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In financial modeling, it has been constantly pointed out that volatility clustering and
conditional nonnormality induced leptokurtosis observed in high frequency data. Finan-
cial time series data are not adequately modeled by normal distribution, and empirical
evidence on the non-normality assumption is well documented in the financial literature
(details are illustrated by Engle (1982) and Bollerslev (1986)). An ARMA representation
has been used byThavaneswaran et al., in 2005, to derive the kurtosis of the various class
of GARCH models such as power GARCH, non-Gaussian GARCH, nonstationary and
random coefficient GARCH. Several empirical studies have shown that mixture distribu-
tions are more likely to capture heteroskedasticity observed in high frequency data than
normal distribution. In this paper, some results on moment properties are generalized
to stationary ARMA process with GARCH errors. Application to volatility forecasts and
option pricing are also discussed in some detail.

Copyright © 2006 A. Thavaneswaran et al. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently, there has been growing interest in using nonlinear time series models in fi-
nance and economics (see Granger [13], He and Teräsvirta [15] and Heston [16] includ-
ing others). Inference for nonlinear time series had been studied by Thavaneswaran and
Abraham [20] and by Thavaneswaran and Heyde [23] using estimating function the-
ory. A nonlinear model had been proposed by Abraham and Thavaneswaran [1] and
using nonlinear state space formulation, filtering, and smoothing had been studied (see
Granger [13] for more details). Many financial series, such as returns on stocks and for-
eign exchange rates, exhibit leptokurtosis and time-varying volatility. These two features
have been the subject of extensive studies ever since Nicholls and Quinn [19], Engle
[7], and G.-Rivera [8] reported them. Random coefficient autoregressive (RCA) mod-
els (Nicholls and Quinn [19]), the autoregressive conditional heteroscedastic (ARCH)
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2 Volatility models

model (Engle [7, 8]) and its generalization, the GARCH model (Bollerslev [4]) provide a
convenient framework to study time-varying volatility in financial markets.Financial time
series models for intra-day trading are typical examples of random coefficient GARCH
models.

In practice, a common assumption in applying GARCH models to financial data is
that the return series is conditionally normally distributed. We will refer to this as the
normal GARCH model. It is well known that the normal GARCH model is part of the
volatility clustering patterns typically exhibited in financial and economic time series.
However, the kurtosis implied by the normal GARCH model tends to be far less than
the sample kurtosis observed for most financial return series. For example, Bollerslev [4]
finds evidence of conditional leptokurtosis in monthly S&P 500 Composite Index returns
and advocates the use of the t-distribution. Thus, the nonnormal GARCH model is more
appropriate with the large vleptokurtosis typically observed in asset returns.

In this paper, kurtosis for various class of RCA models is given in Section 2. In Section
3, we give expressions for the kurtosis of GARCH(p,q) and for various class of GARCH
models. Previously, He and Teräsvirta [15] and Heston [16] examined the forth mo-
ment structure of the GARCH(1,1) model with conditionally nonnormal innovations
and they extended their results to the GARCH(p,q) model. In both of these papers, the
kurtosis is expressed as a function of the underlying model parameters. We take a some-
what different approach by working with the well-known ARMA representations of the
powers of the error term and we are able to extend their results to a broader class of
models. For any random variable X with finite fourth moments, the kurtosis is defined
by E(X − μ)4/[Var(X)]2. Application of GARCH kurtosis in volatility forecasting and in
analytical approximation of option pricing are discussed in Section 4.

2. Random coefficient autoregressive models

Random coefficient autoregressive time series were introduced by Nicholls and Quinn
[19] and some of their properties have been studied recently by Appadoo et al. [2]. RCA
models exhibiting long-memory properties have been considered in Leipus and Surgailis
[18]. A sequence of random variables {yt} is called an RCA(1) time series if it satisfies the
equations

yt =
(
φ+ bt

)
yt−1 + et, t ∈ Z, (2.1)

where Z denotes the set of integers and

(i)
(
bt
et

)
∼

((
0
0

)
,
( σ2

b 0
0 σ2

e

))
,

(ii) φ2 + σ2
b < 1.

The sequences {bt} and {et}, respectively, are the errors in the model. According to
Nicholls and Quinn [19], (ii) is a necessary and sufficient condition for the second-order
stationarity of {yt}. Thus, together with (i), it also ensures strict stationarity. Moreover,
Feigin and Tweedie [9] showed that Ey2k

t <∞ for some k ≥ 1 if the moments of the noise
sequences satisfy Ee2k

t <∞ and E(φ+ bt)2k < 1 for the same k.
Let {yt} be a stationary Gaussian linear process with mean zero and variance σ2

y . Then
it can easily be shown that the joint moment generating function of the pair (yt, yt−k) is
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given by m(u,v)= E(euyt+vyt−k )= exp[(1/2)σ2
y(u2 + v2 + 2ρkuv)], where σ2

y = Var(yt) and
the autocorrelation is ρk = ρk(yt). Since E[y2

t y
2
t−k] = σ4

y(1 + 2ρ2
k) and Var(y2

t ) = 2σ4
y , we

have ρk(y2
t )= (E[y2

t y
2
t−k]− σ4

y)/2σ4
y = ρ2

k(yt). That is, for any stationary Gaussian process
{yt}, the autocorrelation of the squared process {y2

t } is the square of the autocorrelation
of {yt} and hence the autocorrelation of any stationary Gaussian process {yt} is larger

than the autocorrelation of {y2
t } (i.e., |ρyk | ≥ ρ

y2

k ). The following theorem and corollary
on autocorrelation function and kurtosis are from Appadoo et al. [2].

Theorem 2.1. Let {yt} be an RCA(1) time series satisfying conditions (i) and (ii), and let
γy be its covariance function. Then

(a) Eyt = 0, Ey2
t = σ2

e /(1−φ2− σ2
b ), the kth lag autocovariance for yt is given by γy(k)=

φkσ2
e /(1−φ2− σ2

b ) and the autocorrelation for yt is ρk = φk for all k ∈ Z; That is, the
usual AR(1) process has same autocorrelation as the RCA(1);

(b) if {bt} and {et} are normally distributed random variables, then the kurtosis K (y) of
the AR(1) process {yt} is given by K (y) = 3[1− (σ2

b +φ2)2]/[1− (φ4 + 6φ2σ2
b + 3σ4

b )]
and for an AR(1) process K (y) reduces to 3;

(c) the autocorrelation of y2
t is given by ρ

y2

k = (φ2 + σ2
b )k and for anAR(1) process it turns

out to be ρ
y2

k = φ2k.

Note. When σb = 0, the kurtosis of yt reduces to that of a standard AR(1) process, which
is equal to 3.

Consider an RCA model of the form yt = θt yt−1 + et, then the following corollary is
true.

Corollary 2.2. Let {yt} be an RCA(1) time series satisfying the stationarity conditions,
and let ρy denote its correlation function. Then

(a) when θt = φ+ bt, Eyt = 0, Ey2
t = σ2

e /(1−φ2− σ2
b ), the kth lag autocorrelation for yt

is given by ρ
y
k = {E(φ+ bt)}k = φk,

(b) when θt = sgn(bt), where bt ∼ N(0,σ2
b ), then ρ

y
k = [1− 2F(0)]k, where F is the cu-

mulative distribution function of bt, that is, when the coefficient θt is driven by a
binary random variable {bt} taking values −1 and +1,

(c) when θt = (φ+ |bt|α), where bt ∼N(μ,σ2
b ), then the autocorrelation

ρ
y
k =

[

φ+

(
2σ2

b

)α/2
√
π

Γ
(
α+ 1

2

)]k

, (2.2)

where Γ(·) is the Gamma function.

The following theorem for RCA models with correlated errors follows from Appadoo
et al. [3].

Theorem 2.3. Let {yt} be a correlated RCA(1) time series satisfying conditions (i) and (ii),
and let γy be its covariance function. If {bt} and {et} are correlated normally distributed
random variables with correlation coefficient ρ, then the kurtosis K (y) of the RCA process
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{yt} is given by

K (y) = 6
(
σ2
b +φ2

1

)[
1−φ3

1− 3φ1σ
2
b

]
+ 72φ3

1ρ
2σ2

b + 3
[
1− (φ2

1 + σ2
b

)][
1−φ3

1− 3φ1σ
2
b

]

[
1−φ3

1− 3φ1σ
2
b

][
1− 6φ2

1σ
2
b −φ4

1− 3σ4
b

]

×[1− (φ2
1 + σ2

b

)]

(2.3)

and for an AR(1) process, K (y) reduces to 3 and when ρ = 0, the kurtosis turns out to be the
kurtosis in Theorem 2.1.

The kurtosis of the classical RCA model is a special case of the correlated RCA model
of Theorem 2.1. The correlated RCA model has a higher kurtosis than its uncorrelated
counterpart and easy computation leads to the following inequality for kurtosis of the

different type of RCA models, K
(y)
AR ≤ K (y)

RCA ≤ K (y)
CRCA.

A sequence of random variables {yt} is called an RCA-MA(1) time series if it satisfies
the equations

yt =
(
φ+ bt

)
yt−1 + et + θet−1, t ∈ Z, (2.4)

where Z denotes the set of integers and

(i)
(
bt
et

)
∼

((
0
0

)
,
( σ2

b 0
0 σ2

e

))
,

(ii) φ2 + σ2
b < 1.

Lemma 2.4. Let {yt} be the RCA-MA(1) time series model described by (2.4) and let γ(K)
y

denote its covariance function. Then
(a) E(yt)= 0,
(b) Var(yt)= σ2

e (1 + θ2)/(1− σ2
b −φ2),

(c) γy(k)= φk(σ2
e (1 + θ2)/(1− σ2

b −φ2)),
(d) the autocorrelation and kurtosis of the process are given by

ρk =
⎧
⎨

⎩

1, k = 0,

φk, k �= 0,
(2.5)

and K (y) = [6(1 + θ2)2(φ2 + σ2
b ) + (6θ2 + 3 + 3θ4)(1− σ2

b − φ2
1)](1− σ2

b − φ2)/[1− (φ4 +
3σ4

b + 6φ2σ2
b )][(1 + θ2)2].

Proof. The proof is somewhat similar to the proof of Theorem 2.1 and is, therefore, omit-
ted. �

Example 2.5. For a simple ARCH model of the form yt = ε2
t−1εt, where εt is a Gauss-

ian white noise with variance σ2
ε , the kurtosis is given by K (y) = 35. This clearly shows

that even a simple volatility model yt = ε2
t−1εt with Gaussian error term εt can generate

very high peakedness which is very common for financial time series. Moreover, for a y2
t

process, y2
t = ε4

t−1ε2
t , the correlation is given by, ρ

y2
t

k = 0.114285 for k = 1 and ρ
y2
t

k = 0 for
k > 1.
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Example 2.6. For a simple time series model of the form yt = φyt−2εt−1 + εt, where
εt is a Gaussian white noise with variance σ2

ε , the variance of the process is given by
Var(yt)= σ2

ε /(1−φσ2
ε ) and the kurtosis is given byK (y) = 3[2φ2σ4

ε + 1−φ2σ2
ε ](1−φ2σ2

ε )/
(1− 3φ4σ2

ε )(σ2
ε ).

Example 2.7. For yt = θ1ε2
t−1εt + θ2ε2

t−2εt, where εt is a Gaussian white noise with vari-
ance σ2

ε , we have K (y) = [[315(θ4
1 + θ4

2) + 180(θ3
1θ2 + θ1θ

3
2) + 162θ2

1θ
2
2]/(3θ2

1 + 2θ1θ2 +
3θ2

2)2]. The derivation of the autocorrelation of yt is similar to that of yt in Example 2.5
and hence is omitted. Moreover, for any conditionally Gaussian process of the form,
yt = f (εt−1, . . . ,εt−k)εt, where f is a measurable function of εt−1, . . . ,εt−k, where εt is a
zero mean Gaussian process, then E(y4

t )= EE(y4
t | yt−1)= E[3E(y2

t | yt−1)]2 ≥ 3(E[E(y2
t |

yt−1)]2 = 3(E(y2
t ))2, and

K (y) = E
(
y4
t

)

E
(
y2
t

)2 ≥ 3. (2.6)

Theorem 2.8. Let {yt} be an RCA-sign time series satisfying conditions (i) and (ii), and let
γy be its covariance function. The sign RCA(1) model is given by yt = (φ+ bt +Φst)yt−1 + et
and

st =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+1 if yt > 0,

0 if yt = 0,

−1 if yt < 0.

(2.7)

Then
(a) Eyt = 0, Ey2

t = σ2
e /(1− (φ2 + σ2

b +Φ2)), the kth lag autocovariance for yt is given by
γy(k) = φkσ2

e /(1− (φ2 + σ2
b +Φ2)) and the autocorrelation for yt is ρk = φk for all

k ∈ Z. That is, the usual AR(1) process has same autocorrelation as the RCA(1),
(b) if {bt} and {et} are normally distributed random variables, then the kurtosis K (y) of

the RCA process {yt} is given by

K (y) =
[

3
[
1− (φ2 + σ2

b +Φ2
)2]

1− (φ4 +Φ4 + 3σ4
b + 6

(
φ2σ2

b +Φ2
(
φ2 + σ2

b

)))
]

(2.8)

and for an AR(1) process K (y) reduces to 3,

(c) the autocorrelation of y2
t is given by ρ

y2

k = (φ2 + σ2
b +Φ2)k and for an AR(1) process

it turns out to be ρ
y2

k = φ2k.

Granger and Teräsvirta [14] had introduce the sign models. Here, the RCA analogue
of Grangers’s model is considered. Sign volatility models are important as they allow for
an asymmetric behavior of the conditional volatility with respect to negative (positive)
shocks observed in most financial time series models. Proof of the theorem is somewhat
similar to Appadoo et al. [2].

A sequence of random variables {yt} is called a sign-RCA-MA time series if it satisfies
the equations, yt = (φ+ bt +Φst)yt−1 + et + θet−1, t ∈ Z.
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Lemma 2.9. Let {yt} be the RCA-sign model time series with MA(1) errors described by
(2.4) and let γy(k) denote its covariance function. Then

(a) E(yt)= 0,
(b) Var(yt)= [(σ2

e + θ2σ2
e )/(1− (Φ2 +φ2 + σ2

b ))],
(c) γy(k)= φk[(σ2

e + θ2σ2
e )/(1− (Φ2 +φ2 + σ2

b ))],
(d) the autocorrelation and kurtosis of the process are given by

ρk =
⎧
⎨

⎩

1, k = 0,

φk, k �= 0,
(2.9)

and K (y) = [3(1− (Φ2 +φ2 + σ2
b )2)/[1− (φ4 +Φ4 + 3σ4

b ) + 6(φ2σ2
b +Φ2(φ2 + σ2

b ))]].
When θ = 0 and Φ= 0, the kurtosis of the process turns out to be K (y) = 3[1− (φ2 + σ2

b )2]/
[1− (φ4 + 6φ2σ2

b + 3σ4
b )].

Proof.

yt =
(
φ+ bt +Φst

)
yt−1 + et + θet−1,

E
(
yt
)= E[(φ+ bt +Φst

)
yt−1 + et + θet−1

]= 0,

E
(
y2
t

)=Φ2E
(
y2
t−1

)
+φ2E

(
y2
t−1

)
+ σ2

bE
(
y2
t−1

)
+ σ2

e + θ2σ2
e ,

E
(
y2
t

)=
[

σ2
e + θ2σ2

e

1− (Φ2 +φ2 + σ2
b

)
]

,

E
(
y4
t

)

= 3
(
σ4
e + 2θ2σ4

e + σ4
e θ

4
)

+ 6σ2
e

[
φ2 + σ2

b +Φ2 +φ2θ2 + σ2
b θ

2 +Φ2θ2
]
E
[
y2
t−1

]

[
1−φ4− 3σ4

b − 6φ2σ2
b −Φ4− 6φ2Φ2− 6σ2

bΦ
2
]

= 3
(
σ4
e + 2θ2σ4

e + σ4
e θ

4
)[

1− (Φ2 +φ2 + σ2
b

)]
+ 6σ2

e

[
φ2 + σ2

b +Φ2 +φ2θ2 + σ2
b θ

2 +Φ2θ2
][
σ2
e + θ2σ2

e

]

[
1−φ4− 3σ4

b − 6φ2σ2
b −Φ4− 6φ2Φ2− 6σ2

bΦ
2
][

1− (Φ2 +φ2 + σ2
b

)] ,

K (y)

=
[

3
(
σ4
e + 2θ2σ4

e + σ4
e θ

4
)[

1− (Φ2 +φ2 + σ2
b

)]
+ 6σ2

e

[
φ2 + σ2

b +Φ2 +φ2θ2 + σ2
b θ

2 +Φ2θ2
][
σ2
e + θ2σ2

e

]

[
1−φ4− 3σ4

b − 6φ2σ2
b −Φ4− 6φ2Φ2− 6σ2

bΦ
2
][

1− (Φ2 +φ2 + σ2
b

)]

]

=
[

3
(
1− (Φ2 +φ2 + σ2

b

)2)

[
1− (φ4 +Φ4 + 3σ4

b

)
+ 6
(
φ2σ2

b +Φ2
(
φ2 + σ2

b

))]

]

.

(2.10)

The following lemma and theorem for a stationary process with volatility errors are given
in Ghahramani and Thavaneswaran [11].

Lemma 2.10. For a volatility process of the form

yt −μ= φ
(
yt−1−μ

)
+ ε2

t−1εt (2.11)

under the stationarity assumptions that |φ| < 1, εt symmetric i.i.d. with mean 0 and variance
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σ2
ε and finite eighth moments, then

(a)

E
(
yt −μ

)2 = E
(
ε4
t−1

)
E
(
ε2
t

)

(
1−φ2

) , (2.12)

(b)

K (y) = E
[(
yt −μ

)4]

Var
(
yt
)2 =

[
6φ2

(
E
(
ε4
t−1

)
E
(
ε2
t

))2
+E

(
ε8
t−1

)
E
(
ε4
t

)(
1−φ2

)

(
1 +φ2

)(
E
(
ε4
t−1

)
E
(
ε2
t

))2

]

, (2.13)

(c) if εt are assumed to be i.i.d. N(0,σ2
ε ), then E[ε2n

t ]= ((2n)!/2n(n!))σ2n
ε and hence

K (y) =
[

35− 29φ2
(
1 +φ2

)
]
. (2.14)

Theorem 2.11. Let yt be a second-order linear stationary process having an MA (moving
average) representation of the form yt − μ=

∑∞
j=0ψjat− j , where at is an uncorrelated noise

process with mean zero, variance σ2
a , and kurtosis K (a). Then the variance and the kurtosis

of yt are

(i) Var
(
yt
)= σ2

a

∞∑

j=0

ψ2
j ,

(ii) K (y) = K (a)
[∑∞

j=0ψ
4
j

]
+ 6

∑∞
i< j ψ

2
i ψ

2
j

(∑∞
j=0ψ

2
j

)2 ,

(2.15)

provided
∑∞

j=0ψ
4
j <∞.

Proof of Theorem 2.11 follows by the properties of stationary processes. The following
lemma provides the kurtosis of an RCA model with GARCH errors. �

Lemma 2.12. Let {yt} be an RCA(1) time series satisfying conditions (i) and (ii). The
RCA(1) model is given by

yt =
(
φ+ bt

)
yt−1 + ε2

t−1εt, (2.16)

et ∼N(0,σ2
e ), bt ∼N(0,σ2

b ). Then the following holds:

(a) E
(
yt
)= 0, E

(
y2
t

)=
[

3σ6
ε(

1− (φ2 + σ2
b

))
]

,

(b) E
(
y4
t

)=
(

9σ12
ε(

1− 6φ2σ2
b − 3σ4

b −φ4
)
)(

35− 29
(
σ2
b +φ2

)

1− (σ2
b +φ2

)

)

,

(c) K (y) =
((

35− 29
(
σ2
b +φ2

))(
1− (φ2 + σ2

b

))

(
1− 3σ2

b

(
2φ2 + σ2

b

)−φ4
)

)

.

(2.17)
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Proof.

E
(
y2
t

)= E(y2
t−1φ

2)+E
(
y2
t−1b

2
t

)
+E

(
ε4
t−1

)
E
(
ε2
t

)

= φ2E
(
y2
t−1

)
+ σ2

bE
(
y2
t−1

)
+ 3σ6

ε .
(2.18)

Thus we have

E
(
y2
t

)=
[

3σ6
ε(

1− (φ2 + σ2
b

))
]

,

E
(
y4
t

)= 6φ2σ2
bE
(
y4
t−1

)
+ 315σ12

ε + 3σ4
bE
(
y4
t−1

)
+φ4E

(
y4
t−1

)

+ 18σ2
b σ

6
ε E
(
y2
t−1

)
+ 18σ6

ε φ
2E
(
y2
t−1

)
,

(2.19)

and we have

E
(
y4
t

)=
(

9σ12
ε(

1− 6φ2σ2
b − 3σ4

b −φ4
)
)(

35− 29
(
σ2
b +φ2

)

1− (σ2
b +φ2)

)
,

K (y) = E
[
y4
t

]

E
[
y2
t

]2 =
(

9σ12
ε(

1− 6φ2σ2
b − 3σ4

b −φ4
)

)(
35− 29

(
σ2
b +φ2

)

1− (σ2
b +φ2

)

)((
1− (φ2 + σ2

b

))2

9σ12
ε

)

=
((

35− 29
(
σ2
b +φ2

))(
1− (φ2 + σ2

b

))

(
1− 3σ2

b

(
2φ2 + σ2

b

)−φ4)

)

.

(2.20)

When σ2
b = 0, the kurtosis of the process yt turns out to the one reported by Ghahra-

mani and Thavaneswaran [11]. Moreover, when σ2
b = 0, and φ = 0 the kurtosis of the

process yt turns out to be 35. �

3. GARCH(p,q) processes

Consider the general class of GARCH(p,q) model for the time series yt, where

yt =
√
htZt,

ht = ω+
p∑

i=1

αi y
2
t−i +

q∑

j=1

βjht− j ,
(3.1)

where Zt is a sequence of independent, identically distributed random variables with
zero mean, unit variance. Let ut = y2

t − ht be the martingale difference and let σ2
u be the
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variance of ut, (3.1) could be written as

y2
t −ut = ω+

p∑

i=1

αi y
2
t−i +

q∑

j=1

βiht− j , (3.2)

[

1−
p∑

i=1

αiB
i−

q∑

j=1

βjB
j

]

y2
t = ω−

q∑

j=1

βjB
jui, (3.3)

φ(B)y2
t = ω+β(B)ut, (3.4)

where, φ(B)= 1−∑r
i=1φiB

i, φi = (αi +βi), β(B)= 1−∑q
j=1βjB

j and r =max(p,q).
We will make the following stationarity assumptions for y2

t which has an ARMA(r,q)
representation.

(A.1) All the zeroes of the polynomial φ(B) lie outside the unit circle.
(A.2)

∑∞
i=0ψ

2
i <∞, where the ψ′i s are obtained from the relation ψ(B) φ(B) = β(B)

with ψ(B) = 1 +
∑∞

i=1ψiB
i. The assumptions ensure that the u′t s are uncorrelated with

zero mean and finite variance and that the y2
t process is weakly stationary. In this case, the

autocorrelation function of y2
t will be exactly the same as that for a stationary ARMA(r,q)

model. If the process {Zt} is normal, then the process {yt} defined by (3.1) is called a
normal GARCH(p,q) process. The kurtosis of the GARCH process is denoted by K (y)

when it exists. In order to calculate the GARCH kurtosis in terms of the ψ weights, we
have the following theorem (Thavaneswaran et al. [22]).

Theorem 3.1. For the GARCH(p,q) process specified by (3.4), under the stationarity as-
sumptions and finite fourth moment, the kurtosis K (y) of the process is given by

(a)

K (y) = E
(
Z4
t

)

E
(
Z4
t

)− [E(Z4
t

)− 1
]∑∞

j=0ψ
2
j

, (3.5)

(b) (i) the variance of the y2
t process is γ

y2

0 =∑∞
j=−∞ψ

2
j σ

2
u ,

(ii) the k-lag autocovariance of the y2
t process is

γ
y2

k = σ2
u

∞∑

j=−∞
ψk+ jψj for k ≥ 1, (3.6)

(c) K (y) = 3/(1− 2
∑∞

j=1ψ
2
j ) for a normal GARCH(p,q) process.

Theorem 3.1 has potential application in identifying a GARCH model and the mar-
ginal distribution of the error term in the model.

3.1. Power GARCH(p,q) model. Consider the power GARCH(1,1) studied in [15]: yt =√
htZt, hδt = ω + α1|yt−1|δ + β1h

δ
t−1, ut = |yt|δ − hδt , Zt∼ (0,1), E(|Zt|δ) = 1, E(Zt) = 0,

E(|Zt|2δ)=c, E(Z2
t )= 1. E(yt)= E(

√
htZt)= E(

√
ht)E(Zt)= 0, |yt|δ −ut = ω+α1|yt−1|δ +

β1h
δ
t−1=ω+α1|yt−1|δ +β1[|yt−1|δ −ut−1], |yt|δ −α1|yt−1|δ −|yt−1|δβ1= ω+ut +β1yt−1,

[1− (α1 +β1)B]|yt|δ=ω+ (1−β1B)ut, φ(B)|yt|δ=ω+ θ(B)ut. This shows that the power
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GARCH(1,1) model could be represented as an ARMA(1,1) for |yt|δ . Under the station-
arity conditions, it is easy to prove the following theorem for any power GARCH(p,q)
process |yt|δ .

Theorem 3.2. The kurtosis of a power GARCH(p,q) process is given by
(a)

K (y) = E
(
Z4
t

)

E
(
Z4
t

)− [E(Z4
t

)− 1
]∑∞

j=o ψ
2
j

, (3.7)

(b) (i) the variance of the yδt process is γ
yδ

0 =∑∞
j=−∞ψ

2
j σ

2
u ,

(ii) the k-lag autocovariance of the yδt process is

γ
yδ

0 = σ2
u

∞∑

j=−∞
ψk+ jψj for k ≥ 1, (3.8)

(c) K (y) = 3/(1− 2
∑∞

j=1ψ
2
j ) for a normal GARCH process.

3.2. Random coefficient ARCH(1) model. By analogy with the RCA models we intro-
duce a class of RCA versions of the GARCH models. Consider the general class of
GARCH(p,q) models for the time series yt, where

yt =
√
htZt, ht = ω+

(
α1 + bt−1

)
y2
t−1, (3.9)

and Zt is a sequence of independent, identically distributed random variables with zero
mean, unit variance. Let ut = y2

t − ht be the martingale difference and let σ2
u be the vari-

ance of ut. When we write the model as

y2
t = ω+

(
α1 + bt−1

)
y2
t−1 +ut, (3.10)

then the minimum mean square error forecast is not optimal for the random coefficient
ARCH(1) model (3.9).

Lemma 3.3. For the model yt =
√
htZt, ht = ω0 + (α1 + bt−1)y2

t−1, where Zt ∼N(0,σ2
Z) and

bt ∼N(0,σ2
a ), the kurtosis is given by K (y) = 3[1−α2

1σ
4
Z]/[1− 3σ2

Z(α2
1 + σ2

b )]. For an RCA-
GARCH model in the form yt =

√
htZt, ht = ω0 + (α1 + bt−1)y2

t−1 + β1ht−1, Zt ∼ N(0,σ2
Z)

and bt ∼N(0,σ2
b ). Under suitable stationary conditions, the kurtosis of yt is given by

K (y) = 3
[
1− (α2

1σ
2
Z +β1

)2]

[
1− 2α1β1σ

2
Z − 3α2

1σ
2
Z − 3σ2

a σ
2
Z −β2

1

] . (3.11)
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3.3. Volatility sign switching models. Consider the sign-switching GARCH(p,q) model
by Fornari and Mele [10],

yt =
√
htZt, yt | It−1 ∼N

(
0,ht

)
,

ht = ω+
p∑

i=1

αiy
2
t−i +

q∑

i=1

βjht− j +
m∑

x=1

Φxst−x,

st =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+1 if yt > 0,

0 if yt = 0,

−1 if yt < 0,

(3.12)

where p, q, and m > 0, w, αi, (1= 1,2, . . . ,p), βj , ( j = 1,2, . . . ,q), and Φx, (x = 1,2, . . . ,m)
are real parameters, satisfying the following conditions,w>0, α1 ≥ 0, βj ≥ 0. |∑xΦx ≤ ω|
is important as it guarantees that the process {σ2

t } remains positive. Fornari and Mele [10]
had derived the kurtosis for p = 1, q = 1, and m = 1. Here, we use an ARMA represen-
tation as in Thavaneswaran et al. [22] to derive the kurtosis of yt. Consider the general
class of GARCH(p,q) model for the time series yt, where

yt =
√
htZt,

ht = ω+
p∑

i=1

αi y
2
t−i +

q∑

j=1

βiht− j +
m∑

x=1

Φxst−x,
(3.13)

where Zt is a sequence of independent, identically distributed random variables with zero
mean, unit variance. Let ut = y2

t − ht be the martingale difference and let σ2
u be the vari-

ance of ut, (3.13) could be written as

φ(B)y2
t = ω+β(B)ut +

m∑

x=1

Φxst−x, (3.14)

where φ(B) = 1−∑r
i=1φiB

i and φi = (αi + βi), β(B) = 1−∑q
j=1βjB

j and r =max(p,q)
var(y2

t )=∑∞
i=0ψ

2
i σ

2
u and

∑∞
i=0ψ

2
i <∞, where the ψi’s weights are obtained from the rela-

tion ψ(B)φ(B)= β(B) with ψ(B)= 1−∑∞
i=0ψiB

i.

Theorem 3.4. For the GARCH(p,q) process specified by (3.13) and under the stationarity
assumptions and finite fourth moment, the kurtosis K (y) of the process is given by

(a)

K (y) =
[(
E
[
ht
])2

+Φ2

(
E
[
ht
])2

][
E
(
Z4
t

)

1− [E(Z4
t

)− 1
]∑∞

j=1ψ
2
j

]

, (3.15)
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(b) (i) the variance of the y2
t process is γ

y2

0 =∑∞
j=−∞ψ

2
j σ

2
u ,

(ii) the kth-lag autocovariance of the y2
t process is

γ
y2

k = σ2
u

∞∑

j=−∞
ψk+ jψj for k ≥ 1, (3.16)

(iii) the kth-lag autocorrelation is given by ρ
y2

k = γy
2

k /γ
y2

0 ,
(c) K (y) = 3/(1− 2

∑∞
j=1ψ

2
j ) for a normal GARCH(p,q) process.

Example 3.5 (normal GARCH models). In this example, we show that the results for
normal GARCH(1,1) model and ARCH(1) is a special case. (a) For the GARCH(1,1)
model of the form: yt =

√
htZt, ht = ω+α1y

2
t−1 +β1ht−1 +Φst, ut = y2

t −ht, y2
t −ut = ω+

α1y
2
t−1 +β1(y2

t−1−ut−1) +Φst, y2
t −α1y

2
t−1−β1y

2
t−1=ω+ut −β1ut−1 +Φst, (1−φ1B)y2

t =
ω+ (1−β1B)ut +Φst, whereψ1 = α1,ψ2 = α1(α1 +β1),ψ3 = α1(α1 +β1)2, . . . ,ψj = α1(α1 +
β1)( j−1),

∑∞
j=1ψ

2
j = α2

1 + α2
1(α1 + β1)2 + ··· = α2

1/(1− (α1 + β1)2). By part (c) of the the-

orem, K (y) = [(ω2 + Φ2(1− (α + β))2)/ω2][3[1− (α + β)2]/(1− (α + β)2 − 2α2)] and it
turns out to be the same kurtosis formula reported by Fornari and Mele [10]. (b) For
the ARCH(1) model of the form yt =

√
htZt, ht = ω+α1y

2
t−1, ut = y2

t −ht if we set β1 = 0
in (a), then K (y) turns out to be K (y) = [(ω2 +Φ2(1−α)2)/ω2][3(1−α2)/(1− 3α2)].

Example 3.6. Consider, for example, the following model as elaborated by Fornari and
Mele: [10] yt =

√
htZt, yt | It−1 ∼ N(0,ht), ht = ω + αy2

t−1 + βht−1 + st−1vt−1, vt = δ0y
2
t −

δ1ht − δ2, where vt is a linear combination of the difference between the observed condi-
tional volatility (y2

t ). The kurtosis of the process is given by

K (y) =
[

(1−α−β)2
(
3ω2 + 3δ2

2

)
+
[
6ω2β+ 6ω2α− 6ωδ0δ2 + 6ωδ1δ2

](
1−α−β)

ω2
[
1− 3α2−β2− 3δ2

0 − δ2
1 − 2αβ+ 2δ0δ1

]

]

.

(3.17)

When δ0 = δ1 = δ2 = 0, the kurtosis of the process described above converge to the one
reported by Thavaneswaran et al. [22]. K (y) = 3[1− (α+β)2]/(1− (α+β)2− 2α2). More-
over, for an ARCH(1) model the kurtosis K (y) can be obtained by setting β = 0.

3.4. Sign RCA-GARCH volatility models. Let us state the following proposition, which
will be needed in what follows. Consider the general class of GARCH(1,1) for the time se-
ries yt, where yt =

√
htZt, ht = ω0 + (α1 + bt−1 +Φst−1)y2

t−1 + β1ht−1, where Zt ∼N(0,σ2
Z)

and at ∼N(0,σ2
a ). The kurtosis of the process is given by K (y) = 3[(1− (α1σ

2
Z +β1)2)/(1−

3σ4
Z(Φ2 + α2

1 + σ2
b ) + σ2

Z(1 + 2α1β1))] and when Φ = 0, K (y) turns out to be the one in
Lemma 3.3.

Theorem 3.7. Suppose yt is an RCA model with GARCH(p,q) innovations of the form

yt =
(
φ+ bt

)
yt−1 + εt,

εt =
√
htZt,

ht = ω+
p∑

i=1

αiε
2
t−i +

q∑

j=1

βjht− j ,

(3.18)
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where bt is an uncorrelated noise process with zero mean and with variance σ2
b . Then, the

following relationship holds:

(i) E
(
y2
t

)= E
[
ht
]

(
1−φ2− σ2

b

) ,

(ii) E
(
y4
t

)=
[

6
(
σ2
b +φ2

)

(
1−φ2− σ2

b

)(
1− 6φ2σ2

b −φ4− 3σ4
b

)

]
(
E
[
ht
])2

+

[
3

(
1− 6φ2σ2

b −φ4− 3σ4
b

)

]

E
(
h2
t

)
,

(iii) K (y)=
[

3
(
1−φ2−σ2

b

)[
2
(
σ2
b +φ2

)(
1−(α+β

)2−2α2
)

+
(
1−φ2−σ2

b

)(
1−(α+β

)2)]

(
1− 6φ2σ2

b −φ4− 3σ4
b

)(
1− (α+β

)2− 2α2
)

]

.

(3.19)

Example 3.8. Let {yt} be a sign RCA-GARCH(1,1) time series satisfying conditions (i)
and (ii) given by

yt =
(
φ+ bt +Φst

)
yt−1 + εt, (3.20)

where

εt =
√
htZt,

ht = ω+α1ε
2
t−1 +β1ht−1,

(3.21)

where Zt and bt are sequences of independent, identically distributed random variables
with zero mean, variance given by σ2

Z and σ2
b , respectively, ω, α1, β1, and Φ are real pa-

rameters satisfying the following conditions, ω > 0, α1 ≥ 0, β1 ≥ 0. |Φx| ≤ ω.
Note: E(s2t )= 1, and in order to calculate the kurtosis, we observe that E(s4t )= 1. Then,

we have the following moment properties:
(a)

Eyt = 0, E
(
y2
t

)= ωσ2
Z[

1− (φ2 + σ2
b +Φ2

)][
1− (α1σ

2
Z +β1

)] ; (3.22)

(b) if {bt} and {εt} are normally distributed random variables then the kurtosis K (y)

of the process {yt} is given by

K (y) = 3
(
1− (α1σ

2
Z +β1

)2)[
1− (φ2 + σ2

b +Φ2
)]2

(
1− 3α2

1σ
4
Z − 2α1β1σ

2
Z −β2

1

)(
1− 6

(
φ2Φ2 +Φ2σ2

b +φ2σ2
b

)−Φ4−φ4− 3σ4
b

)

+
6
(
Φ2 +φ2 + σ2

b

)[
1− (φ2 + σ2

b +Φ2
)]

(
1− 6

(
φ2Φ2 +Φ2σ2

b +φ2σ2
b

)−Φ4−φ4− 3σ4
b

) .

(3.23)
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Example 3.9. Consider the RCA Sign-GARCH volatility models. Let us state the fol-
lowing proposition, which will be needed in what follows. Consider the general class of
GARCH(1,1) for the time series yt, where

yt =
(
φ+ bt

)
yt−1 + εt,

εt =
√
htZt,

ht = ω+
(
α1 + at−1 +Φst−1

)
ε2
t−1 +β1ht−1,

(3.24)

where Zt ∼N(0,σ2
Z), bt ∼N(0,σ2

b ), and at ∼N(0,σ2
a ),

st =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+1 if yt > 0,

0 if yt = 0,

−1 if yt < 0,

(3.25)

E
(
ht
)= ω

[
1− (α1σ

2
Z +β1

)] assuming E
(
st
)= 0,

E
(
h2
t

)= ω2
(
σ2
Zα1 +β1 + 1

)

[
1−β1

(
2σ2

Zα1 +β1
)− 3σ4

Z(Φ2 +α2
1 + σ2

a

)][
1− σ2

Zα1−β1
] ,

Var
(
yt
)= ωσ2

Z[
1− (φ2 + σ2

b

)][
1− (α1σ

2
Z +β1

)] ,

E
[
y4
t

]= 3σ4
Z(

1− 3σ4
b −φ4− 6φ2σ2

b

)E
[
h2
t

]
+

6σ4
Z

(
σ2
b +φ2

)

(
1− 3σ4

b −φ4− 6φ2σ2
b

)[
1− (φ2 + σ2

b

)]
(
E
[
ht
])2

.

(3.26)

The kurtosis of the process is given by

K (y) = 3
[
1− (φ2 + σ2

b

)]2[
1− (α1σ

2
Z +β1

)2]

[
1−β1

(
2σ2

Zα1 +β1
)− 3σ4

Z

(
Φ2 +α2

1 + σ2
a

)](
1− 3σ4

b −φ4− 6φ2σ2
b

)

+
6
(
σ2
b +φ2

)[
1− (φ2 + σ2

b

)]

(
1− 3σ4

b −φ4− 6φ2σ2
b

) .

(3.27)

The proof of (3.27) parallels the proof of Theorem 2.3.
Note that when φ= 0, σb = 0, σa = 0, and σZ = 1, the kurtosis converges to

K (y) = 3
[
1− (α1 +β1

)2]

(
1− (α1 +β1

)2)− 2α2
1

> 3. (3.28)
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3.5. Unconditional mixed distribution. The following lemma will be used in Theorem
3.11 to derive the kurtosis for the GARCH process.

Lemma 3.10. For the mixture model given in Timmermann [24]. yt = μst + σstZt, where
the Markov process St has the states 1,2, . . . ,k with steady state probabilities λj = πj , j =
1,2, . . . ,k and the unconditional mean and variance are given by μst and σ2

st , respectively.
The moments are given by

(a) μ= E(yt)=
∑k

j=1 λjμj ,

(b) m2 =Var(yt)= σ2 =∑k
j=1 λjσ

2
j +
∑k

j=1 λj(μj −μ)2,

(c) m3 =
∑k

j=1 λj(μj −μ)3 + 3
∑k

j=1

∑
i< j λ jλi(σ

2
j − σ2

i )(μj −μ),

(d) mn = E[(yt −μ)n]=∑k
i=1 λi

∑n
j=0

(
n
j

)
E[Z

j
t ]σ

j
i (μi−μ)n− j ,

(e) with regard to kurtosis, let Z be a k component mixed normal random variable
but with μ1 = ··· = μk = μ, so that E(Z) = ∑k

j=1 λjμj = μ. φ(u;μj ,σ2
j ) = (1/√

2πσj)exp{−(1/2)((u− μj)/σj)2}, j = 1,2, . . . ,k. Then, from Jensen’s inequality,
∑

j λ jσ
4
j =

∑
j λ j(σ

2
j )

2 > (
∑

j λ jσ
2
j )

2, so that the kurtosis of the mixture model KM
is given by

KM= m4

m2
2
= E

[(
Z−μ)4]

[
E
[
(Z−μ)2

]]2 = K (Z)

∑k
j=1 λjσ

4
j

(∑k
j=1 λjσ

2
j

)2 ≥ K (Z). (3.29)

Theorem 3.11. The kurtosis of GARCH(p,q) process having k component mixture distri-
bution for Zt is given by

(a)

K (y) = E
(
Z4
t

)

E
(
Z4
t

)− [E(Z4
t

)− 1
]∑∞

j=o ψ
2
j

, (3.30)

where Zt = (Z − μ)/σ with μ is the mean of the mixture distribution, σ is the stan-
dard deviation of the mixture distribution as in Lemma 3.10 and E(Z4

t )= Kc
∑

j λ jσ
4
j ,

where Kc stands for the kurtosis of the component distribution,
(b) (i) the variance of the yt process is γ

y
0 =

∑∞
j=−∞ψ

2
j σ

2
u , where

σ2
u =

(
ω/
(
1−φ1−φ2−···

))2

1− (E(Z2
t

)− 1
)∑∞

j=1ψ
2
j

[
E
(
Z4
t

)− 1
]
, (3.31)

(ii) the lth-lag autocovariance of the yt process is γ
y
l = σ2

u

∑∞
j=−∞ψl+ jψj for l ≥ 1,

(c) for a k-component mixture GARCH process,

KM(y) = Kc
∑

j λ jσ
4
j

Kc
∑

j λ jσ
4
j −

[
Kc
∑

j λ jσ
4
j − 1

]∑∞
j=0ψ

2
j

. (3.32)

Moreover, for the normal mixture GARCH, Kc = 3.
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Corollary 3.12. The kurtosis of power GARCH(p,q) process having k component mixture
distribution for Zt is given by

(a)

K (y) = E
(
Z4
t

)

E
(
Z4
t

)− [E
(
Z4
t

)− 1
]∑∞

j=o ψ
2
j

, (3.33)

where Zt = (Z−μ)/σ with μ is the mean of the mixture distribution, σ is the standard
deviation of the mixture distribution, and E(Z4

t ) = Kc
∑

j λ jσ
4
j , where Kc stands for

the kurtosis of the component distribution,

(b) (i) the variance of the |yt|δ process is γ
yδ

0 =∑∞
j=−∞ψ

2
j σ

2
u , where

σ2
u =

(
ω/
(
1−φ1−φ2−···

))2

1− (E(Z2
t

)− 1
)∑∞

j=1ψ
2
j

[
E
(
Z4
t

)− 1
]
, (3.34)

(ii) the l-lag autocovariance of the |yt|δ process is

γ
yδ

l = σ2
u

∞∑

j=−∞
ψl+ jψj for l ≥ 1, (3.35)

(c) for a k-component mixture power GARCH process,

KM(y) = Kc
∑

j λ jσ
4
j

Kc
∑

j λ jσ
4
j −

[
Kc
∑

j λ jσ
4
j − 1

]∑∞
j=0ψ

2
j

. (3.36)

Theorem 3.13. Suppose yt be a second order linear stationary process having a MA (moving
average) representation of the form yt −μ=

∑∞
j=0ψjat− j , where at is a GARCH process given

by

at =
√
htZt,

ht = ω+
p∑

i=1

αia
2
t−i +

q∑

j=1

βjht− j
(3.37)

with mean zero, variance σ2
a , and kurtosis K (a), and Zt is a sequence of independent, identi-

cally distributed random variables with zero mean, unit variance. Then the variance and the
kurtosis of yt are

(i) Var
(
yt
)= σ2

a

∞∑

j=0

ψ2
j ,

(ii) K (y) =
K (a)

[∑∞
j=0ψ

4
j

]
+ 6

∑∞
i< j ψ

2
i ψ

2
j

(∑∞
j=0ψ

2
j

)2

(3.38)

provided
∑∞

j=0ψ
4
j <∞.

Proof of the above theorem is given in Ghahramani and Thavaneswaran [11].
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4. Applications

In Thavaneswaran et al. [21], we have studied the volatility forecasting for zero mean
GARCH processes and derived the forecast error variance in terms of GARCH kurtosis.
In this section, we give recent application of GARCH kurtosis in forecasting and in Black-
Scholes model-based option pricing.

4.1. GARCH forecasts. Let y2
n(l) be the forecast of y2

n+l based on n observations y1, y2, . . . ,
yn. The following theorem gives the formula for forecast error variance in terms of the
kurtosis and the ψ weights.

Theorem 4.1. For the GARCH(p,q) process specified by (3.4), under the stationarity as-
sumptions and finite fourth moment, the kurtosis K (y) of the process is given by

(a)

K (y) = E
(
Z4
t

)

E
(
Z4
t

)− [E(Z4
t

)− 1
]∑∞

j=0ψ
2
j

, (4.1)

(b) the variance of the y2
t process is γ

y2

0 =∑∞
j=0ψ

2
j σ

2
u , where σ2

u = μ2(Ky − 1)/
∑∞

j=0ψ
2
j

and μ= E(y2
t )= ω/(1−φ1−φ2−···−φr),

(c)

Var
(
en(l)

)=
(
ω/
(
1−φ1−φ2−···−φr

))2

∑∞
j=0ψ

2
j

[
K (y)− 1

]
[

1 +
l−1∑

j=1

ψ2
j

]

. (4.2)

Proof of part (a) follows from Theorem 3.1. For the proof of part (b), from (3.4),
μ= E(y2

t )= ω/(1−φ1−φ2−···−φr), and K (y) = E(y4
t )/(E(y2

t ))2 = E(y4
t )/μ2.

Hence σ2
u = μ2(K (y) − 1)/

∑∞
j=0ψ

2
j . Parts (c) and (d) follow from the fact that for a

stationary ARMA process with error variance σ2
u the Var(en(l))= σ2

u(1 +ψ2
1 + ···+ψ2

l−1)
and by part (b). It has been shown that the l steps ahead forecast error variance depends
on the ψ weights which vary from one model to another.

Example 4.2. Now, we show that the results for normal GARCH(1,1) and ARCH(1) are
special cases.

(a) For the GARCH(1,1) model of the form given in (3.4), yt=
√
htZt, ht = ω+α1y

2
t−1 +

β1ht−1, ut= y2
t −ht, y2

t −ut= ω+α1y
2
t−1 +β1(y2

t−1−ut−1), y2
t −α1y

2
t−1−β1y

2
t−1 = ω+ut −

β1ut−1, (1− φ1B)y2
t = ω + (1− θB)ut, where ψ1 = α1, ψ2 = α1(φ1 + β1), ψ3 = α1(φ1 +

β1)2, . . . ,ψj = α1(φ1 +β1)( j−1),
∑∞

j=1ψ
2
j = α2

1 +α2
1(α1 +β1)2 + ··· = α2

1/(1− (α1 +β1)2).

By part (c) of the theorem K (y) = 3/(1− 2
∑∞

j=1ψ
2
j ) = 3/(1− 2α2

1/(1− (α1 + β1)2)) =
3[1− (α1 + β1)2]/(1− (α1 + β1)2− 2α2

1), and it turns out to be the same as the one given
in Bollerslev [4]. Moreover,

σ2
u =

(
K (y)− 1

)
μ2
(
1−α2

1

)

1 +β2
1− 2φ1β1

. (4.3)
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(b) For the ARCH(1) model of the form yt =
√
htZt, ht = ω+α1y

2
t−1, ut = y2

t −ht, if we
set β1 = 0 in (a), then K (y) turns out to be 3(1−α2

1)2/(1− 3α2
1) and σ2

u = (K (y)− 1)μ2(1−
α2

1).
For the GARCH(1,1) models, the variance for l steps ahead forecast is given by

Var(en(l)) = [(K (y) − 1)μ2(1 − α2
1)/(1 + β2

1 − 2α1β1)](1 + ψ2
1 + ··· + ψ2

l−1) and for the
ARCH(1) models, the variance for l-steps ahead forecast is given by Var(en(l))= [(K (y)−
1)μ2(1−α2

1)](1 +ψ2
1 + ···+ψ2

l ).

Example 4.3. In this example, we show that the results for normal sign GARCH(1,1)
model and ARCH(1) are special cases.

(a) For the GARCH(1,1) model, yt =
√
htZt, ht = ω+α1y

2
t−1 + β1ht−1 +Φst, ut = y2

t −
ht, y2

t − ut = ω+ α1y
2
t−1 + β1(y2

t−1− ut−1) +Φst, y2
t − α1y

2
t−1− β1y

2
t−1 = ω+ ut − β1ut−1 +

Φst, (1−φ1B)y2
t = ω+ (1− β1B)ut +Φst, where ψ1 = α1, ψ2 = α1(α1 + β1), ψ3 = α1(α1 +

β1)2, . . . ,ψj = α1(α1 + β1)( j−1),
∑∞

j=1ψ
2
j = α2

1 +α2
1(α1 + β1)2 + ··· = α2

1/(1− (α1 + β1)2). By
part (c) of the theorem,

K (y) =
[(
E
[
ht
])2

+Φ2

(
E
[
ht
])2

][
E
(
Z4
t

)

1− [E(Z4
t

)− 1
]∑∞

j=1ψ
2
j

]

=
[
ω2 +Φ2

(
1− (α+β)

)2

ω2

][
3
[
1− (α+β)2

]

1− (α+β)2− 2α2

]

,

(4.4)

and it turns out to be the same kurtosis formula reported by Fornari and Mele [10].
(b) For the ARCH(1) model of the form yt =

√
htZt, ht = ω + α1y

2
t−1, ut = y2

t − ht, if
we set β1 = 0 in (a), then K (y) turns out to be

K (y) =
[
ω2 +Φ2(1−α)2

ω2

][
3
(
1−α2

)

1− 3α2

]
,

Var
(
en(l)

)=
(
ω/
(
1−φ1−φ2−···−φr

))2

∑∞
j=0ψ

2
j

[
K (y)− 1

]
[

1 +
l−1∑

j=1

ψ2
j

]

.

(4.5)

4.2. Option pricing. The Black-Scholes (BS) option pricing model is the cornerstone
for option pricing (a geometric Brownian motion model). Black and Scholes used the
following model for stock price:

dSt = μStdt+ σStdWt, (4.6)

where the process Wt is a standard Brownian motion. Generally, a call (resp., put) option
is the right to buy (resp., sell) a particular asset for a specified amount, the strike price K
at a specified time in the future, the expiration time T . If the option is of such a type that
it can be exercised only on the expiration date itself, then it is called a European option.
Let ST be the price of the underlying asset at expiration time T . Then the payoff g of a
European call option at time T is given by

g
(
ST
)=Max

(
ST −K ,0

)= (ST −K
)+
. (4.7)
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This means that the option is exercised if ST > K and abandoned otherwise. Let r be the
risk-free interest rate. Then a probability measure Q is called an equivalent martingale
measure to the probability measure P for the discounted price process S̃t = e−rtSt if

EQ
[
S̃t | Fs

]= S̃s (4.8)

for each s ≤ t ≤ T and Q ∼ P, where Ft is the history of the process up to time t. That
is, the discounted price process (S̃t) is a martingale under the probability measure Q.
According to the fundamental theorem of asset pricing, an arbitrage-free price Ct of an
option at time t is given by the conditional expectation of the discounted payoff under an
equivalent martingale measure Q,

Ct = EQ
[
e−r(T−t)g

(
ST
) | Ft

]
,

Xt = logSt − logSt−1
(4.9)

are normally distributed. Now (4.6) becomes

St = S0e
σWt+(μ−σ2/2)t (4.10)

with 0 ≤ t ≤ T , where (Wt) is a standard Brownian motion, g is the drift, and m the
volatility of the underlying stock. Using Ito’s formula, the model can equivalently be de-
scribed by

dSt = μStdt+ σStdWt. (4.11)

For this model, there exists a unique martingale measure Q which is given by Girsanov’s
theorem

dQ

dP
= exp

(
r−μ
σ

WT − (r−μ)2

2σ2
T
)
. (4.12)

Some calculations, yield the Black-Scholes formula

CBS = S0Φ
(

log
(
S0/K

)
+
(
r + σ2/2

)
T

σ
√
T

)
−Ke−rTΦ

(
log

(
S0/K

)
+
(
r− σ2/2

)
T

σ
√
T

)
,

(4.13)

where Φ denotes the cumulative distribution function of a standard normal variable. In
formula (4.13), only the volatility parameter σ appears and the drift term μ vanishes. In
the literature two different ways of calculating volatility has been discussed. The first is the
empirical estimation from historical data. The second method is to calculate the implied
volatility by equating the theoretical call price from the Black-Scholes formula and equate
with the market price.

The implied volatility of the underlying stock which, when substituted into the Black-
Scholes formula, gives a theoretical price equal to the market price. This equation can be
solved numerically. However, in practice, if we calculate the implied volatility for different
strikes and expiration times on the same underlying asset, then we find that the volatil-
ity is not constant. The received shape of the implied volatility versus the strike curve is
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called the smile. This effect is also a consequence of the fact that the constant volatility
model is not adequate for the log-returns. In the literature, nonconstant volatility had
been modeled by GARCH processes. However, for calculation purposes volatility σt in
the Black-Scholes formula (4.13) had been replaced by E(ht) = Eσ2

t (a constant) as in
the following example. Consider the results reported by Gouriéroux [12] on the implicit
price index associated with the GDP. This variable, denoted by GDt, is first transformed
to obtained stationarity,

yt = 100log
(

GDt

GDt−1

)
(4.14)

(see Gouriéroux [12]) has been fitted from the quarterly data covering the period 1948 to
1983. For an autoregressive model with GARCH(1,1) errors, the results are summarized
below,

yt = 0.141 + 0.433yt−1 + 0.229yt−2 + 0.349yt−3− 0.162yt−4 + εt

(0.060) (0.081) (0.110) (0.077) (0.104),

ht = 0.007 + 0.135ε2
t−1 + 0.829ht−1

(0.060) (0.081) (0.110).

(4.15)

The unconditional variance resulting from the AR-GARCH estimation is

E
[
ht
]≈ 0.007 + 0.135E

(
ε2
t−1

)
+ 0.829E

(
σ2
t−1

)

⇐⇒ E
[
ht
]≈ 0.007

1− 0.135− 0.829
= 0.199.

(4.16)

In (4.13), the value of 0.199 for σ2 has been used to calculate the price of an option.

4.3. Analytical approximation in option pricing using GARCH kurtosis. We start by
assuming that the asset return dynamics, under the physical measure P, is

ln
(
St+1

St

)
= r + λ

√
ht+1− 1

2
ht+1 +

√
ht+1εt+1, (4.17)

where εt
P
∼ N(0,1). For the conditional variance, ht+1, the following three models have

been used to obtain the approximate value of a European option in Heston and Nandi
[17], Duan et al. [5], and Duan and Wei [6]:

ht+1 = β0 +β1ht +β2ht
(
ε2
t − θ2)2

,

ht+1 = β0 +β1ht +β2htε
2
t +β3ht Max

(
0,−ε2

t

)
,

ln
(
ht+1

)= β0 +β1 ln
(
ht
)

+β4
(∣∣εt

∣
∣+ γεt

)
.

(4.18)

Note that r is the one-period continuously compounded risk-free rate, λ is a constant unit
risk premium, ht+1 is the conditional variance of the asset return, and {εt, t = 0,1,2, . . .}
forms a sequence of independent standard normal random variables with respect to the
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measure P. We may also model the volatility by a class of RCA GARCH models proposed
in Thavaneswaran et al. [22] and by models discussed in Section 3. It is of interest to
note that under the physical measure P neither the log return process ln(St+1/St) nor the
return process (St+1/St) are martingales. In order to calculate the option price, we have
to find the locally risk-neutralized measure Q under which the return process (St+1/St) is
a martingale. Using the basic properties of log normal distribution, one can easily show,
under the probability measure Q, the asset return process

ln
St+1

St
= r− ht+1

2
+
√
ht+1ε

∗
t+1,

ht+1 = β0 +β1ht +β2ht
(
ε∗t − θ− λ

)2
,

ε∗t+1 | Ft Q∼N(0,1).

(4.19)

This implies

ST = S0 exp

[

rT − 1
2

T∑

s=1

ht +
T∑

s=1

htε
∗
t

]

. (4.20)

For a European call option with a payoff at time T , Max(ST −K ,0) its time-0 value is
C(S0,σ1;T ,r,β0,β1,β2,θ + λ)= e−rTEQ0 {Max(ST −K ,0)}.

The approximate closed-form solution using edgeworth expansion is given by

Capp = C+ k3A3 +
(
k4− 3

)
A4, (4.21)

where

C = S0N(d̃)−Ke−rTN(d̃− σρT
)
,

d̃ = d+ δ,

d = ln
(
S0/K

)
+ rT + (1/2)σ2

ρT

σρT
,

δ = μρT − rT + (1/2)σ2
ρT

σρT
,

A3 = 1
3!
S0σρT

[(
2σρT − d̃

)
n(d̃)− σ2

ρTN(d̃)
]
,

A4 = 1
4!
S0σρT

[(
d̃2− 1− 3σρT

(
d̃− σρT

))
n(d̃) + σ3

ρTN(d̃)
]
.

(4.22)

Note. μρT and σρT are the mean and standard deviation of the cumulative return, that is,
ln(ST/S0), conditional on time 0 information; k3 and k4 are the skewness and kurtosis
coefficients of the standardized cumulative return, conditional on time-0 information.
Similarly for the models (4.18) and (4.19) under the locally risk-neutralized probability
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measure Q, the asset return dynamic becomes

ln
(
St+1

St

)
= r− 1

2
ht+1 +

√
ht+1εt+1, (4.23)

where εt
Q
∼N(0,1)

ht+1 = β0 +ht
[
β1 +β2

(
εt − λ

)2
+β3 max

(
0,−εt + λ

)2]
,

ln
(
ht+1

)= β0 +β1 ln
(
ht
)

+β4
(∣∣εt − λ

∣
∣+ γ

(
εt − λ

))
,

(4.24)

respectively.

5. Conclusions

Granger [13], a Nobel Prize winner (2003), had cited the first authors’ work (Abraham
and Thavaneswaran [1]) in his Berkeley Symposium. In this paper, some results in [1]
are extended to volatility models. Some new volatility models are introduced and their
moment properties are discussed. Kurtosis of these models is expressed in terms of the
model parameters. Application to volatility forecasting and analytical approximation to
option pricing are also discussed in some detail.
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