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Effective and efficient image comparison plays a vital role in content-based image retrieval (CBIR). The earth mover’s distance
(EMD) is an enticing measure for image comparison, offering intuitive geometric interpretation and modelling the human
perceptions of similarity. Unfortunately, computing EMD, using the simplex method, has cubic complexity. FastEMD, based on
min-cost flow, reduces the complexity to (O(𝑁2 log𝑁)). Although bothmethods can obtain the optimal result, the high complexity
prevents the application of EMD on large-scale image datasets. Thresholding the ground distance can make EMD faster and more
robust, since it can decrease the impact of noise and reduce the range of transportation. In this paper, we present a new image
distance metric, EMD+, which applies a threshold to the ground distance. To compute EMD+, the FastEMD approach can be
employed. We also propose a novel linear approximation algorithm. Our algorithm achieves 𝑂(𝑁) complexity with the benefit
of qualified bins. Experimental results show that (1) our method is 2 to 3 orders of magnitude faster than EMD (computed by
FastEMD) and 2 orders of magnitude faster than FastEMD and (2) the precision of our approximation algorithm is no less than the
precision of FastEMD.

1. Introduction

Thedevelopment of advancedmultimedia technology increa-
ses the importance of image retrieval, since large-scale image
datasets are proliferating. Effective and efficient methods for
computing the similarity between images is vitally important
to content-based image retrieval (CBIR) systems.

The earth mover’s distance (EMD) is a famous measure
for image retrieval [1]. It not only takes the corresponding
bins into account, but also considers the correlations between
noncorresponding bins and thus is robust to histogram shift
and rotation. The effectiveness of EMD and/or its variants is
witnessed in many application domains, such as image retr-
ieval [1–4], common pattern discovery [5, 6], mathematical
symbol retrieval [7], contour matching [8], texture retrieval
[1, 9], shape matching [10], graph matching [11], visual event
recognition [12], face verification [13, 14], visual tracker [15],
and uncertain or probability data [16, 17].

The EMD defines the comparison of two histograms as
the transportation problem. (In [1], EMD is used to compute
the distance between two signatures. For the convenience
of statement, we use histogram in this paper. In fact, our

algorithm can be used to both histogram and signature.)
The minimum cost to transport one histogram to another
one is taken as the distance of the two histograms. Rubner
et al. [1] employ the transportation simplex algorithm [18] to
compute the EMD. Thus the computation of EMD is very
expensive, with cubic time complexity (𝑂(𝑁3 log𝑁)). Pele
and Werman [19] present the FastEMD algorithm which
is faster than the simplex algorithm. FastEMD is based
on the min-cost flow algorithm, thus it still suffers from
quadratic complexity (𝑂(𝑁2 log𝑁)). Ling and Okada [10]
propose EMD-𝐿

1
which employs 𝐿

1
-norm as the ground

distance. EMD-𝐿
1
can reduce the number of variables in the

transportation simplex algorithm from 𝑂(𝑁
2
) to 𝑂(𝑁), so

the time complexity can be reduced to𝑂(𝑁2). But only using
𝐿
1
-norm as ground distance limits the application of EMD-

𝐿
1
. Rahimi and Kiram [20] propose a greedy algorithm with

complexity of 𝑂(𝑁2). Shirdhonkar and Jacobs [21] present
a linear time approximate EMD algorithm, Wavelet EMD,
based on a weighted wavelet transform. To approximate
EMD, wavelet EMD uses the weighted wavelet coefficients
of the difference histogram. Another linear time approximate
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EMD algorithm proposed by Jang et al. [22] is MHCwhich is
used for dominant color descriptor (DCD). This algorithm
employs Hilbert curves to fill the multidimensional color
space and computes cost according to the Hilbert order of
dominant color. To improve accuracy, MHC uses (2𝑘 ⋅ 𝑘!)/2
Hilbert curves to fill the 𝑘-dimensional space, then computes
(2
𝑘
⋅ 𝑘!)/2 cost values, and takes the minimum cost as the

distance between two images.
Furthermore, EMD is not a metric if the two histograms

have different total weight. To solve this drawback, Ljosa et al.
[4] introduce a special bin, called the bank, for each image.
This extra bin allows the two histograms to exchange mass.
The bank has the same ground distance to all other bins. Pele
and Werman [3] propose a variant of EMD, named ÊMD,
which takes the difference of two weights as an extra mass.
The moving distance of the extra mass is 𝜃 times maximum
ground distance. If the ground distance is a metric and 𝜃 ≥
0.5, ÊMD is a metric for all histograms.

The EMD with thresholded ground distance has proven
to bemore robust, since it can reduce the interference of noise
and correspond to thewayhumans perceive distance [2, 3, 19].
With the help of thresholded ground distance, FastEMD can
reduce the number of edges of flow network from 𝑂(𝑁2) to
𝑂(𝑁) [19] and thus makes an improvement in both accuracy
and speed.

In this paper, we present a new image distance metric,
EMD+, based on thresholded ground distance. We prove
that EMD+ is a metric by deducing that EMD+ equals
ÊMD with the same ground distance threshold. Therefore,
we can employ FastEMD [19] to compute the value of
EMD+. However, its quadratic complexity makes FastEMD
a nonideal choice. According to the definition of EMD+, we
derive a novel linear approximation algorithm which can
compute EMD+ very fast. In experiments we find that our
algorithm is 2 to 3 orders of magnitude faster than EMD
(computed by FastEMD) and 2 orders of magnitude faster
than FastEMD. Moreover, the results of our approximation
algorithm are no worse than the exact results.

In the remainder of the paper, we first review the earth
mover’s distance and ÊMD in Section 2. We then formalize
the EMD+ in Section 3. Section 4 proposes the details of
our novel linear approximation algorithm. In Section 5, we
experimentally evaluate the practical performance of our
algorithm. We conclude this paper in Section 6.

2. Earth Mover’s Distance

The earth mover’s distance is a perceptual and intuitive
measure between two histograms. EMD which defines the
distance between two histograms as the minimum cost that
must be paid to transform one histogram to another one is
based on the famous transportation problem.We consider one
histogram as a supplier with a given amount of products dis-
tributed at some places and another histogram as a demander
that has some warehouses with a given limited capacity. To
transport products from the supplier to the demander, the
optimal solution is required to minimize the transportation
cost. The following is the formal definition of EMD.

Definition 1 (earth mover’s distance). Given two histo-
grams 𝑃 = {(𝑝

1
, 𝑤
𝑝
1

), . . . , (𝑝
𝑚
, 𝑤
𝑝
𝑚

)} and 𝑄 = {(𝑞
1
, 𝑤
𝑞
1

), . . .,
(𝑞
𝑛
, 𝑤
𝑞
𝑛

)} with sizes 𝑚 and 𝑛 respectively, where 𝑤
𝑝
𝑖

is the
weight of bin 𝑝

𝑖
and 𝑤

𝑞
𝑗

is the weight of bin 𝑞
𝑗
. Let 𝑑

𝑖𝑗
be the

distance between 𝑝
𝑖
and 𝑞

𝑗
and let 𝑓

𝑖𝑗
represent the amount

of weight transferred from 𝑝
𝑖
to 𝑞
𝑗
.The total cost of matching

𝑃 and 𝑄 is defined as

WORK =
𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑓
𝑖𝑗
𝑑
𝑖𝑗
, (1)

with the following constraints:

𝑓
𝑖𝑗
≥ 0,

𝑛

∑

𝑗=1

𝑓
𝑖𝑗
≤ 𝑤
𝑝
𝑖

,

𝑚

∑

𝑖=1

𝑓
𝑖𝑗
≤ 𝑤
𝑞
𝑗

,

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑓
𝑖𝑗
= min(

𝑚

∑

𝑖=1

𝑤
𝑝
𝑖

,

𝑛

∑

𝑗=1

𝑤
𝑞
𝑗

) .

(2)

The earth mover’s distance is defined as the minimum
total cost for solving this problem; that is,

EMD (𝑃, 𝑄) = min
{𝑓
𝑖𝑗
}

∑
𝑚

𝑖=1
∑
𝑛

𝑗=1
𝑓
𝑖𝑗
𝑑
𝑖𝑗

∑
𝑚

𝑖=1
∑
𝑛

𝑗=1
𝑓
𝑖𝑗

. (3)

The EMD is a many-to-many matching method which
can handle variable-size structures. If the ground distance is
a metric and the total weights of two histograms are equal,
that is, ∑𝑚

𝑖=1
𝑤
𝑝
𝑖

= ∑
𝑛

𝑗=1
𝑤
𝑞
𝑗

, EMD is a metric [1]. However,
in many applications, the total weights of two histograms
cannot be equal. To solve this drawback, Pele and Werman
[3] present a new EMD variant, ÊMD, which is defined as

ÊMD
𝜃
(𝑃, 𝑄) = min

{𝑓
𝑖𝑗
}

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑓
𝑖𝑗
𝑑
𝑖𝑗

+



𝑚

∑

𝑖=1

𝑤
𝑝
𝑖

−

𝑛

∑

𝑗=1

𝑤
𝑞
𝑗



× 𝜃max
𝑖,𝑗

{𝑑
𝑖𝑗
} ,

(4)

subject to the same constraints as the EMD.
If the two histograms are probability distributions (i.e.,

total weight is one) EMD and ÊMD are equivalent. Pele and
Werman proved that if 𝜃 ≥ 0.5 and the ground distance is a
metric, ÊMD is a metric. The proof can be found in [3].

ÊMD is more appropriate for two cases. One case is when
the total weight of histograms is important. And the other
one is when difference of total weight between histograms is
distinguished [3].

3. New Distance Metric: EMD+

Thresholded distances are distances that are limited by a
threshold. Let 𝑑

𝑖𝑗
be the distance between 𝑝

𝑖
and 𝑞

𝑗
and let

𝜇 > 0 be a threshold; the thresholded distance between 𝑝
𝑖

and 𝑞
𝑗
is defined as 𝑑𝜇

𝑖𝑗
= min(𝑑

𝑖𝑗
, 𝜇).

As mentioned in [2, 3, 19], thresholding the ground
distance can improve the performance of EMD family.
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Figure 1: Three histograms 𝑃, 𝑄, and 𝑅. The light cyan circles indicate histogram 𝑃, the light yellow squares indicate histogram 𝑄, and the
light yellow hexagons indicate histogram 𝑅. In both figures, 𝑃 is the same histogram. One circle, square, and hexagon denote one bin of 𝑃,
𝑄, and 𝑅, respectively. The number inside the circle or square or hexagon is the weight of that bin. The blue arrows describe the flow of mass;
the number beside the arrow denotes the weight of flow.

Motivated by this thought, we design a new variant of EMD
with thresholded ground distance. We call this new measure
EMD+. If the ground distance is a metric, the EMD+ is a
metric. Firstly, we formally define EMD+ in Definition 2.

Definition 2 (distance measure: EMD+). Given two histogr-
ams 𝑃 = {(𝑝

1
, 𝑤
𝑝
1

), . . . , (𝑝
𝑚
, 𝑤
𝑝m
)} and 𝑄 = {(𝑞

1
, 𝑤
𝑞
1

), . . .,
(𝑞
𝑛
, 𝑤
𝑞
𝑛

)} with sizes 𝑚 and 𝑛, respectively, where 𝑤
𝑝
𝑖

is the
weight of bin 𝑝

𝑖
and 𝑤

𝑞
𝑗

is the weight of bin 𝑞
𝑗
. Let 𝑑

𝑖𝑗
be

the ground distance between 𝑝
𝑖
and 𝑞
𝑗
, let 𝑓
𝑖𝑗
be the amount

of weight transferred from 𝑝i to 𝑞𝑗, and let 𝜇 > 0 be a
threshold of ground distance. If 𝑑

𝑖𝑗
< 𝜇, EMD+ moves as

much mass as possible from 𝑃 to 𝑄; otherwise, EMD+ does
not move any mass from 𝑃 to 𝑄. Support 𝜔 is the maxi-
mum amount that can be transported from 𝑃 to 𝑄 (𝜔 ≤

min{∑𝑚
𝑖=1
𝑤
𝑝
𝑖

, ∑
𝑛

𝑗=1
𝑤
𝑞
𝑗

}). The distance between 𝑃 and 𝑄 is
defined as

EMD+ (𝑃, 𝑄) = min
{𝑓𝑖𝑗}

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1,

𝑑
𝑖𝑗
<𝜇

𝑓
𝑖𝑗
𝑑
𝑖𝑗

+ (max
{

{

{

𝑚

∑

𝑖=1

𝑤
𝑝
𝑖

,

𝑛

∑

𝑗=1

𝑤
𝑞
𝑗

}

}

}

− 𝜔) × 𝜇,

(5)

s.t

𝑓
𝑖𝑗
≥ 0,

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1,

𝑑
𝑖𝑗
<𝑡

𝑓
𝑖𝑗
= 𝜔,

𝑛

∑

𝑗=1

𝑓
𝑖𝑗
≤ 𝑤
𝑝
𝑖

,

𝑚

∑

𝑖=1

𝑓
𝑖𝑗
≤ 𝑤
𝑞
𝑗

.

(6)

We denote the total weight of 𝑃 and 𝑄 as 𝑤(𝑃) and 𝑤(𝑄)
respectively. Without loss of generality, we assume 𝑤(𝑃) ≥
𝑤(𝑄).The condition𝑑

𝑖𝑗
< 𝜇 inDefinition 2 limits the range of

bins that can bematched by 𝑝
𝑖
. Only the bins whose distances

to 𝑝
𝑖
are smaller than the threshold have the chance to receive

mass from 𝑝
𝑖
.The optimal solution is the minimum total cost

of moving 𝜔 amount of mass from 𝑃 to 𝑄. After that, we
ignore the limitation of capacity of 𝑄 and transport all the
remainder weight of 𝑃 to 𝑄 with cost of 𝜇.

Figure 1 shows two examples of EMD+. From Figure 1, we
obtain 𝑤(𝑃) = 20, 𝑤(𝑄) = 18, and 𝑤(𝑅) = 9. Set 𝐿

2
-norm to

be the ground distance and 𝜇 = 2 to be the threshold. We get

EMD+ (𝑃, 𝑄) = (10 + 6 × √2) + (20 − 16) × 2 ≈ 26.5,

EMD+ (𝑃, 𝑅) = (6 + 3 × √2) + (20 − 9) × 2 ≈ 32.2.
(7)

If we calculate the EMD values, we get

EMD (𝑃, 𝑄) = 10 + 6 ×
√2 + 2 × 2

18
≈ 1.25,

EMD (𝑃, 𝑅) = 6 + 3 ×
√2

9
≈ 1.14.

(8)

That is to say, EMD(𝑃, 𝑄) > EMD(𝑃, 𝑅), while EMD+
(𝑃, 𝑄) < EMD+(𝑃, 𝑅). Actually, 𝑄 is more similar to 𝑃 than
𝑅. Thus, EMD+ has more discernibility.

In fact, the EMD+ is equivalent to the ÊMDwith a thresh-
olded ground distance and 𝜃 = 1 [19]. Because the ÊMD is a
metric, we can deduce that EMD+ is a metric.

Theorem 3. If the ground distance 𝑑 is a metric, then EMD+
is a metric.
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Proof. A thresholded ground distance was introduced in [19].
𝑑
𝑖𝑗
is the ground distance between 𝑝

𝑖
and 𝑞

𝑗
, and 𝜇 > 0 is a

threshold.The thresholded grounddistance is defined as𝑑𝜇
𝑖𝑗
=

min(𝑑
𝑖𝑗
, 𝜇). If𝑑 is ametric,𝑑𝜇 is ametric; a proof can be found

in [19]. Without loss of generality, we assume 𝑤(𝑃) ≥ 𝑤(𝑄).
Set 𝜃 = 1; we rewrite ÊMD as

ÊMD
1
(𝑃, 𝑄)

= min
{𝑓
𝑖𝑗
}

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑓
𝑖𝑗
𝑑
𝜇

𝑖𝑗
+ (𝑤 (𝑃) − 𝑤 (𝑄)) × 𝜇

= min
{𝑓
𝑖𝑗
}

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1,

𝑑
𝜇

𝑖𝑗
<𝜇

𝑓
𝑖𝑗
𝑑
𝜇

𝑖𝑗
+

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1,

𝑑
𝜇

𝑖𝑗
=𝜇

𝑓
𝑖𝑗
× 𝜇

+ (𝑤 (𝑃) − 𝑤 (𝑄)) × 𝜇

= min
{𝑓𝑖𝑗}

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1,

𝑑
𝑖𝑗
<𝜇

𝑓
𝑖𝑗
𝑑
𝑖𝑗
+(𝑤(𝑄) −

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1,

𝑑
𝑖𝑗
<𝜇

𝑓
𝑖𝑗
)

× 𝜇 + (𝑤 (𝑃) − 𝑤 (𝑄)) × 𝜇

= min
{𝑓𝑖𝑗}

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1,

𝑑
𝑖𝑗
<𝜇

𝑓
𝑖𝑗
𝑑
𝑖𝑗

+(𝑤(𝑃) −

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1,

𝑑
𝑖𝑗
<𝜇

𝑓
𝑖𝑗
)× 𝜇

= min
{𝑓𝑖𝑗}

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1,

𝑑
𝑖𝑗
<𝜇

𝑓
𝑖𝑗
𝑑
𝑖𝑗
+ (𝑤 (𝑃) − 𝜔) × 𝜇

= EMD+ (𝑃, 𝑄) .
(9)

Due to the fact that ÊMD
1
is a metric with 𝑑𝜇(⋅, ⋅), thus

EMD+ is a metric.

4. Fast Computation of EMD+

Intrinsically, EMD+ has the same optimization problem as
EMD and ÊMD. Hence, EMD+ can be computed by either
transportation simplex algorithm [18] (e.g., EMD [1]) ormin-
cost flow algorithm (e.g., FastEMD [19]). However, the high
complexity of simplex andmin-cost flow algorithms drives us
to develope an optimalmethod for efficient image retrieval. In
this section, we proceed to develop amore efficient algorithm
to obtain the value of EMD+.

In the definition of EMD+ (Definition 2), there is a very
important condition, 𝑑

𝑖𝑗
< 𝜇, which restricts that each bin in

one histogram can only match a small part of bins in another
histogram (Figure 1). Taking advantage of this characteristic,
we derive a linear approximate algorithm to compute EMD+.
We will explain our basic idea by an example (Figure 2).

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

p(7,4)

𝜇

𝜇

p(5,3)

bk

bk

Figure 2: Red crosses indicate the distribution of histogram 𝑃 and
blue circles indicate the distribution of histogram𝑄. The radii of the
green solid and cyan dash circles equal the threshold 𝜇.

Input: 𝜇: threshold; 𝑑: dimensionality of histogram
Output: Qualified bin set 𝐵

(1) 𝐵 ← 0; // qualified bin set

(2) 𝑏 ← (0)𝑑; // reference bin, if 𝑑 = 2, 𝑏 = (0, 0)
(3) 𝐵 ← getBins(𝑏, 𝐵, 𝜇, 𝑑, 1); // Algorithm 2
(4) Sort(𝐵);

Algorithm 1: Get the qualified bin set of reference bin.

In Figure 2, it is clear that only the bins that fall into the
solid or dash circle have the qualification of receiving mass
from𝑝

(5,3)
or𝑝
(7,4)

, respectively.We call these bins as qualified
bins. If 𝑏

𝑘
is one qualified bin of 𝑝

(5,3)
, it is easy to get the

qualified bin of 𝑝
(7,4)

at the corresponding position by paral-
leling 𝑏

𝑘
. Inspired by this heuristic, we present to precompute

all the possible qualified bins of a reference bin (e.g., (0, 0))
and then utilize the possible qualified bins to improve the
computation of EMD+.

To precompute the qualified bins, we propose a novel
method which is composed of function 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑𝐵𝑖𝑛𝑠

(Algorithm 1) and 𝑔𝑒𝑡𝐵𝑖𝑛𝑠 (Algorithm 2) (in Algorithm 2,
function getBins() uses 𝐿

𝑝
-norm as the ground distance, in

other cases it is distance dependent).𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑𝐵𝑖𝑛𝑠 first calls
the function 𝑔𝑒𝑡𝐵𝑖𝑛𝑠 to enumerate all possible qualified bins
of the reference bin (e.g., (0, 0)) (line 3) and then sorts the bins
in ascending order according the distances to the reference
bin (line 4). Let 𝑏

𝑘
be the 𝑘th qualified bin to reference bin.

For each bin 𝑝
𝑖
, we can get its 𝑘th possible qualified bin by

paralleling 𝑏
𝑘
. Notice that the reference bin itself does not

appear in qualified bin set; the reason will be shown later.
Let 𝐾 be the size of qualified bin set 𝐵, 𝐾 ≪ 2

𝑑
⋅ 𝜇
2

(𝑑 is the dimensionality of histogram). Thus the getBins()
(Algorithm 2) can be done in 𝑂(𝐾) time and Sort() (line
4) can be done in 𝑂(𝐾 log𝐾) time. In fact, 𝐾 is very small
corresponding to the size of histogram and can be treated as
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Input: 𝑏: one qualified bin; 𝐵: qualified bin set;
𝜇: threshold; 𝑑: dimensionality;
curr: current dimension.

Output: Qualified bin set 𝐵
(1) for 𝑖 = curr to 𝑑 do
(2) 𝑏


← 𝑏;

(3) if 𝑏[𝑖] = 0 then
(4) 𝑏


[𝑖] ← 𝑏


[𝑖] − 1;

(5) if 𝑏
𝑝
< 𝜇 then

(6) 𝐵.𝑎𝑑𝑑(𝑏

);

(7) getBins(𝑏, 𝐵, 𝜇, 𝑑, 𝑖);
(8) 𝑏


← 𝑏, 𝑏[𝑖] ← 𝑏[𝑖] + 1;

(9) if 𝑏
𝑝
< 𝜇 then

(10) 𝐵.𝑎𝑑𝑑(𝑏

);

(11) getBins(𝑏, 𝐵, 𝜇, 𝑑, 𝑖);
(12) else
(13) if 𝑏[𝑖] < 0 then
(14) 𝑏


[𝑖] ← 𝑏


[𝑖] − 1;

(15) else
(16) 𝑏


[𝑖] ← 𝑏


[𝑖] + 1;

(17) if 𝑏
𝑝
< 𝜇 then

(18) 𝐵.𝑎𝑑𝑑(𝑏

);

(19) getBins(𝑏, 𝐵, 𝜇, 𝑑, 𝑖);

Algorithm 2: Recursive function getBins, Enumerate all possible
qualified bins.

a constant. Thus the time of Algorithm 1 can be ignored
(in our experiments (Section 5), the time of precomputing
qualified bins is no more than 0.001 second).

Next thing is to compute the value of EMD+, that is, the
core of our idea. The details are depicted in the following.

(1) Thefirst step is to saturate all the zero-cost flows, since
matching corresponding bins does not cause cost.
After this step, many bins will be empty (Figure 2).

(2) The second step focuses on cross-bin matching. We
plan to transport as much mass as possible when the
cost is as low as possible. We employ the qualified bin
set 𝐵 generated by Algorithm 1 to accelerate the speed
of our algorithm. We traverse 𝐵 from front to end. In
the 𝑘th iteration, we match each nonempty bin 𝑝

𝑖
to

its corresponding 𝑘th qualified bin. If the 𝑘th qualified
bin of 𝑝

𝑖
exists, we transfer the highest possible mass;

otherwise, we do nothing. Since corresponding bins
are already handled in the first step, we have no
necessity to store the reference bin in the qualified bin
set 𝐵.

Algorithm 3 gives the pseudocode of our algorithm. The
proposed algorithm is named as LinearEMD, because its co-
mplexity is linear. The very important parameter 𝐵 stores the
qualified bins of original point (e.g., (0, 0) for 2-dimensional
histogram). Notice that 𝐵 only needs to be computed once.

LinearEMD is composed of 3 parts. Part 1 focuses on
the corresponding bins (lines 3∼12). Since corresponding bin
has no cost (𝑑

𝑖𝑗
= 0), we should move as much mass as

possible from 𝑃 to 𝑄. Then we delete the empty bins (lines
9∼12). Once part 1 is done, 𝑃 and 𝑄 will shrink dramatically.

Input: 𝑃, 𝑄: histogram; 𝜇: threshold; 𝐵: qualified bins
of original point.

Output: Distance between 𝑃 and 𝑄
(1) cost = 0;
(2) 𝜔 = 0;

// Part 1, corresponding bin

(3) foreach 𝑝 ∈ 𝑃 do
(4) if corresponding 𝑞 exists then
(5) mass← min (𝑤

𝑝
, 𝑤
𝑞
); // 𝑤

𝑝
: weight of bin 𝑝

(6) 𝜔 ← 𝜔 +mass;
(7) 𝑤

𝑝
← 𝑤
𝑝
−mass;

(8) 𝑤
𝑞
← 𝑤
𝑞
−mass;

(9) if 𝑤
𝑝
= 0 then

(10) remove 𝑝 from 𝑃;
(11) if 𝑤

𝑞
= 0 then

(12) remove 𝑞 from 𝑄;
// Part 2, cross bin

(13) for 𝑖 = 1 to 𝐵.size do
(14) foreach 𝑝 ∈ 𝑃 do
(15) if 𝑖th qualified bin 𝑞 exists then
(16) mass← min (𝑤

𝑝
, 𝑤
𝑞
);

(17) 𝜔 ← 𝜔 +mass;
(18) cost← cost +mass × distance (𝑝, 𝑞);
(19) 𝑤

𝑝
← 𝑤
𝑝
−mass, 𝑤

𝑞
← 𝑤
𝑞
−mass;

(20) if 𝑤
𝑝
= 0 then

(21) remove 𝑝 from 𝑃;
(22) if 𝑤

𝑞
= 0 then

(23) remove 𝑞 from 𝑄;
// Part 3, compute the EMD+

(24) EMD+
← cost + (max(𝑤(𝑃), 𝑤(𝑄)) − 𝜔) × 𝜇;

Algorithm 3: EMD+ between two histograms.

The time complexity of part 1 is 𝑂(𝑁) where 𝑁 =

min(|𝑃|, |𝑄|). Part 2 adopts greedy idea to match cross bins
(lines 13∼23). The outer loop (line 13) guarantees that nearest
bins get preferential treatment and each bin in 𝑃 is shifted to
the same position. Ideally, many bins in 𝑃 or𝑄 will be empty
after several iterations. The speed will be faster and faster.
Assume the average of bin numbers in each iteration is 𝐿
(𝐿 ≪ 𝑁) and the size of𝐵 is𝐾.𝐾 is a constant.The complexity
of part 2 is 𝑂(𝐾𝐿) = 𝑂(𝐿). Part 3 which gets the result of
EMD+ by a simple calculation has an𝑂(1) expensive (line 31).
Therefore, the total cost is 𝑂(𝑁 + 𝐿) = 𝑂(𝑁) (𝐿 ≪ 𝑁).

5. Experimental Evaluation

This section aims to experimentally test and verify the follow-
ing things.

(1) LinearEMD is efficient enough for massive image
retrieval.

(2) Thresholding the ground distance can get a more eff-
ective result.

(3) The result set obtained by LinearEMD is very close the
exact value.
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ÊMD (L2)
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Figure 4: Results for image retrieval.
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To do that, we use image retrieval as an example to pe-
rform the experiments. Section 5.1 gives the setup of our ex-
periments and Section 5.2 describes some evaluation criteria.
The experimental results are shown in Section 5.3.

5.1. Experimental Setup. Wang’s dataset [23] is a benchmark
for image retrieval. This dataset contains 1,000 color images
in 10 classes. Each class has 100 images. Since there are some
ambiguous images in this dataset, we use a subset of Wang’s
dataset filtered by [19] (we downloaded the filtered image list
from http://www.seas.upenn.edu/ofirpele/FastEMD/). This
subset is composed of 773 images. We exact the first 5 images
from each classe as the queries. We perform our experiments
on 5 different size RGB color histograms, that is, 8 ∗ 8 ∗ 8,
10 ∗ 10 ∗ 10, 12 ∗ 12 ∗ 12, 14 ∗ 14 ∗ 14, and 16 ∗ 16 ∗ 16,
respectively.We use RGB color histogram because it is simple
and has the ability to estimate the experimental goals. We do
not claim that RGB color histogram is the best descriptor for
image retrieval.

We compare EMD+ with ÊMD (in this section, when we
say ÊMD, wemean ÊMDwith thresholded ground distance),
EMD-𝐿

1
, and EMD. To compute EMD+, we use LinearEMD

algorithm (we implement this algorithm in C++). For
EMD-𝐿

1
, we use the authors implementation [10] (we down-

loaded the code from http://www.dabi.temple.edu/hbling/
code data.htm/). For ÊMD, we use FastEMD [19] (we down-
loaded the code from http://www.seas.upenn.edu/ofirpele/
FastEMD/code/). For EMD, we also use FastEMD [19], since
simplex is very expensive.The ground distance of EMD-𝐿

1
is,

of course, 𝐿
1
-norm. For others, we choose both 𝐿

1
- and 𝐿

2
-

norm. For EMD+ and ÊMD, the ground distance thresholds
are 3.0, 3.5, 4.0, 4.5, and 5.0 corresponding to the size of RGB
color histogram, respectively.We set the coefficient 𝜃 of ÊMD
to be equal to 1. Since EMD+ equals ÊMD, the value of EMD+
(computed by LinearEMD) is approximate value and the
value of ÊMD (computed by FastEMD) is the exact one.

The experiments are run on a computer with one Intel
Xeon E5645 2.40GHzCPU, 8GBmemory.TheOS is CentOS
release 6.3 and gcc version is 4.4.6.

5.2. Evaluation Criteria. This section introduces some cri-
teria to fairly evaluate the performance of these distance
measures and algorithms.

To evaluate the speed, we compare the average runtime
of each query. The effectiveness is measured by the average
number of correct retrieved images.Wedefine themean over-
lap rate (MOR) to calculate the common images retrieved
by LinearEMD and FastEMD. MOR is the average Jaccard
coefficient:

MOR = 100%
𝑛

𝑛

∑

𝑖=1


𝑅
𝑖

𝐴
∩ 𝑅
𝑖

𝐵


𝑅
𝑖

𝐴
∪ 𝑅
𝑖

𝐵



, (10)

where 𝑛 is the number of query, 𝑅𝑖
𝐴
is the result set of the 𝑖th

query retrieved by algorithm𝐴, and 𝑅𝑖
𝐵
is the result set of the

𝑖th query retrieved by algorithm 𝐵.

(a) Query

(b) EMD+(𝐿1)

(c) EMD+(𝐿2)

(d) ÊMD(𝐿1)

(e) ÊMD(𝐿2)

(f) EMD-𝐿1

(g) EMD-(𝐿1)

(h) EMD-(𝐿2)

Figure 5: An example of retrieved images. The image on the top is
the query. (b)–(h) are the 5 nearest neighbors retrieved by different
methods. The last two images in (c) look very similar, but they are
not the same image. The first 4 images in (b)–(d) are the same.

To measure how close the values computed by two meth-
ods are, we employ the symmetric mean absolute percentage
error (SMAPE) [24]. SMAPE is defined as follows:

SMAPE = 100%
𝑛

𝑛

∑

𝑖=1

𝐴 𝑖 − 𝐵𝑖


(𝐴
𝑖
+ 𝐵
𝑖
) /2
, (11)

where 𝑛 is the number of common retrieved images and 𝐴
𝑖

and𝐵
𝑖
are the values of the 𝑖th image computed by algorithms

𝐴 and 𝐵.

5.3. Results. Firstly, we compare the speed of each method.
Figure 3 shows the average running time of each query. Obvi-
ously, our algorithm exceeds other methods in both ground
distances. Our algorithm is faster by two to three orders of
magnitude faster than EMD, two orders of magnitude faster
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Figure 6: The MOR and SMAPE between our algorithm and FastEMD.

than ÊMD and an order of magnitude faster than EMD-𝐿
1
.

The larger the size of RGB color histogram, the better our
algorithm. When the size of RGB color histogram is 16 ∗
16 ∗ 16, the LinearEMD is 300 to 500 times faster than the
FastEMD and nearly 3000 to 4500 times faster than the EMD.
Therefore, the LinearEMD is competent enough to handle
massive image retrieval task.

The second thing of this section is to compare the retrie-
ved images of eachmethod. Figure 4 shows the average num-
ber of correct retrieved images of each query. It is obvious that
thresholding the ground distance of EMD (i.e., EMD+ and
ÊMD) can obtain better retrieval result. That is, EMD+ and
ÊMD are more robust and have more discernibility. EMD+

and ÊMD with 𝐿
1
norm as ground distance can achieve bet-

ter results than 𝐿
2
-norm as ground distance. However, for

EMD, 𝐿
2
as ground distance retrieves more images. General-

ly, EMD+(𝐿
1
) (EMD+(𝐿

𝑝
) denotes EMD+ with 𝐿

𝑝
-norm as

the ground distance; ÊMD(𝐿
𝑝
) and EMD(𝐿

𝑝
) have similar

meanings) gets the best results and EMD+(𝐿
2
) is better than

ÊMD(𝐿
2
). In addition, Figure 4 illustrates the precision of

EMD+ and ÊMD will be improved while the size of his-
togram is increased. Although ourmethod is the approximate
algorithm, the precision of our method is no less, even
higher, than the exact algorithm (FastEMD). Figure 5 shows
an example of retrieved images. The images retrieved by
EMD+(𝐿

1
), EMD+(𝐿

2
), and ÊMD(𝐿

1
) are all correct, yet the

last image retrieved by ÊMD(𝐿
2
) is incorrect. However, there

are only 2 correct images in the results retrieved by EMD-𝐿
1
,

EMD(𝐿
1
), and EMD(𝐿

2
), respectively. This result shows the

advantage of thresholding the ground distance once again.
The third thing is to count the common images retrieved

by our algorithm and the FastEMD. To this end, we employ
the mean overlap rate (MOR). Figure 6(a) shows the MOR

of the two 50 nearest neighbors obtained by our algorithm
and the FastEMD (we only count the correct retrieved
images). The MOR(𝐿

1
)s (MOR(𝐿

𝑝
) denotes the MOR value

of LinearEMD and FastEMD with 𝐿
𝑝
-norm as the ground

distance; SAMPE(𝐿
𝑝
) has the same meaning.) are between

95% and 98% and the MOR(𝐿
2
)s are between 93% and

95%. Although the MOR(𝐿
2
)s are a little bit lower than the

MOR(𝐿
1
)s, they are still very high. Figure 6(a) indicates that

the results between our algorithm and the FastEMD share
many common images.

Finally, we compute the SMAPE of our algorithm and
the FastEMD. Like the MOR, we use the two 50 nearest
neighbors and only count the correct retrieved images. The
SMAPE results are shown in Figure 6(b). Obviously, the
SMAPE(𝐿

1
)s are lower than the SMAPE(𝐿

2
)s. In spite of this,

the maximum value is lower than 4%. Figure 6(b) illustrates
that the values computed by our approximate algorithm
highly approach the values computed by the FastEMD.

In one word, our approximate algorithm is an optimal
choice for comparing images.

6. Conclusion

In this paper, we have presented a new variant of EMD with
thresholded ground distance, named as EMD+. We proved
that EMD+ is a metric for any kind of histogram. To compute
the value of EMD+, we have proposed a linear approxi-
mate algorithm. This algorithm is an effective and efficient
method for image retrieval. Experimental results show that
our method break through the comparing methods. And
thus, our method is competent enough for massive image
retrieval task. Our methodmay also be able to compare other
histograms (e.g., HSV color histogram) and descriptors (e.g.,
SIFT).
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