantly being used to supplement the water needs.
However, during the arid years underground water usage
increases drastically, which may have devastating effects on
the quality and quantity of aquifers. Thus, it is important
to ensure that the ground water is not overextracted, and
this can probably be done by optimizing the use the surface
water. A proper management of surface water may indirectly
influence the use of scarce ground water. Therefore, the aim
of this study is to develop a model that can lead to an optimal
operation of the current reservoir for better water resource
management.

Researchers have been continuously developing various
methods of optimizing reservoir operation [2]. Optimiza-
tion processes depend on system features, data availability,
objective function and constraint types, a number of con-
straints and variables, and physical relationships governing
the system [3]. Nonetheless, uneven periodic and spatial
distribution of fresh water and increasing population and
social welfare have led to a rising need for water in Iran,
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principally in Tehran. Therefore, one of the requirements in
water resource management is to optimize the use of surface
water resources.

Mixed integer linear programming (MILP) is an integer
programming model that allows combining real, integer, and
binary variables. It is considered an appropriate approach
to formulate and solve problems [4]. Since the majority of
integer programming models have a similar structure to
linear programming, all the available tools can be applied.
Robustness, ease of expansion, and a multiobjective nature
are additional key features of the mentioned method [5].
In contrast, several other integer programming models are
nonlinear (MINLP), and recently some researchers have
applied this method for problem solving [6–9].

Since Laar, Latian, and Karaj reservoir systems are large
scaled and contain many variables and nonlinear constrains
during a long historical period, in order to optimize reservoir
system in a specific area and to overcome the problems in
linear programming and reservoir characteristics MILP is
considered as an adequate approach.

In the present research, a MILP classical model was
developed to operate the current reservoirs in the study
area. The aim is to examine MILP’s technical competence in
deriving a public policy of reservoir operation.

2. Literature Review

Researchers have suggested optimization models to balance
the conflicts among water users regarding allocation of
water recourses [10]. Various methods of optimization and
their applications have been comprehensively assessed by
numerous researchers such Simonovic [11] and Labadie [12];
issues addressed are water resource engineering and partic-
ularly reservoir operation. All techniques have advantages
and disadvantages. Regarding the optimization of reservoir
system modeling, among the optimal techniques is linear
programming (LP) along with alternative methods. Sig-
nificant advantages of LP method are its ability to solve
large-scale problems in the best possible way, convergence
towards the global optimum response, an initial solution
being not necessary, easy to perform sensitivity analysis and
uncomplicated problem solving [13].

Linear programming guarantees reaching optimum
answers, but all equations (including objective function and
constraints) must be linear [14]. In reality, most functions
are nonlinear in plenty of relevant cases in water resource
management. Moreover, there is a problem to formulate
linear programming for reservoir operation.

One of the drawbacks with LP formulation in reservoir
operation and management is that reservoir storage conti-
nuity equation cannot explicitly control spillway, whereas
perhaps when the reservoir is not full in optimized solutions
some values are considered for the spillway [15]. This issue
also was reported by Shih and ReVelle [16]. It is also possible
that, in some reservoirs alongside the spillway outlet, the
amount of seepage from the reservoir is considerable, and
there is a nonlinear relationship between seepage and storage.

From all the progress made on LP we can point to
binary linear programming, integer linear programming, and

mixed integer linear programming, which are very useful to
describe nonlinear andnonconvex statements in the objective
function and the constraints [17]. Many researchers like
Needham et al. [18], Srinivasan et al. [19], Barros et al. [20],
and Eslami and Qaderi [21] have used the MILP technique in
water resource engineering.

Optimization models are usually used for hydroelectric
power reservoir operations with various time scales [22].
The mixed integer programming method has been widely
implemented for planning and midterm scheduling [23],
short-term scheduling [24], and real-time scheduling [25].
In some research works, this technique is used to formulate
and estimate water resource management planning under
hydrological uncertainties [26, 27].

Different integer programming means like the cut,
branch, and bound methods can been applied to solve a
range of problems in the field of water resource [28]. But
to practically solve difficult and large-scale optimization
problems, software packages are used due to their high speed
and accuracy [29]. Ilog-Cplex model is one of the software
packages with the capacity to solve integer programming as
well as many linear or nonlinear programming problems. It
also has the ability to interact with other models, such as
GAMS,AMPL, andMicrosoftVisual Studio [30]. Researchers
like Conejo et al. [31], Garćıa-González et al. [32], and Baslis
and Bakirtzis [23] have utilized these packages to solve MILP
and mixed integer nonlinear programming (MINLP).

Moraga et al. employed MILP approximation to solve
a nonlinear model for planning midterm water transfer
between two reservoirs [33]. Tu et al. [34] developed a mixed
integer nonlinear programming (MINLP) model to optimize
hedging rules for reservoir operations. In other research
works, El Mouatasim [35] used Boolean integer nonlinear
programming (BINLP) for optimum pump performance
in reservoir operation. Noory et al. [36] also successfully
used the MILP model for optimum irrigation allocation and
solving some multicrop planning issues.

The system related to reservoirs can be portrayed as a net-
work of nodes and arcs. Nodes represent water storage points,
diversion places, and intersections, while arcs represent the
release of reservoirs, channel pipelines, and evaporation or
other losses. This kind of optimization is based on the flow
network model as used by various researchers in CalSim,
Modsim, and OASIS software to model large systems [12, 37,
38].

3. Case Study

The study area covers the plain and city of Tehran, which
are located on the southern slopes of the Alborz Mountains
and include the basins and dam reservoirs of Karaj, Laar, and
Latian. Other than Laar basin dam, the remaining study area
is located on the southern slopes of the Alborz Mountains.
Several dams are constructed on the rivers in Tehran to
control the surface water flow and for supplying a part of
urban drinking water and agriculture requirements. Three
most important dams are Karaj, Laar, and Latian dams.
Recently, Taleghan and Mamlu dams are built but due to the
lack of historical data they have not been discussed here.



Mathematical Problems in Engineering 3

Table 1: Reservoir characteristics in the study area.

Dam name Location Capacity (MCM) Height (m) Overflow capacity
(cms) Input flow (MCM) Catchment area

(km2)
Karaj 23 km north Karaj 205 165 1450 414 850

Laar 75 km northeast
Tehran 960 105 1080 459 680

Latian 35 km northeast
Tehran 95 107 1750 338 710

Figure 1 shows the relationship between water resources
(surface and ground water) and different uses in the Tehran
plain. In this study, only surface water resources in operation
are taken into account, including the Laar, Karaj, and Latian
dam reservoirs. Table 1 lists the reservoirs’ characteristics.
Tehran’s drinking water supplies are provided for by ground
water and surface water sources. Ample resources are allo-
cated yearly tomeet drinkingwater, agriculture, industry, and
green space needs. The extraction of ground water resources
greatly increases throughout arid years, which has harmful
effects on the quality and quantity of ground water resources.
Since 1928, several plans have been implemented to supply
the water needs of Tehran. Unfortunately, over time, with the
increasing population and higher levels of various consumer
needs, the implemented plans were unable to meet consumer
needs. Several projects are currently under study and will be
implemented to provide greater amounts of water to the city
of Tehran from other areas.

4. Mathematical Formulation of the Problem

The mathematical formulation developed in this study is
based on the MILP approach. It has been attempted to intro-
duce a set of constraints that involves correct variables such
that the spillway can be controlled and nonlinear equations
are presented as a set of linear equations.Mixed integer linear
programming (MILP) is applied to perform this action.

4.1. Mixed Integer Linear Programming. The complexity of
computing an integer programming problemdepends on two
factors: the number of integer variables and the problem
structure. Presently, the most popular algorithm for solving
integer programming problems is the branch and bound
technique, whereby the key feature is the implied counting
of current answers. Since the number of current solutions
of an integer programming problem of integer number limit
is countable, it seems natural for the counting method to
be applied to obtain the optimal solution. Suppose that the
relationship between the reservoir’s release and storage is
simulated as the curve fitting Figure 2. This curve must be
linearized by the piecewise method. In Figure 2 𝑆
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Figure 1: Schematic drawing of the relationship between resources
and expenditures for Tehran plain.

Indeed, the release-storage equation is a curve that is
divided into several lines after the cut approximation, and
each line has a separate equation:

𝑄
𝑡
= 𝑚𝑆
𝑡
+ ℎ
1
, (1)

where𝑄
𝑡
is the release of reservoir, 𝑆

𝑡
is the reservoir storage,

𝑚 is the slope of the line, and ℎ
1
is the origin width. The

release-storage equation comprises several lines. The overall
relationship between release and storage is as follows:
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The relationship must be achieved so as to calculate the
storage at anymoment according to release. At any time in the
release-storage relation, the storage of the reservoir must be
in one section. Thus by using the integer variables, the above
equation becomes
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Figure 2: The relationship between the release and storage of a dam’s reservoir.
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Also, reservoir storage should be located between the
upper and lower bounds in every part:
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Integer variables can only have values of zero or one, and
their sum must always be equal to one:

𝑋
1
+ 𝑋
2
+ 𝑋
3
= 1. (6)

According to the storage, one of the integer variables has
a value of one and the other zero. So, the final constraints are
defined as follows:
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where 𝑀 is a constant value, depending on how a curve
is approximated by the number of lines; the number of
integer variables increases and the problem becomes more
complicated.

4.2. System Configuration. As previously mentioned, the
optimization model of network flow is used to implement
multiobjective optimization of problem reservoirs in the
Tehran plain. System topology was executed based on this
model, after which the whole system was solved based on
MILP.

In this method, each system is shown as a combination
of nodes and arcs. Nodes must represent sources, reservoirs,
junctions, demands, and groundwater, and the arcs represent

the links between nodes potentially including channels
(Figure 3).

Some of themain justifications for using the network flow
model for system configuration are the ease of expressing
river basin systems as schematic figures, capability to use
linear programming (and MILP), applicability to large-scale
problems, and effortless ability to alter the system. In the
network flow model, system components are implemented
using nodes and arcs.Most of the analyses regarding reservoir
systems are conducted via a type of network flow formulation
which is called “Minimum Network Cost.” Each node and
arc have a minimum and maximum boundary and a value.
In the network flow model, all nodes and channels enter
into the objective function with a coefficient that reflects the
priorities.

A sample water supply system is presented in Figure 3,
which consists of nodes and arcs. In Figure 3 an overview
of dams, refineries, tunnels, and channels of Tehran are
demonstrated. Karaj dam is a multipurpose reservoir on the
Karaj river.The intake of Bilaghan is located 23 km away from
Karaj dam, which receives a part of water requirements from
Karaj dam as in the river and Taleghan dam via pipes. Part
of that is allocated to supply water of Tehran by pipeline and
the other part is allocated to about 50 thousand hectares of
agricultural land.

Laar dam is another important source of drinking water
supply in Tehran. Laar dam also supplies water for agri-
cultural irrigation in Mazandaran Province. Laar tunnel
transfers outflow of Laar’s dam to Latian reservoir which is
approximately 140 million cubic meters.

Latian dam is located on Jajrood river of Tehran. After
primary physical treatment, Latian release is transferred by
two steel and concrete pipes to first and second refinery.Thus,
it supplies about 30% of the drinking water of Tehran.Mamlu
and Karaj channels are added in the second refinery and they
supply drinking water of Tehran.

4.3. Constrains. Constrains are defined as continuity at each
node, continuity at reservoir, elevation-storage relations, and
the amount of shortages in drinking water, industry, and
agriculture. Constraints with the reservoir can be expressed
as follows:

𝑆
𝑡+1
= 𝑆
𝑡
+ 𝐼
𝑡
− 𝑂
𝑡
. (8)
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Figure 3: A schematic of the prepared water system (MILP model).

The above equation represents the reservoir storage bal-
ance; 𝑆

𝑡+1
is reservoir storage at the end of period 𝑡, 𝑆

𝑡
is

reservoir storage at the beginning of period 𝑡, 𝐼
𝑡
is the total

input in a period of 𝑡, and𝑂
𝑡
is the total release in a period of

𝑡.
The second constraint regards the high boundary and low

boundary of reservoir storage, which are defined to achieve
suitable storage for flood control and dead storage, and so
forth

𝑆
𝑡,min ≤ 𝑆𝑡 ≤ 𝑆𝑡,max for 𝑡 = 1, . . . , 𝑇, (9)

where 𝑆
𝑡
is reservoir storage in a period of 𝑡, 𝑆

𝑡,max is
the maximum reservoir storage, and 𝑆

𝑡,min is the minimum
reservoir storage in the same period.

The third constraint is the supply of minimum down-
stream flow to maintain water quality, wildlife, and the
environment:

𝑅
𝑡,min ≤ 𝑅𝑡 ≤ 𝑅𝑡,max for 𝑡 = 1, . . . , 𝑇, (10)

where 𝑅
𝑡
is release of the reservoir in a period of 𝑡, 𝑅

𝑡,max is
themaximum release of the reservoir storage, and𝑅

𝑡,min is the
minimum release of the reservoir storage in the same period.

It is possible in reservoirs that produce energy, for
the relationships between the area-storage and elevation-
storage are used to obtain the effective head. Water resource
management depends on the water needs supply to a great

extent. The equation of each necessary node for drinking
water, industry, agriculture, and so forth is

𝐼 + 𝐹 = 𝐷, (11)

where 𝐼 is a variable related to the input of a needed node
and 𝐹 is a variable related to the rate of shortage in the same
node whose range must be defined according to the type of
user needs; 𝐷 is the amount of water needed. In addition
to supplying needs, in each needed node the user must
determine the penalty rate for shortages.The penalty amount
depends on the type and quantity requirements. Penalties
that are set for shortage of drinking water can be more than
the penalties that are set for water shortage in agricultural
or industrial purposes. According to the importance of each
consumer, the penalty may vary.

The connections between nodes are placed by the arc.The
arc represents the current between two nodes. Different types
of arcs are designed in this model, which must be applied
according to usage and type of connection. The considered
constraint for each arc is as follows:

0 ≤ 𝑞ℓ ≤ 𝑞ℓ
𝑡,max, (12)

where 𝑞ℓ
𝑡,max is the maximum current flowing through the

spillway, and 𝑞ℓ is the actual amount of current passing
through the spillway in a period 𝑡.
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4.4. Objective Function. In this developed model objective
function will be defined as Minimize∑

ℓ𝜀𝐴
𝐶
ℓ
𝑞
ℓ
in which “𝐴”

is all of nodes and arcs that have a defined priority or penalty
factor. “𝐶” is amount of priority or penalty coefficient and
“𝑞” stands for flow or shortage in each node and arc. The
main objective in such issue isminimizing a series of designed
phrases so penalties should be fitted to type of consumer and
amount of consumption with a positive factor and besides
amount of priorities should be defined with a negative factor.
The greater the amount of penalties in each constraint, the
less violation against constraints by the model. Also, the
greater the value of priorities, the more attempts to satisfy the
given constraints by the model.Therefore, user should define
numeric amount of such priorities and penalties according
to condition and also type and amount of consumption
appropriately. The objective function is given as

Minimize OBJ:

=
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∑
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𝐶
5
⋅ US
𝑛𝑇
,

(13)

where 𝑛 is the number of reservoirs, 𝑇 is a whole period of
optimization, and 𝐶

𝑖
is the penalty coefficients or priority.

Clearly, the objective is to minimize the sum of a series of
expressions, including controlled channels (CH), shortages
of agricultural needs (HO), minimization of overflow (PL),
maximization of reservoir storage (ST), and minimization
of urban demand shortage (US). 𝐶

1
is priority use of

controlled channels, 𝐶
2
is priority for agricultural purposes,

𝐶
3
is penalty factor for overflow, 𝐶

4
is priority to maintain

reservoir storage, and 𝐶
5
is penalty coefficient for the urban

water supply shortages. The coefficients of these terms are
determined by the designer. Penalties are greater if the defi-
ciencies are more. Optimal release of each of the reservoirs
should be allocated to various uses; of those, drinking water
is themost important consumer of water in system of Tehran.
The penalties and priorities have been set so that the need of
Tehran drinking water is a priority. Therefore, the primary
purpose of implementing the operation is minimization of
water shortages in the study area as a way to increase the
amount of the availability ofwater.Thenext priority of project
is a high percentage of the available water supply in any time.
So overflow rate is very important in assessing operating
performance. Priorities are intended tominimize the amount
of overflow and caused increased hydropower production
and as a result, reservoir storage is maintained.

The MILP model presented in this paper is easily
developable and very flexible, because penalty coefficients
and objective priorities can be modified by the user. For
example, we can consider more penalties for overflow than
other objectives in order to minimize overflow as a primary
objective. Inputs and outputs of the model are presented in

the form of spreadsheet software that is easily transferable to
other spreadsheets.

Presently a mixed integer linear programming model has
been developed, which can be used for water resource system
optimization in a desired range.Thismodel is prepared based
on the formulas given by (8) to (13) and the developed
formulas’ linearized relationship to the nonlinear equations
(1) to (7) in this problem. The period is equal to 20 years to
solve this problem; the number of integer variables is equal to
1440; the average number of variables is equal to 60960 and
the number of constraints is 47040.

5. Results

In this study, we used the optimization model to simulate
operation of multiple and multiobjective reservoir system,
without specifying operation rules of reservoirs. It was done
by determination of penalty weighting factors and priori-
tizing in the objective function. Therefore, we did not use
the objective function to maximize economic efficiency; we
used it to have a better simulation of reservoirs performance
compared to historical data. In this study, the objective
function is governing equation in simulation of multiple and
multiobjective reservoirs operation.This equation consists of
several decision variables including the amount of overflow,
reservoirs storage, and the amount of water needed for
drinking, agriculture, and industry in each period in each
reservoir. For water resource system mode, the assumptions
and criteria considered are drinking water shortage of 5%
and between 10% and 30% shortage of agricultural water,
and the return flow from drinking water consumption and
agricultural water consumption are considered 60% and
25%, respectively. To maintain the reservoir water balance,
water surface elevations at the beginning and end of the
optimization period were consider as equal to historical
period amount. The optimization is done monthly and a
historical period of 20 years has been used for themodel from
1983 to 2003. The calculated optimal release from the MILP
model was compared against observations of the Laar, Latian,
and Karaj reservoirs. The optimal release from Latian dam,
Laar dam, and Karaj dam is provided in Figures 4, 5, and 6
respectively.

There is an almost good adaptation between the results
of the MILP optimal release and the observation amount in
dams of Karaj and Latian. The greatest differences in Karaj
dam occur in the maximum peaks. Also in Latian dam, after
1995 the delay between the optimal and actual values can
be seen, in which existence of periodic droughts can be the
reason. A large change in Mazandaran agricultural needs is
also one of the main reasons for the creation of the difference
between the historical and optimal values in Laar dam.

To supply drinking water for Tehran, the average annual
of 336 million cubic meters (MCM) (38.89%) is taken from
Karaj dam, and 288MCM (33.33%) is taken from Latian and
Laar dams. The remaining needed water, that is, 240MCM
(27.78%), is provided by ground water resources (wells). The
underground source is substantial to meet the demand of
Tehran drinking water. These values are shown in Table 2.
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Figure 4: The optimal release and observations of Latian dam.
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Figure 5: The optimal release and observations of Laar dam.

Table 2: The observed average annual amount of water abstracted from the dams of Karaj and Latian and Laar and wells (in MCM).

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 Average (1983 to 2003)
Karaj 328 328 328 311 319 285 331 276 285 216 323 336 336
Laar and Latian 276 293 285 293 302 293 293 267 259 224 267 276 288
Wells 104 121 155 207 259 328 293 388 352 440 311 290 240
Total 708 742 768 811 880 906 917 931 896 880 901 902 864

In comparison, Table 3 gives the calculated amount of water
supplied by the Karaj, Latian and Laar, and the underground
source.

The driest year in history was 2001, when totally an aver-
age of about 216MCM of water was drawn from Karaj Dam
and 224MCM from Laar and Latian dam, while 390MCM
was sourced from the wells to supply the drinking water for
Tehran as shown in Table 3. In comparison, according to the
statistics provided by the Tehran Regional Water Company,

while the amount withdrawn from the Karaj and Laar and
Latian dam were 214MCM and 224MCM, respectively, the
amounts withdrawn from the well were over 440MCM.This
amount differs significantly from the calculated one, which
indicates over consumption of the ground water resources.

Figure 7 shows the comparison between the historical and
calculated amount of water abstracted from the Karaj dam,
Laar and Latian dam, and the underground source. It can
be seen from this figure that the observed amount of water



8 Mathematical Problems in Engineering

8/
19

84

8/
19

86

8/
19

88

8/
19

90

8/
19

92

8/
19

94

8/
19

96

8/
19

98

8/
20

00

8/
20

02

3/
20

01
12

/2
00

1

3/
20

03
12

/2
00

3

3/
19

91

3/
19

93

12
/1

99
1

12
/1

99
3

3/
19

95
12

/1
99

5

3/
19

97
12

/1
99

7

3/
19

99
12

/1
99

9

3/
19

87

3/
19

89

12
/1

98
7

3/
19

85
12

/1
98

5

12
/1

98
9

90

80

70

60

50

40

30

20

10

0

Months
Observed
Calculated

(c
m

s)

Karaj

Figure 6: The optimal release and observations of Karaj dam.
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Figure 7: The amount of water supplied from the dams of Karaj, Latian, Laar, and Tehran aquifer (in MCM).

Table 3: The calculated average annual amount of water abstracted from the dams of Karaj and Latian and Laar and wells (in MCM).

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 Average (1983 to 2003)
Karaj 364 325 357 295 322 337 330 283 303 201 358 361 353
Laar and Latian 261 289 283 304 273 284 284 242 304 230 255 279 285
Wells 55 95 105 145 185 248 235 300 296 390 242 235 186
Total 680 709 745 744 780 869 849 825 903 821 855 875 824
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Figure 8: Comparison between taken discharge from the aquifer by
observations method and the calculation method (in MCM).

abstracted from the wells is always higher than the calculated
amount, whereas this is not the case for the Karaj dam and
Laar and Latian dam. Figure 8 shows the amount of water
abstracted from the underground source by historical and
calculation (MILP) methods.

Tables 4–6 show the comparison of the results obtained
from the reservoirs’ performance, reservoir storage, and
overflow rates.

Table 4 shows that MILP model has more reservoir
storage in all three reservoirs compared to historical period
results. This increment of storage may lead to growth in
hydropower generation. Table 5 demonstrates that the MILP
model increases the outflow for each dam, whereby the
maximum increment is 24.64% from the Karaj dam. The
average long term of changes in overflows can be seen in
Table 6; the results indicate that for Laar dam there is no
overflow value in both historical period and MILP method.
The negative sign in results means the reduction in overflow,
in which in total around 21.7% reduction in all three dams is
calculated.

6. Discussion and Conclusions

The historical data has shown that Kataj and Latian and Laar
dams cannot supply the total water need of Tehran; thus
the underground water sources are being used to answer all
the demands. However, overusing the underground water
has many negative effects quantitatively and qualitatively. In
order to supply water needs and minimize the underground
water consumption, a model based on MILP technique
has been developed to achieve optimal operation of the
mentioned reservoirs. In other words, by optimal operation
of surface water we can achieve the minimum underground
water utilization. The mentioned technique is developed
based on the specifications of the existing reservoirs in the
case study, data availability, and compatibility of the method
with the operation problem type. The reservoir system’s
operating rules were prepared using weighting factors of
penalties and priorities in the objective function. In this
study, the maximum emphasis on weighting factors is on
shortage of drinking water, the overflow of reservoirs, and

Table 4: The comparison between the results of average storage
of reservoir by using historical data and MILP method for Karaj,
Latian, and Laar dams (in MCM).

Historical MILP method The difference in results (%)
Karaj 164 190.1 15.915%
Latian 79 89.08 12.759%
Laar 777 903.18 16.239%
Total 1020 1182.36 15.918%

Table 5: The comparison between the results of average outflow
of reservoir by using historical data and MILP method for Karaj,
Latian, and Laar dams (in cms).

Historical MILP method The difference in results (%)
Karaj 15.3 19.07 24.641%
Latian 14.5 14.9 2.759%
Laar 13.9 14.8 6.475%
Total 43.7 48.77 11.602%

Table 6:The comparison between the results of average overflow of
reservoir by using historical data andMILPmethod for Karaj, Latian
and Laar dams (in MCM).

Historical MILP method The difference in results (%)
Karaj 32.5 24.9 −23.385%
Latian 21.7 17.54 −19.171%
Laar 0 0 0.000%
Total 54.2 42.44 −21.697%

the maintaining factors of reservoir storage level. The results
obtained from the MILP model are more appropriate than
historical operation results and it shows that the amount of
water taken from aquifer is less in MILP calculation. The
results of the developed MILP model weighed against the
historical data show 21.7% less overflow, 11.6% more outflow,
and 15.9% more reservoir storage. Having more reservoir
storage leads to improvement in hydropower efficiency and
increase in the stored water in the reservoirs.

Nomenclature
MILP: Mixed integer linear programming
LP: Linear programming
BLP: Binary linear programming
ILP: Integer linear programming
GAMS: General algebraic modeling system
AMPL: A mathematical programming language
MINLP: Mixed integer nonlinear programming
BINLP: Boolean integer nonlinear programming
CalSim: The California Simulation of Insurance

Markets
OASIS: Operational Analysis and Simulation of

Integrated Systems
MCM: Million cubic meters
CMS: Cubic Meters per seconds
m: Meter
km2: Square kilometer.
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