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A singular delayed biological economic predator-prey systemwith andwithout stochastic fluctuation is proposed.The conditions of
singularity induced bifurcation are gained, and a state feedback controller is designed to eliminate such bifurcation. Furthermore,
saddle-node bifurcation is also showed. Next, the local stability of the positive equilibrium and the existence of Hopf bifurcation
are obtained by analyzing the distribution of roots of the corresponding characteristic equation, and the hybrid control strategy is
used to control the occurrence of Hopf bifurcation. In addition, some explicit formulas determining the spectral densities of the
populations and harvest effort are given when the system is considered with stochastic fluctuation. Finally, numerical simulations
are illustrated to verify the theoretical results.

1. Introduction

Thedynamic relationship between predator and prey has long
been and will still be one of the dominant themes in both
biology and mathematical biology because of its universal
existence and importance. In the description of dynamics
interactions, a crucial element of all models is the classi-
cal definition of functional response. Lots of predator-prey
models with Holling type [1], Leslie-Gower type [2], and
Beddington-DeAngelis type [3, 4], and so forth have been
investigated extensively by scholars.However, somepredator-
preymodels in which prey population exhibits herd behavior,
such as plankton-phytoplankton model [5], may appear in
realistic world. Since the use of the square root properly
accounts for the assumption that the interactions occur along
the boundary of the population, Ajraldi et al. [6] proposed the
following predator-prey system in which interaction terms
use the square root of prey population rather than simply prey
population:

d𝑅 (𝑡)
d𝑡

= 𝑟𝑅 (𝑡) (1 −
𝑅 (𝑡)

𝑁
) − 𝑎√𝑅 (𝑡)𝑆 (𝑡) ,

d𝑆 (𝑡)
d𝑡

= −𝑚̃𝑆 (𝑡) + 𝑎𝑒√𝑅 (𝑡)𝑆 (𝑡) ,

(1)

where 𝑅 and 𝑆 denote the prey and predator, respectively.
The prey population exhibits a highly socialized behavior and
lives in herds as the form 𝑎√𝑅(𝑡)𝑆(𝑡); that is, the weaker
individuals are being kept at the center of their herd for
defensive purpose. Braza [7] also investigated the dynamics
of system (1) and showed that the prey exhibits strong herd
structure and the predator interacts with the prey along the
outer corridor of the herd of prey.

Recently, Yuan et al. [8] considered a predator-prey sys-
tem as follows:

d𝑋
d𝑡

= 𝑟𝑋(1 −
𝑋

𝑁
) −

𝛼√𝑋𝑌

1 + 𝑡ℎ𝛼
√𝑋

,

d𝑌
d𝑡

= −𝑠𝑌
2
+

𝑐𝛼√𝑋𝑌

1 + 𝑡ℎ𝛼
√𝑋

,

(2)

where −𝑠𝑌2 represents the quadratic mortality for preda-
tor population. Predator-prey systems with such functional
response have attracted little attention (see [6–9]).

It is well-known that time delays of one type or another
have been incorporated into mathematical models of pop-
ulation dynamics due to maturation time, capturing time,
or other reasons. Delay differential equations often show
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much more complicated dynamics than ordinary differential
equations because a time delay can cause a stable equilibrium
to become unstable and cause the population to fluctuate.
Many authors have been devoted to investigating the time
delay effect on the dynamics of system and obtained some
results (see [10–15]). Considering the fact that there always
exists a time delay in the conversion of the biomass of prey
to that of predator in system (2), Xu and Yuan [9] introduced
a time delay into system (2) and obtained the local stability
and the existence ofHopf bifurcation of this system.However,
bifurcate oscillation is harmful in some engineering applica-
tions, which has enormous potential in many technological
disciplines such as power networks protection. Bifurcation
control, which refers to the aim of designing a controller to
suppress or reduce some existing bifurcation dynamics of a
given system, can be useful. Various disciplines are attracted
to bifurcation control and various methods of bifurcation
control can be found [16–18].

In addition, Gordon [19] proposed the economic theory
of a common-property resource, which focuses on the effect
of the harvest effort on the ecosystem from an economic
perspective. If 𝐸(𝑡) and 𝑌(𝑡) represent the harvest effort and
the density of harvested population, respectively, then the
total revenue TR = 𝜔𝐸(𝑡)𝑌(𝑡) and the total cost TC = 𝑐𝐸(𝑡),
where 𝜔 represents unit price of harvested population and
𝑐 represents the cost of harvest effort. Thus, an algebraic
equation, which considers the economic interest V of the
harvest effort on the harvested population, is established as
follows:

𝐸 (𝑡) (𝜔𝑌 (𝑡) − 𝑐) = V. (3)

Based on the Gordon [19] theory and theory of singular
system, Zhang et al. [20] first proposed a class of singular
biological economic systems. Some results on those systems,
such as the stabilities, bifurcations, and chaos, can be found
in [20–24].

Based on the previous models, we establish the following
predator-prey system consisting of two differential equations
and an algebraic equation as follos:

d𝑋
d𝑠

= 𝑟𝑋(1 −
𝑋

𝑁
) −

𝛼√𝑋𝑌

1 + 𝑡ℎ𝛼
√𝑋

− 𝐸𝑋,

d𝑌
d𝑠

= −𝑑𝑌
2
+

𝑏̃𝛼√𝑋 (𝑠 − 𝜏)𝑌

1 + 𝑡ℎ𝛼√𝑋 (𝑠 − 𝜏)

,

0 = 𝐸 (𝑝𝑋 − 𝑐) − 𝑚̃,

(4)

where 𝑋, 𝑌, and 𝐸 are the prey, predator, and the harvest
effort at the time 𝑠, respectively. 𝜏 denotes the time delay
which means the growth rate of predator species depends on
the number of the prey species 𝜏 units of time earlier. The
parameters 𝑟 and 𝑁 are the growth rate of the prey and its
carrying capacity. The parameter 𝛼 is the search efficiency of
𝑌 for 𝑋, 𝑏̃ is biomass conversion or consumption rate, and
𝑡ℎ is 𝑌’s average handling time of 𝑋. −𝑑𝑌2 represents the
quadratic mortality for predator population. 𝑝 and 𝑐 are unit

price of harvested population and the cost of harvest effort.
𝑚̃ is harvest interest of the harvest effort on the harvested
prey.

It is important to make some simplifying assumptions to
discern the basic dynamics and to make the analysis more
tractable. In order to simplify system (4), we use the following
dimensionless transformations: 𝑥 = 𝑋/𝑁, 𝑦 = 𝛼𝑌/𝑟√𝑁,
𝑒 = 𝐸/𝑟, and 𝑡 = 𝑟𝑠. Then system (4) can be rewritten as
follows:

d𝑥
d𝑡

= 𝑥 (1 − 𝑥) −
√𝑥𝑦

1 + 𝑎√𝑥
− 𝑒𝑥,

d𝑦
d𝑡

= −𝑑𝑦
2
+

𝑏√𝑥 (𝑡 − 𝜏)𝑦

1 + 𝑎√𝑥 (𝑡 − 𝜏)

,

0 = 𝑒 (𝑝𝑥 − 𝑐) − 𝑚,

(5)

where 𝑎 = 𝑡𝑛𝛼
√𝑁, 𝑏 = 𝛼√𝑁𝑏̃/𝑟, 𝑐 = 𝑐, 𝑑 = √𝑁𝑑/𝑟, 𝑚 =

𝑚̃/𝑟, and 𝑝 = 𝑝𝑁.
In the papers [6–9], the author used the simplifying

assumption that 𝑎 = 0; that is, the average handling time is
zero. In linewith thework in [6–9], we also assume that 𝑎 = 0.
Thus, system (5) takes the form:

d𝑥
d𝑡

= 𝑥 (1 − 𝑥) − √𝑥𝑦 − 𝑒𝑥,

d𝑦
d𝑡

= −𝑑𝑦
2
+ 𝑏√𝑥 (𝑡 − 𝜏)𝑦,

0 = 𝑒 (𝑝𝑥 − 𝑐) − 𝑚.

(6)

The initial conditions of system (6) are

𝑥 (𝜃) = 𝜓 (𝜃) ≥ 0,

𝑦 (𝜃) = 𝜂 (𝜃) ≥ 0,

𝑒 (𝜃) = 𝜙 (𝜃) ≥ 0,

𝑥 (0) > 0, 𝑦 (0) > 0, 𝑒 (0) > 0, 𝜃 ∈ [−𝜏, 0) .

(7)

In reality, the environmental fluctuation is one of the
important components for ecological systems. Many natural
phenomena do not follow the deterministic law and usually
oscillate randomly around some average values. The deter-
ministic approach has limitations onmathematicalmodeling,
which makes the accurate prediction for the future dynamics
of system very difficult. Stochastic differential equation mod-
els play a significant role in various dynamic analysis, because
they can provide some additional degree of realism compared
to their deterministic counterpart [25]. Recently, some results
of the stochastic modeling of ecological populations are
presented [26–30].

In order to study the effects of the environmental fluc-
tuations on a delayed singular prey-predator bioeconomic
model, the following stochastic model corresponding to
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the delayed system (4) in the fluctuating environment is
given:

d𝑋
d𝑠

= 𝑟𝑋(1 −
𝑋

𝑁
) −

𝛼√𝑋𝑌

1 + 𝑡ℎ𝛼
√𝑋

− 𝐸𝑋 + 𝜉1 (𝑡) ,

d𝑌
d𝑠

= −𝑑𝑌
2
+

𝑏̃𝛼√𝑋 (𝑠 − 𝜏)𝑌

1 + 𝑡ℎ𝛼√𝑋 (𝑠 − 𝜏)

+ 𝜉2 (𝑡) ,

0 = 𝐸 (𝑝𝑋 − 𝑐) − 𝑚̃ + 𝜉3 (𝑡) .

(8)

The perturbed terms 𝜉𝑖, 𝑖 = 1, 2, 3, are mutually inde-
pendent Gaussian white noises characterized by ⟨𝜉𝑖⟩ and
⟨𝜉𝑖(𝑡)𝜉𝑗(𝑡1)⟩ = 𝛿𝑖𝑗𝛿(𝑡 − 𝑡1), 𝑖, 𝑗 = 1, 2, 3. The symbol ⟨⋅⟩
is the ensemble average due to the effect of the fluctuating
environment, 𝛿𝑖𝑗 is the Kronecker delta and represent the
spectral density of the white noise, and 𝛿 is the Dirac delta
function with 𝑡 and 𝑡1 being the distinct times.

By taking the same translations and same notations, we
can obtain the following form:

d𝑥
d𝑡

= 𝑥 (1 − 𝑥) − √𝑥𝑦 − 𝑒𝑥 + 𝜉1 (𝑡) ,

d𝑦
d𝑡

= −𝑑𝑦
2
+ 𝑏√𝑥 (𝑡 − 𝜏)𝑦 + 𝜉2 (𝑡) ,

0 = 𝑒 (𝑝𝑥 − 𝑐) − 𝑚 + 𝜉3 (𝑡) ,

(9)

where 𝜉1(𝑡) = 𝜉1(𝑡)/𝑁, 𝜉2(𝑡) = 𝜉2(𝑡)/𝑟
√𝑁, and 𝜉3(𝑡) =

𝜉3(𝑡)/𝑟. In addition, the initial conditions of system (9) are
also similar to that of system (6).

The rest of paper is organized as follows. In the next
section, some conditions for the existence of the positive
equilibrium, saddle-node bifurcation, singularity induced
bifurcation, and Hopf bifurcation are obtained and bifur-
cation controls in deterministic model are also showed.
Some explicit formulas determining the spectral densities of
the populations and harvest effort in the singular bioeco-
nomic system with the fluctuation environment are gotten
in Section 3. To support our theoretical predictions, some
numerical simulations are included in Section 4. A brief
discussion is also given in the last section.

2. Dynamics of the Deterministic Model

2.1. Existence of the Positive Equilibrium. From the viewpoint
of biological interpretation, we only consider the positive
equilibrium. There exists a positive equilibrium 𝑃(𝑥, 𝑦, 𝑒) of
system (6), where the values 𝑥, 𝑦, and 𝑒 satisfy the following
equations:

𝑥 (1 − 𝑥) − √𝑥𝑦 − 𝑒𝑥 = 0, (10a)

−𝑑𝑦
2
+ 𝑏√𝑥𝑦 = 0, (10b)

𝑒 (𝑝𝑥 − 𝑐) − 𝑚 = 0. (10c)

From (10b) and (10c), we can obtain 𝑦 = (𝑏/𝑑)√𝑥 and 𝑒 =
𝑚/(𝑝𝑥 − 𝑐), respectively. Substituting the above values into
(10a), we can obtain that 𝑥 satisfies the following equation:

𝑥
2
+ (

𝑏

𝑑
− 1 −

𝑐

𝑝
)𝑥 +

𝑐

𝑝
+
𝑚

𝑝
−
𝑏𝑐

𝑑𝑝
= 0. (11)

By simple computation, we obtain that

𝑚sn =
𝑏𝑐

𝑑
− 𝑐 +

𝑝

4
(
𝑏

𝑑
− 1 −

𝑐

𝑝
)

2

. (12)

Suppose that𝑚sn > 0 and

(1) 𝑚 > 𝑚sn: there is no positive equilibrium;
(2) 𝑚 = 𝑚sn: there is only one positive equilibrium

𝑃
∗
(𝑥

∗
, 𝑦

∗
, 𝑒

∗
) if the assumption

(H1): 𝑝 > 𝑐 + 𝑏𝑝/𝑑

holds, where 𝑦∗
= (𝑏/𝑑)√𝑥∗, 𝑒∗ = 𝑚/(𝑝𝑥∗ − 𝑐), and

𝑥
∗
= (𝑐𝑑 + 𝑝𝑑 − 𝑏𝑝)/2𝑑𝑝;

(3) 𝑚 < 𝑚sn: there are two positive equilibriums
𝑃
+

∗
(𝑥

+

∗
, 𝑦

+

∗
, 𝑒

+

∗
) and 𝑃

−

∗
(𝑥

−

∗
, 𝑦

−

∗
, 𝑒

−

∗
), where 𝑦

±

∗
=

(𝑏/𝑑)√𝑥±
∗
, 𝑒±

∗
= 𝑚/(𝑝𝑥

±

∗
− 𝑐), 𝑥±

∗
= (𝑐𝑑 + 𝑝𝑑 − 𝑏𝑝 ±

√Δ)/2𝑑𝑝, and Δ = (𝑏/𝑑 − 1 − 𝑐/𝑝)2 − 4(𝑐/𝑝 + 𝑚/𝑝 −
𝑏𝑐/𝑑𝑝).

Remark 1. In the following, we only investigate that system
(6) has a unique positive equilibrium 𝑃

∗
(𝑥

∗
, 𝑦

∗
, 𝑒

∗
). Of

course, we can discuss the stability and bifurcation at the
equilibrium 𝑃

+

∗
(𝑥

+

∗
, 𝑦

+

∗
, 𝑒

+

∗
) (resp., 𝑃−

∗
(𝑥

−

∗
, 𝑦

−

∗
, 𝑒

−

∗
)) by the same

way.

2.2. Singularity Induced Bifurcation and Control. In this part,
our main objective is to study the occurrence of singularity
induced bifurcation and the effects of economic profit on
system (6). System (6) without time delay takes the following
form:

d𝑥
d𝑡

= 𝑥 (1 − 𝑥) − √𝑥𝑦 − 𝑒𝑥,

d𝑦
d𝑡

= −𝑑𝑦
2
+ 𝑏√𝑥𝑦,

0 = 𝑒 (𝑝𝑥 − 𝑐) − 𝑚.

(13)

If the parameter 𝑚 is taken as bifurcation parameter, the
singularity induced bifurcation, which is first introduced
by Venkatasubramanian et al. [31], may appear around the
interior equilibrium. The singularity induced bifurcation
does not occur in a normal ordinary differential equation
system, which has been characterized by a singular system.
Roughly speaking, a singularity induced bifurcation refers to
a stability change of the singular system, which leads to an
impulse phenomenon of the singular system and may even
result in the collapse of the system (see [32, 33]). Thus, we
give some results on the singularity induced bifurcation of
singular system.
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Singular system, renamed as differential-algebraic sys-
tem, can be described by the following form:

𝑥̇ = 𝑓 (𝑥, 𝑦, 𝜇) , 𝑓 : 𝑅
𝑚+𝑛+𝑞

󳨀→ 𝑅
𝑛
,

0 = 𝑔 (𝑥, 𝑦, 𝜇) , 𝑔 : 𝑅
𝑚+𝑛+𝑞

󳨀→ 𝑅
𝑚
,

(14)

where 𝑥 ∈ 𝑋 ⊂ 𝑅
𝑛 and 𝑦 ∈ 𝑌 ⊂ 𝑅𝑚 denote differential parts

and algebraic parts of state variable, respectively. 𝜇 ∈ Λ ⊂ 𝑅𝑞

is the parametric variable, and 𝑓 and 𝑔 are vector functions
with appropriate dimensions.

Lemma 2. We will consider system (14) with a one-
dimensional parameter space. If we suppose the following
conditions are satisfied at (0, 0, 𝜇0), where 𝐷 is a differential
operator, Δ = 𝐷𝐸𝑔 is the matrix of partial derivatives of the
components of 𝑔 with respect to 𝐸, and 𝐷𝑦𝑔 is the matrix of
partial derivatives of the components of 𝑔 with respect to 𝑦:

SI1: 𝑓(𝑥, 𝑦, 𝜇) = 0, 𝑔(𝑥, 𝑦, 𝜇) = 0, 𝐷𝑦𝑔 has
an algebraically simple zero eigenvalue and
trace[𝐷𝑦𝑓adj(𝐷𝑦𝑔)(𝐷𝑥𝑔,𝐷𝑦𝑔)] is nonzero,

SI2: (𝐷
𝑥
𝑓 𝐷
𝑦
𝑓

𝐷
𝑥
𝑔 𝐷
𝑦
𝑔
) is nonsingular,

SI3: (

𝐷
𝑥
𝑓 𝐷
𝑦
𝑓 𝐷
𝜇
𝑓

𝐷
𝑥
𝑔 𝐷
𝑦
𝑔 𝐷
𝜇
𝑔

𝐷
𝑥
Δ 𝐷
𝑦
Δ 𝐷
𝜇
Δ

) is nonsingular, and

rank(
𝐷
𝑥
𝑓 𝐷
𝑦
𝑓 𝐷
𝜇
𝑓

𝐷
𝑥
𝑔 𝐷
𝑦
𝑔 𝐷
𝑝
𝑔

𝐷
𝑥
Δ 𝐷
𝑦
Δ 𝐷
𝜇
Δ

) = rank𝑓(𝑥, 𝑦, 𝜇) + rank 𝑔(𝑥,

𝑦, 𝜇),

then there exists a smooth curve of equilibrium in 𝑅
𝑛+𝑚+1,

which passes through (0, 0, 𝜇0) and is transversal to the
singular surface at (0, 0, 𝜇0). When 𝜇 increases through 𝜇0, one
eigenvalue of this system moves from 𝐶

− (the open complex
left half plane) to 𝐶+ (the open complex right half plane) if
𝑀/𝑁 > 0 (resp., from𝐶

+ to𝐶− if𝑀/𝑁 < 0) along the real axis
by diverging through the infinity. The other (𝑛 − 1) eigenvalues
remain bounded and stay away from the origin. The constants
𝑀 and𝑁 can be computed:

𝑀 = −trace [𝐷𝑦𝑓adj (𝐷𝑦𝑔) (𝐷𝑥𝑔,𝐷𝑦𝑔)]
󵄨󵄨󵄨󵄨󵄨(0,0,𝜇

0
)
,

𝑁 =
{

{

{

𝐷𝜇Δ

− (𝐷𝑥Δ𝐷𝑦Δ)(

𝐷𝑥𝑓 𝐷𝑦𝑓

𝐷𝑥𝑔 𝐷𝑦𝑔
)

−1

(

𝐷𝜇𝑓

𝐷𝜇𝑔
)
}

}

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(0,0,𝜇
0
)

.

(15)

For simplicity, let

𝑓 (𝑋 (𝑡) , 𝐸 (𝑡) , 𝜇) = (

𝑓1

𝑓2

)

= (

𝑥 (1 − 𝑥) − √𝑥𝑦 − 𝑒𝑥

−𝑑𝑦
2
+ 𝑏√𝑥𝑦

) ,

𝑔 (𝑋 (𝑡) , 𝐸 (𝑡) , 𝜇) = 𝑒 (𝑝𝑥 − 𝑐) − 𝑚,

(16)

where 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡))
𝑇, 𝐸(𝑡) = 𝑒(𝑡), 𝜇 = 𝑚. Let 𝐷 be a

differential operator: Δ(𝑋(𝑡), 𝐸(𝑡), 𝜇) = 𝐷𝐸𝑔(𝑋(𝑡), 𝐸(𝑡), 𝜇) =

𝑝𝑥(𝑡) − 𝑐. Applying Lemma 2 to system (13), we can obtain
the following result.

Theorem 3. If (H1) holds, then system (13) has a singularity
induced bifurcation at the interior equilibrium 𝑃

∗
(𝑥

∗
, 𝑦

∗
, 𝑒

∗
)

when the bifurcation parameter𝑚 increases through zero.That
is, a stability switch occurs as parameter𝑚 passes through zero.

Proof. It is obvious that 𝐷𝐸𝑔|𝑃∗(𝑥∗ ,𝑦∗,𝑒∗) = 0 and 𝑚 = 0,
which implies that 𝐷𝐸𝑔 has a simple zero eigenvalue. Here
𝑃
∗
(𝑥

∗
, 𝑦

∗
, 𝑒

∗
) ≐ (𝑝/𝑐, (𝑏/𝑑)√𝑝/𝑐, 1 − 𝑏/𝑑 − 𝑝/𝑐).

By simple computation, we have that

trace (𝐷𝐸𝑓adj (𝐷𝐸𝑔) (𝐷𝑋𝑔,𝐷𝐸𝑔)
󵄨󵄨󵄨󵄨𝑃∗
) = −𝑝𝑥

∗
𝑒
∗

̸= 0.

(17)

Furthermore, it can be calculated that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷𝑋𝑓 𝐷𝐸𝑓

𝐷𝑋𝑔 𝐷𝐸𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃∗

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 2𝑥 −
𝑦

2√𝑥
− 𝑒 −√𝑥 −𝑥

𝑏𝑦

2√𝑥
−2𝑑𝑦 + 𝑏√𝑥 0

𝑝𝑒 0 𝑝𝑥 − 𝑐

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃∗

= −𝑝𝑑𝑥
∗
𝑦
∗
𝑒
∗

̸= 0,

(18)

which follows that (𝐷
𝑋
𝑓 𝐷
𝐸
𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔
) is nonsingular at 𝑃∗.

By simple computing,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷𝑋𝑓 𝐷𝐸𝑓 𝐷𝜇𝑓

𝐷𝑋𝑔 𝐷𝐸𝑔 𝐷𝜇𝑔

𝐷𝑋Δ 𝐷𝐸Δ 𝐷𝜇Δ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃∗

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑥 +
𝑦

2√𝑥
−√𝑥 −𝑥 0

𝑏𝑦

2√𝑥
−𝑑𝑦 0 0

𝑝𝑒 0 𝑝𝑥 − 𝑐 0

𝑝 0 0 0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃∗

= 𝑝𝑑𝑥
∗
𝑦
∗

̸= 0;

(19)

it is easy to show that rank(𝑓(𝑋, 𝐸, 𝜇)) = 2 and rank(𝑔(𝑋,

𝐸, 𝜇)) = 1. Hence, rank(
𝐷
𝑋
𝑓 𝐷
𝐸
𝑓 𝐷
𝜇
𝑓

𝐷
𝑋
𝑔 𝐷
𝐸
𝑔 𝐷
𝜇
𝑔

𝐷
𝑋
Δ 𝐷
𝐸
Δ 𝐷
𝜇
Δ

) = rank(𝑓(𝑋, 𝐸, 𝜇))+

rank(𝑔(𝑋, 𝐸, 𝜇)) + 1.
Thus, all conditions of Lemma 2 are satisfied. System

(13) has a singularity induced bifurcation at the positive
equilibrium 𝑃

∗
(𝑥

∗
, 𝑦

∗
, 𝑒

∗
) when the bifurcation parameter

𝑚 = 0.
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Furthermore, the constants𝑀 and𝑁 can be computed:

𝑀 = −trace [𝐷𝐸𝑓adj (𝐷𝐸𝑔) (𝐷𝑋𝑔,𝐷𝐸𝑔)]
󵄨󵄨󵄨󵄨𝑃∗(𝑥∗ ,𝑦∗,𝑒∗)

= 𝑝𝑥
∗
𝑒
∗

̸= 0,

𝑁 =
{

{

{

𝐷𝜇Δ − (𝐷𝑋Δ,𝐷𝐸Δ)(

𝐷𝑋𝑓 𝐷𝐸𝑓

𝐷𝑋𝑔 𝐷𝐸𝑔
)

−1

⋅ (

𝐷𝜇𝑓

𝐷𝜇𝑔
)
}

}

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃∗(𝑥∗ ,𝑦∗,𝑒∗)

= −
1

𝑒∗
̸= 0,

(20)

which follows that
𝑀

𝑁
= −𝑝𝑥

∗
(𝑒

∗
)
2
< 0. (21)

If parameter 𝑚 increases through zero, then one eigenvalue
of system (13) will move from 𝐶

+ to 𝐶− along the real axis by
diverging into the infinity. Thus, the stability of the positive
equilibrium 𝑃

∗
(𝑥

∗
, 𝑦

∗
, 𝑒

∗
) changes from unstable to stable.

The Jacobian of system (13) evaluated at𝑃∗ takes the form:

𝐽 =
𝜕 (𝑓, 𝑔)

𝜕 (𝑋, 𝐸)

= (

1 − 2𝑥 −
𝑦

2√𝑥
− 𝑒 −√𝑥 −𝑥

𝑏𝑦

2√𝑥
−𝑑𝑦 0

𝑝𝑒 0 𝑝𝑥 − 𝑐

) .

(22)

According to the leadingmatrixΞ in system (13) and 𝐽𝑃∗ , here
Ξ = (

1 0 0
0 1 0
0 0 0

), the characteristic equation of system (13) at 𝑃∗

is det(𝜆Ξ − 𝐽𝑃∗) = 0. That is, the characteristic equation can
be expressed:

det (𝜆Ξ − 𝐽𝑃∗) = 𝑝𝑥
∗
𝑒
∗
(𝜆 + 𝑏√𝑥∗) = 0. (23)

It is obvious that the rest eigenvalue (denoted by 𝜆2) has
negative real part. Furthermore, it follows from Theorem 1.1
[34] that there is only one eigenvalue diverging to infinity,
but the rest eigenvalue is continuous, nonzero, and cannot
jump from on half open complex plane to another one as 𝑚
increases through 0. Table 1 shows the change in the signs of
the real parts of eigenvalues (𝜆1 and 𝜆2) due to the variation
of economic interest of harvest effort. According to Table 1, it
can be concluded that system (13) is stable at 𝑃∗ as𝑚 < 0 and
unstable as 𝑚 > 0. Consequently, a stability switch occurs as
𝑚 increases through 0.

Remark 4. According to [35], system (13) along the positive
equilibrium locus yields index one matrix pencil (Ξ, 𝐽) for
𝑚 ̸= 0 and index two matrix pencil (Ξ, 𝐽) for 𝑚 = 0. This
shows that there exists one index jump at a bifurcation point
𝑚 = 0. It leads to the rapid expansion of the population
from the point of view of biology. If this phenomenon lasts
for a long time, the population will be beyond the carrying
capacity of the environment and the prey-predator system

Table 1: Signs of real parts of eigenvalues of system (13) at 𝑃∗.

Parameter value Re 𝜆
1

Re 𝜆
2

𝑚 < 0 − −

𝑚 > 0 + −

will be out of balance, which is disastrous. With the purpose
of economic interest of harvest effort at an ideal level as well
as maintaining the sustainable development of the biological
resource, some related measures should be taken to eliminate
the impulse phenomenon and stabilize system (13) when the
economic interest is positive.Thus, a state feedback controller
is designed to stabilize system (13) at the positive equilibrium
𝑃
∗.

By using Theorem 3-1.2 [36], a state feedback controller
𝑢(𝑡) = 𝑘(𝑒(𝑡) − 𝑒

∗
), where 𝑘 is a feedback gain and 𝑒∗ is

the component of the positive equilibrium 𝑃
∗, can be applied

to stabilize system (13) at 𝑃∗. Thus, a controlled system is as
follows:

d𝑥
d𝑡

= 𝑥 (1 − 𝑥) − √𝑥𝑦 − 𝑒𝑥,

d𝑦
d𝑡

= −𝑑𝑦
2
+ 𝑏√𝑥𝑦,

0 = 𝑒 (𝑝𝑥 − 𝑐) + 𝑘 (𝑒 − 𝑒
∗
) − 𝑚,

(24)

where all variables and parameters have the same interpreta-
tions as that in system (13).The feedback gain can be given in
the following result.

Theorem 5. Suppose the feedback gain 𝑘 satisfies one of the
following cases:

(i) if 𝑏𝑝 − 2𝑐𝑑 > 0, then 𝑘 < 2𝑝(𝑐𝑑 − 𝑏𝑐 − 𝑝𝑑)/(𝑏𝑝 − 2𝑐𝑑);
(ii) if 𝑏𝑝 − 2𝑐𝑑 < 0, then 𝑘 > 2𝑝(𝑐𝑑 − 𝑏𝑐 − 𝑝𝑑)/(𝑏𝑝 − 2𝑐𝑑);

the controlled system (24) is stable at the positive equilibrium
𝑃
∗.

Proof. The Jacobian of system (24) evaluated at the interior
equilibrium 𝑃

∗ has the form

𝐽𝑃∗ =(

1 − 2𝑥
∗
−
𝑏

2𝑑
− 𝑒

∗
−√𝑥∗ −𝑥

∗

𝑏
2

2𝑑
−𝑏√𝑥∗ 0

𝑝𝑒
∗

0 𝑘

). (25)

According to the leading matrix Ξ in system (13) and 𝐽𝑃∗ , the
characteristic equation of the controlled system (24) at 𝑃∗ is

𝜆
2
+ (𝑏√𝑥∗ +

𝑝𝑥
∗
𝑒
∗

𝑘
− 1 + 2𝑥

∗
+
𝑏

2𝑑
+ 𝑒

∗
)𝜆

+ 𝑏√𝑥∗ (
𝑝𝑥

∗
𝑒
∗

𝑘
− 1 + 2𝑥

∗
+
𝑏

2𝑑
+ 𝑒

∗
) = 0.

(26)

By using the Routh-Hurwitz criteria [37], the sufficient and
necessary condition for the stability of the controlled system
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(24) at 𝑃∗ is that the feedback gain 𝑘 satisfies the following:
if 𝑏𝑝 − 2𝑐𝑑 > 0, then 𝑘 < 2𝑝(𝑐𝑑 − 𝑏𝑐 − 𝑝𝑑)/(𝑏𝑝 − 2𝑐𝑑);
otherwise, 𝑘 > 2𝑝(𝑐𝑑 − 𝑏𝑐 − 𝑝𝑑)/(𝑏𝑝 − 2𝑐𝑑). This ends the
proof.

Remark 6. After introducing the feedback controller into
system (13), the controlled system (24) can be stabilized at
the positive equilibrium. The elimination of the singularity
induced bifurcation means the prey-predator system restores
ecological balance. Both sustainable development of the prey-
predator system and the ideal economic interest of harvesting
can be obtained by enhancing or reducing the harvest effort
on the prey.

2.3. Saddle-Node Bifurcation. If 𝑚 is taken as bifurcation
parameter, the following result is true.

Theorem 7. If the assumption (H1) holds, then system (13)
undergoes saddle-node bifurcation at𝑚 = 𝑚sn.

Proof. The characteristic polynomial of system (13) at the
positive equilibrium 𝑃

∗
(𝑥

∗
, 𝑦

∗
, 𝑒

∗
) is given:

𝐹 (𝜆) = 𝜆
2
+ 𝑙1𝜆 + 𝑙0, (27)

where 𝑙1 = 𝑏√𝑥∗ + 2𝑥
∗
+ 𝑏/2𝑑 − 1 − 𝑚𝑐/(𝑝𝑥

∗
− 𝑐)

2 and
𝑙0 = 𝑏

√𝑥∗(2𝑥
∗
+ 𝑏/𝑑 − 1 − 𝑚𝑐/(𝑝𝑥

∗
− 𝑐)

2
). Clearly, it has a

simple zero eigenvalue with left eigenvector 𝑢sn = (−𝑏, 1) and
right eigenvector Vsn = (√𝑥∗, 𝑏/2𝑑)

𝑇. And

𝑢sn𝐷𝜇𝑓R
󵄨󵄨󵄨󵄨󵄨𝑃∗

= 𝑢sn (𝐷𝜇𝑓 − 𝐷𝐸𝑓 (𝐷𝐸𝑔)
−1
𝐷𝜇𝑔)R

󵄨󵄨󵄨󵄨󵄨𝑃∗

=
𝑏𝑥

∗

𝑝𝑥∗ − 𝑐
,

𝑢sn𝐷
2

𝑋
𝑓R (Vsn, Vsn)

󵄨󵄨󵄨󵄨󵄨𝑃∗

= 𝑢sn

𝑖=2

∑

𝑖=1

(𝑒𝑖V
𝑇

sn𝐷𝑋 (𝐷𝑋𝑓𝑖)
𝑇 Vsn)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃∗

=
𝑏
2

2𝑑
+ 2𝑏𝑥

∗
+

𝑏𝑦
∗

4√𝑥∗
(𝑏 − 1) +

2𝑏𝑚𝑝𝑐𝑥
∗

(𝑝𝑥∗ − 𝑐)
3
,

(28)

where 𝑒𝑖 (𝑖 = 1, 2) are unit vectors.
According to [31], system (13) undergoes saddle-node

bifurcation when 𝑚 = 𝑚sn holds. This completes the
proof.

2.4. Hopf Bifurcation and Control. From the discussion
above, we know that if (H1) holds, there is only one positive
equilibrium 𝑃

∗
(𝑥

∗
, 𝑦

∗
, 𝑒

∗
); if 𝑚 < 𝑚sn, there are two

positive equilibriums 𝑃+

∗
(𝑥

+

∗
, 𝑦

+

∗
, 𝑒

+

∗
) and 𝑃

−

∗
(𝑥

−

∗
, 𝑦

−

∗
, 𝑒

−

∗
). In

this subsection, we only investigate the dynamical behavior
of system (6) at the positive equilibrium 𝑃

+

∗
(𝑥

+

∗
, 𝑦

+

∗
, 𝑒

+

∗
) but

neglect similar results on the other positive equilibria.

For simplicity, let

𝑓 (𝑊) = (

𝑓1 (𝑥, 𝑦, 𝑒)

𝑓2 (𝑥, 𝑦, 𝑒)
) = (

𝑥 (1 − 𝑥) − √𝑥𝑦 − 𝑒𝑥

−𝑑𝑦
2
+ 𝑏√𝑥 (𝑡 − 𝜏)𝑦

) ,

𝑔 (𝑊) = 𝑒 (𝑝𝑥 − 𝑐) − 𝑚,

(29)

where𝑊 = (𝑥, 𝑦, 𝑒)
𝑇. In order to analyze the local stability of

the positive equilibrium of system (6), we first use the linear
transformation𝑊𝑇

(𝑡) = 𝑄𝑁
𝑇
(𝑡), where

𝑁(𝑡) = (𝑢 (𝑡) , V (𝑡) , 𝐸 (𝑡)) ,

𝑄 = (

1 0 0

0 1 0

−
𝑝𝑒

+

∗

𝑝𝑥+
∗
− 𝑐

0 1

).

(30)

Then, we get 𝐷𝑌𝑔(𝑃
+

∗
)𝑄 = (0, 0, 𝑝𝑥

+

∗
− 𝑐) and 𝑢(𝑡) = 𝑥(𝑡),

V(𝑡) = 𝑦(𝑡), 𝐸(𝑡) = (𝑝𝑒
+

∗
/(𝑝𝑥

+

∗
− 𝑐))𝑥(𝑡) + 𝑒(𝑡). Substituting

the latter into system (6), we can obtain

d𝑢 (𝑡)
d𝑡

= 𝑢 (𝑡) (1 − 𝑢) − √𝑢 (𝑡)V (𝑡) − 𝐸 (𝑡) 𝑢 (𝑡)

+
𝑝𝑒

+

∗
𝑢
2
(𝑡)

𝑝𝑥+
∗
− 𝑐

,

dV (𝑡)
d𝑡

= −𝑑V2 (𝑡) + 𝑏√𝑢 (𝑡 − 𝜏)V (𝑡) ,

0 = (𝐸 (𝑡) −
𝑝𝑒

+

∗
𝑢 (𝑡)

𝑝𝑥+
∗
− 𝑐

) (𝑝𝑢 (𝑡) − 𝑐) − 𝑚.

(31)

Further, in order to derive the formula determining the
properties of the positive equilibrium of system (31), we
consider the local parametric Ψ of the third equation of
system (31) as the literatures [38, 39], which is given:

𝑁
𝑇
(𝑡) = Ψ (𝑍 (𝑡)) = 𝑁

𝑇

0
+ 𝑢0𝑍 (𝑡) + V0ℎ (𝑍 (𝑡)) ,

𝑔 (Ψ (𝑍 (𝑡))) = 0,

(32)

where

𝑢0 = (

1 0

0 1

0 0

) ,

V0 = (

0

0

1

) ,
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𝑍 (𝑡) = (

𝑦1 (𝑡)

𝑦2 (𝑡)
) ,

𝑁0 = (

𝑢
∗

V∗

𝐸
∗

) =(

𝑥
+

∗

𝑦
+

∗

𝑝𝑥
+

∗
𝑒
+

∗

𝑝𝑥+
∗
− 𝑐

+ 𝑒
+

∗

),

ℎ (𝑍 (𝑡)) = (

0

0

ℎ3 (𝑦1 (𝑡) , 𝑦2 (𝑡))

) : 𝑅
2
󳨀→ 𝑅

(33)

is a smoothmapping.The corresponding characteristic equa-
tion of the linearized system of the above system is

𝜆
2
+ (𝑏√𝑢∗ − 𝐴) 𝜆 − 𝐴𝑏√𝑢∗ +

𝑏
2

2𝑑

√𝑢∗𝑒
−𝜆𝜏

= 0, (34)

where 𝐴 = 1 − 𝑏/2𝑑 − 𝑢
∗
+ 𝑚𝑐/(𝑝𝑢

∗
− 𝑐)

2.
In order to investigate the distribution of roots of the

transcendental equation (34), we introduce the following
result proved by Ruan and Wei [10].

Lemma 8. Consider the exponential polynomial:

𝑃 (𝜆, 𝑒
−𝜆𝜏
1 , . . . , 𝑒

−𝜆𝜏
𝑚)

= 𝜆
𝑛
+ 𝑝

0

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
0

𝑛−1
𝜆 + 𝑝

0

𝑛

+ [𝑝
1

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
1

𝑛−1
𝜆 + 𝑝

1

𝑛
] 𝑒

−𝜆𝜏
1 + ⋅ ⋅ ⋅

+ [𝑝
𝑚

1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑝
𝑚

𝑛−1
𝜆 + 𝑝

𝑚

𝑛
] 𝑒

−𝜆𝜏
𝑚 ,

(35)

where 𝜏𝑖 ≥ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝𝑖

𝑗
(𝑖 = 1, 2, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑛) are constants. As (𝜏1, 𝜏2, . . . , 𝜏𝑚) vary, the sum of
the order of the zeros of 𝑃(𝜆, 𝑒−𝜆𝜏1 , . . . , 𝑒−𝜆𝜏𝑚) on the open right
half plane can change only if a zero appears on or crosses the
imaginary axis.

It is obvious that 𝜆 = 0 is not a root of (34). When 𝜏 = 0,
(34) is rewritten as follows:

𝜆
2
+ (𝑏√𝑢∗ − 𝐴) 𝜆 + 𝑏√𝑢∗ (

𝑏

2𝑑
− 𝐴) = 0. (36)

Thus, if 𝑏/2𝑑−𝐴 < 0, (36) has at least one positive root, which
implies that system (6) without any time delay is unstable. If
the condition

(H2): 1+𝑚𝑐/(𝑝𝑢∗−𝑐)2 < min{𝑏/𝑑+2𝑢∗, 𝑏/2𝑑+2𝑢∗+
𝑏√𝑢∗}

holds, two roots of (36) have always negative real parts.Thus,
we have the following result.

Lemma9. Assume that (H1) and (H2) hold, then the two roots
of (36) have always negative real parts; that is, system (6) with
𝜏 = 0 is locally asymptotically stable.

Let 𝜔𝑖 (𝜔 > 0) be the root of (34), and we have the
following equations by substituting it into (34) and separating
the real and imaginary parts:

𝑏
2√𝑢∗

2𝑑
cos𝜔𝜏 = 𝜔2

+ 𝐴𝑏√𝑢∗,

𝑏
2√𝑢∗

2𝑑
sin𝜔𝜏 = (𝑏√𝑢∗ − 𝐴)𝜔,

(37)

which gives

𝜔
4
+ 𝑎1𝜔

2
+ 𝑎0 = 0, (38)

where 𝑎1 = 𝐴
2
+ 𝑏

2
𝑢
∗
> 0 and 𝑎0 = 𝑏

2
𝑢
∗
(𝐴

2
− 𝑏

2
/4𝑑

2
).

Let 𝜔2
= 𝜃; (38) takes the form

Φ (𝜃) = 𝜃
2
+ 𝑎1𝜃 + 𝑎0 = 0. (39)

It is obvious that (39) has no real roots whenΔ = 𝑎2
1
−4𝑎0 < 0.

When 𝑎0 > 0, (39) has two negative roots; when Δ > 0 and
𝑎0 < 0, (39) has one positive root.Thus, we have the following
results.

Lemma 10. For (38), the following results are true:

(i) when 𝑎0 > 0, (38) does not have any positive real root;

(ii) when Δ > 0 and 𝑎0 < 0, (38) has only one positive root,
defined by 𝜔+ =

√(−𝑎1 +
√Δ)/2.

If condition (ii) of Lemma 10 holds, and we denote

𝜏
+

𝑗
=
1

𝜔+

{arccos
2𝑑 (𝐴𝑏√𝑢∗ + 𝜔

2

+
)

𝑏2√𝑢∗
+ 2𝑗𝜋} ,

𝑗 = 0, 1, 2, . . . ,

(40)

then±𝑖𝜔+ are a pair of purely imaginary roots of (34) with 𝜏 =
𝜏
+

𝑗
. Next, we will check whether the following transversality

conditions are satisfied.

Lemma 11. Suppose that (H1) holds, the transversality condi-
tion

dRe 𝜆 (𝜏)
d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏+
𝑗

> 0 (41)

is satisfied, and (d𝜆/d𝜏)−1 and Φ󸀠
(𝜃) have the same sign.

Proof. Differentiating the two sides of (34) with respect to 𝜏,
we get

(
d𝜆
d𝜏
)

−1

=
2𝜆 + 𝑏√𝑢∗ − 𝐴

𝜆 (𝑏2√𝑢∗/2𝑑) 𝑒−𝜆𝜏
−
𝜏

𝜆
. (42)
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For simplify, we define 𝜔0 as 𝜔 and 𝜏+
𝑗
as 𝜏, and we can

obtain

sign{(dRe 𝜆
d𝜏

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏+
𝑗

} = sign
{

{

{

Re (d𝜆
d𝜏
)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏+
𝑗

}

}

}

= sign
{

{

{

2𝜔
2
+ (𝑏√𝑢∗ − 𝐴)

2

+ 2𝐴𝑏√𝑢∗

(𝑏√𝑢∗ − 𝐴)
2

𝜔2 + (𝜔2 + 𝐴𝑏√𝑢∗)
2

}

}

}

=
1

(𝑏√𝑢∗ − 𝐴)
2

𝜔2 + (𝜔2 + 𝐴𝑏√𝑢∗)
2
sign {Φ󸀠

(𝜃)} .

(43)

This completes the proof.

Summarizing the above lemmas and applying Lemma 11
to (6), we have the following theorem.

Theorem 12. Suppose that (H1) holds, the following results are
true.

(1) When 𝑎0 > 0, system (6) is locally asymptotically stable
for any 𝜏 ≥ 0.

(2) When Δ > 0 and 𝑎0 < 0, system (6) is locally
asymptotically stable for 𝜏 ∈ [0, 𝜏0) and unstable when
𝜏 > 𝜏0 and system (6) undergoes a Hopf bifurcation at
the equilibrium 𝑃

+

∗
when 𝜏 = 𝜏𝑗 (𝑗 = 0, 1, 2, . . .).

It has been realized that bifurcation control can be useful
when bifurcation oscillation is harmful in some engineering
applications, which has great potential in many technological
disciplines.The aimof bifurcation control is to delay the onset
of an inherent bifurcation, change the parameter value of an
existing bifurcation point, stabilize a bifurcated solution or
branch, and so forth. In order to control the Hopf bifurcation
to achieve some desirable behaviors, a new hybrid control
strategy was proposed in [40]. Recently, some scholars
succeed in applying this method in various fields [40–43].
However, as far as we known, there is little attention on Hopf
bifurcation of the singular biological economic system by use
of this method. Extending this method on singular system is
first time.

By choosing the hybrid control strategy, the controlled
model with delay is as follows:

d𝑥
d𝑡

= 𝑥 (1 − 𝑥) − √𝑥𝑦 − 𝑒𝑥,

d𝑦
d𝑡

= 𝛼 (−𝑑𝑦
2
+ 𝑏√𝑥 (𝑡 − 𝜏)𝑦) + (1 − 𝛼) (𝑦 − 𝑦

+

∗
) ,

0 = 𝑒 (𝑝𝑥 − 𝑐) − 𝑚,

(44)

where 𝛼 (0 < 𝛼 < 1) is the hybrid control parameter. The
controlled system (44) reduces to the original system (6) if
𝛼 = 1. By selecting appropriate control parameter 𝛼, the Hopf
bifurcation can be delayed (or advanced) or even eliminated
completely without changing the equilibrium of the original
system.

The controlled system (44) has the same equilibrium as
system (6). Let 𝑤1(𝑡) = 𝑥(𝑡) − 𝑥

+

∗
, 𝑤2(𝑡) = 𝑦(𝑡) − 𝑦

+

∗
, and

𝑤3(𝑡) = 𝑒(𝑡) − 𝑒
+

∗
. The corresponding characteristic equation

of the linear system of the controlled system (44) has the form

(𝑝𝑥
+

∗
− 𝑐) (𝜆

2
+ 𝑏11𝜆 + 𝑏10 + 𝑏00𝑒

−𝜆𝜏
) = 0, (45)

where 𝑏11 = 𝑝𝑒
+

∗
𝑥
+

∗
/(𝑝𝑥

+

∗
−𝑐)−1+2𝑥

+

∗
+𝑏/2𝑑+𝑒

+

∗
+𝑏√𝑥+

∗
𝛼−1+

𝛼, 𝑏10 = (−𝑏√𝑥+∗𝛼+1−𝛼)(1−2𝑥
+

∗
−𝑏/2𝑑−𝑒

+

∗
−𝑝𝑒

+

∗
𝑥
+

∗
/(𝑝𝑥

+

∗
−𝑐)),

and 𝑏00 = −𝛼𝑏
2
√𝑥+

∗
/2𝑑 < 0. Therefore, in order to study the

local stability of the equilibrium of system (44), we will study
the following equation:

𝜆
2
+ 𝑏11𝜆 + 𝑏10 + 𝑏00𝑒

−𝜆𝜏
= 0. (46)

When 𝜏 = 0, (46) is given:

𝜆
2
+ 𝑏11𝜆 + 𝑏10 + 𝑏00 = 0. (47)

It is obvious that the positive equilibrium 𝑃
∗ is locally

asymptotically stable when 𝜏 = 0 if the following condition

(H3) 𝑏11 > 0 and 𝑏10 + 𝑏00 > 0

holds.
Let 𝜔𝑖 (𝜔 > 0) be a root of (46). We have that

𝑏00 cos𝜔𝜏 = 𝜔
2
+ 𝑏10,

𝑏00 sin𝜔𝜏 = −𝑏11𝜔,
(48)

which yields to

𝜔
4
+ (𝑏

2

11
− 2𝑏10) 𝜔

2
+ 𝑏

2

10
− 𝑏

2

00
= 0. (49)

By simple computation, 𝑏2
11
− 2𝑏10 = (𝑝𝑒

+

∗
𝑥
+

∗
/(𝑝𝑥

+

∗
− 𝑐)−

1 + 2𝑥
+

∗
+ 𝑏/2𝑑 + 𝑒

+

∗
)
2
> 0 is obtained. If 𝑏2

10
− 𝑏

2

00
>

0, then (49) does not have any positive real root. If 𝑏2
10
−

𝑏
2

00
≤ 0, then (49) has only one positive real root 𝜔̃+ =

√(1/2)[2𝑏10 − 𝑏
2

11
+ √(𝑏

2

11
− 2𝑏10)

2
− 4(𝑏

2

10
− 𝑏

2

00
)]. From (48),

we can get

𝜏
+

𝑗
=
1

𝜔̃+

{arccos
𝜔̃
2

+
− 𝑏10

𝑏00

+ 2𝑗𝜋} , 𝑗 = 0, 1, 2, . . . , (50)

and then ±𝑖𝜔̃+ are a pair of purely imaginary roots of (46)
with 𝜏 = 𝜏

+

𝑗
. Define 𝜏0 = min{𝜏+

𝑗
, 𝑗 = 0, 1, 2, . . .}. Further,

if 𝜆(𝜏) = 𝛼(𝜏) + 𝑖𝜔(𝜏) is denoted by the root of (46), then it
satisfies 𝛼(𝜏0) = 0, 𝜔(𝜏0) = 𝜔̃0.

Next, we will check whether the following transversality
condition is satisfied. Differentiating the two sides of (46)
with respect to 𝜏 and applying the implicit theorem, we get

(
d𝜆
d𝜏
)

−1

=
2𝜆 + 𝑏11

𝜆𝑏00𝑒
−𝜆𝜏

−
𝜏

𝜆
. (51)
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For simplify, we define 𝜔̃+ as 𝜔 and 𝜏+
𝑗
as 𝜏, and we can

obtain

sign{(dRe 𝜆
d𝜏

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏+
𝑗

} = sign
{

{

{

Re (d𝜆
d𝜏
)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏+
𝑗

}

}

}

= sign{Re [ 2𝜆 + 𝑏11
𝜆𝑏00𝑒

−𝜆𝜏
]

𝜆=𝜔̃
+
𝑖

}

= sign{
2𝜔

2
+ 𝑏

2

11
− 2𝑏10

𝑏
2

11
𝜔2 + (𝜔2 + 𝑏10)

2
} .

(52)

Since 𝑏2
11
− 2𝑏10 > 0, then the transversality condition

d Re 𝜆 (𝜏)
d𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏+
𝑗

> 0 (53)

is satisfied.
Summarizing the above results, we have the following

theorem.

Theorem 13. If (H3) holds, then we have the following results
on controlled system (44).

(1) If 𝑏11 > 0 and 𝑏10 + 𝑏00 > 0 or 𝑏210 − 𝑏
2

00
> 0, then the

positive equilibrium of controlled system (44) is locally
asymptotically stable for any 𝜏 ≥ 0.

(2) If 𝑏2
10
− 𝑏

2

00
≤ 0, the positive equilibrium of controlled

system (44) is locally asymptotically stable for 𝜏 ∈

[0, 𝜏0) and unstable when 𝜏 > 𝜏0, and controlled system
(44) undergoes a Hopf bifurcation at the equilibrium
𝑃
∗ when 𝜏 = 𝜏0.

Remark 14. For the controlled system (44), it has been
proven in Theorem 13 that we can delay the onset of Hopf
bifurcation without changing the original equilibrium by
choosing appropriate parameter.

3. The Model within the
Fluctuating Environment

In this section, we will investigate the dynamics of system
(9) in a fluctuation environment. Here, the method can be
found in [25]. A linearized system of system (9) at the positive
equilibrium 𝑃

+

∗
is given:

𝑥̇ (𝑡) = 𝑎11𝑥 (𝑡) + 𝑎12𝑦 (𝑡) + 𝑎13𝑒 (𝑡) + 𝜉1 (𝑡) ,

̇𝑦 (𝑡) = 𝑎21𝑥 (𝑡 − 𝜏) + 𝑎22𝑦 (𝑡) + 𝜉2 (𝑡) ,

0 = 𝑎31𝑥 (𝑡) + 𝑎33𝑒 (𝑡) + 𝜉3 (𝑡) ,

(54)

where

𝑎11 = 1 −
𝑏

2𝑑
− 2𝑥

+

∗
−

𝑚

𝑝𝑥+
∗
− 𝑐

,

𝑎12 = −√𝑥
+
∗
,

𝑎13 = −𝑥
+

∗
,

𝑎21 =
𝑏
2

2𝑑
,

𝑎22 = −𝑏√𝑥
+
∗
,

𝑎31 =
𝑚𝑝

𝑝𝑥+
∗
− 𝑐

,

𝑎33 = 𝑝𝑥
+

∗
− 𝑐.

(55)

The following system can be given by taking the Fourier
transform of equations in (54):

𝜉 (𝑠) = 𝐵 (𝑠)𝑋 (𝑠) , (56)

where 𝜉(𝑠) = (𝜉1(𝑠), 𝜉2(𝑠), 𝜉3(𝑠)),𝑋(𝑠) = (𝑥(𝑠), 𝑦(𝑠), 𝑒(𝑠)), and

𝐵 (𝑠) = (

𝑖𝑠 − 𝑎11 −𝑎12 −𝑎13

−𝑎21𝑒
−𝑖𝑠𝜏

𝑖𝑠 − 𝑎22 0

−𝑎31 0 −𝑎33

)

≐ (

𝐵11 𝐵12 𝐵13

𝐵21 𝐵22 𝐵23

𝐵31 𝐵32 𝐵33

).

(57)

Thus, a new equation is given by

𝑋 (𝑠) = 𝐵
−1
(𝑠) 𝜉 (𝑠) , (58)

where

𝐴
−1
(𝑠) = (

𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

)

≐
1

det (𝐵 (𝑠))
(

𝐵
∗

11
𝐵
∗

21
𝐵
∗

31

𝐵
∗

12
𝐵
∗

22
𝐵
∗

32

𝐵
∗

13
𝐵
∗

23
𝐵
∗

33

),

(59)

and the symbol 𝐵∗

𝑖𝑗
denotes the algebraic cofactor of 𝐵𝑖𝑗, 𝑖, 𝑗 =

1, 2, 3.
If the function Υ(𝑡) has zero mean value, then the

fluctuation intensity of the components is the frequency band
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𝑠 and 𝑠 + d𝑠 is 𝑆Υ(𝑠)d𝑠, where the spectral density 𝑆Υ(𝑠) is
formally defined by

𝑆Υ(𝑠)d𝑠 = lim
𝑇→∞

⟨
󵄨󵄨󵄨󵄨󵄨
𝜉 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

⟩

𝑇
.

(60)

Thus,

𝑆Υ(𝑠)d𝑠 = lim
𝑇→∞

⟨
󵄨󵄨󵄨󵄨󵄨
𝜉 (𝑠)

󵄨󵄨󵄨󵄨󵄨

2

⟩

𝑇

= lim
𝑇→∞

1

𝑇
∬

𝑇/2

𝑇/2

𝜉 (𝑡) 𝜉 (𝑡
󸀠)𝑒

𝑖𝑠(𝑡−𝑡
󸀠

)d𝑡 d𝑡󸀠.

(61)

Therefore,

𝑆𝑥 (𝑠) =

3

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑘1𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑆𝜉
𝑗

(𝑠) ,

𝑆𝑦 (𝑠) =

3

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑘2𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑆𝜉
𝑗

(𝑠) ,

𝑆𝑒 (𝑠) =

3

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑘3𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑆𝜉
𝑗

(𝑠) ,

(62)

where the equation ⟨𝜉𝑖⟩ = 0 and ⟨𝜉𝑖(𝑡)𝜉𝑗(𝑡1)⟩ = 𝛿𝑖𝑗𝛿(𝑡 − 𝑡1),
𝑖, 𝑗 = 1, 2, 3, are used to obtain (62). Furthermore, from
𝑆𝜉
𝑗

(𝑠) = 1, 𝑗 = 1, 2, 3, the fluctuation intensities of 𝑥(𝑡), 𝑦(𝑡),
and 𝑒(𝑡) are written as follows

𝜎
2

𝑥
=
1

2𝜋
∫

+∞

−∞

𝑆𝑥 (𝑠) d𝑠 =
1

2𝜋

3

∑

𝑗=1

∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑘1𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑆𝜉
𝑗

(𝑠) d𝑠

=
1

2𝜋

3

∑

𝑗=1

∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑘1𝑗

󵄨󵄨󵄨󵄨󵄨

2

d𝑠,

𝜎
2

𝑦
=
1

2𝜋
∫

+∞

−∞

𝑆𝑦 (𝑠) d𝑠 =
1

2𝜋

3

∑

𝑗=1

∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑘2𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑆𝜉
𝑗

(𝑠) d𝑠

=
1

2𝜋

3

∑

𝑗=1

∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑘2𝑗

󵄨󵄨󵄨󵄨󵄨

2

d𝑠,

𝜎
2

𝑒
=
1

2𝜋
∫

+∞

−∞

𝑆𝑒 (𝑠) d𝑠 =
1

2𝜋

3

∑

𝑗=1

∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑘3𝑗

󵄨󵄨󵄨󵄨󵄨

2

𝑆𝜉
𝑗

(𝑠) d𝑠

=
1

2𝜋

3

∑

𝑗=1

∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑘3𝑗

󵄨󵄨󵄨󵄨󵄨

2

d𝑠.

(63)

By simple computation, the fluctuation intensities of
𝑥(𝑡), 𝑦(𝑡), and 𝑒(𝑡) are given by

𝜎
2

𝑥
=
1

2𝜋

3

∑

𝑗=1

∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐵
∗

𝑗1

det (𝐵 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝑠,

𝜎
2

𝑦
=
1

2𝜋

3

∑

𝑗=1

∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐵
∗

𝑗2

det (𝐵 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝑠,

𝜎
2

𝑒
=
1

2𝜋

3

∑

𝑗=1

∫

+∞

−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐵
∗

𝑗3

det (𝐵 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝑠.

(64)

It should be pointed out that when 𝜏 > 0 the explicit
values of the spectral densities of the populations and harvest
efforts are difficult to obtain as the evaluation of the integrals
is not easy at all. However, at a given value of time delay 𝜏,
the fluctuation intensities can be determined by numerical
integration.

4. Numerical Simulations

With the help ofMATLAB, some numerical results of system
(6) are provided to substantiate the analytic results in this
section.

The values of parameters are 𝑎 = 1, 𝑏 = 0.6, 𝑐 = 1, 𝑑 = 1,
𝑝 = 50, and 𝑚 = 1. It is easy to check that the condition
(H1): 𝑝 − 𝑐 − 𝑏𝑝/𝑑 = 19 > 0 is satisfied, and two roots
𝑥
+

∗
= 0.33689 and 𝑥−

∗
= 0.08311 can be obtained by solving

(11). So, two equilibriums 𝑃+

∗
(0.33689, 0.34825, 0.06311) and

𝑃
−

∗
(0.08311, 0.17298, 0) of system (6) are obtained, respec-

tively. Since there is zero component of 𝑃−

∗
, then 𝑃−

∗
con-

tradicts the biological interpretations of interior equilibrium.
Hence, the positive equilibrium 𝑃

+

∗
is considered in the

following part, which is denoted by 𝑃∗ for implicity.

4.1. Singularity Induced Bifurcation and State Feedback Con-
trol. By selecting harvest effort 𝑚 as the parameter, singu-
larity induced bifurcation at the interior equilibrium 𝑃

∗ is
obtained. By using Theorem 3, it can be shown that system
(13) has a singularity induced bifurcation at the interior
equilibrium 𝑃

∗, and a stability switch occurs as 𝑚 increases
through 0. Further, a state feedback controller 𝑢(𝑡) can be
applied to stabilize system (13) at𝑃∗. According toTheorem 5,
if the feedback gain 𝑘 satisfies 𝑘 > −17.24, then the controlled
system (24) is stable at 𝑃∗ and the singularity induced
bifurcation of system (13) is also eliminated. The dynamical
responses of system (13) and the controlled system (24) can
be shown in Figures 1 and 2.

4.2. Hopf Bifurcation and Hybrid Control. Since the assump-
tion (H2) is true, the positive equilibrium 𝑃

∗ of system (6)
without any time delay is locally asymptotically stable (see
Figure 3).

Based on the given parameter values, the critical value
of time delay 𝜏0 = 2.955 can be obtained by solving
the corresponding expression. From Theorem 12, the corre-
sponding waveforms are shown in Figures 4 and 5. That is,
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Figure 1: The dynamical responses of system (13) without feedback control.

Prey
Predator
Harvest effort

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20 40 60 80 1000
Time t

Dynamics response with feedback control gain k = 2

Figure 2: The dynamical responses of harvest effort of system (24)
with feedback control.

when 𝜏 = 2.950 < 𝜏0 = 2.955, the positive equilibrium 𝑃
∗ of

the system is locally asymptotically stable (see Figure 4), and
Hopf bifurcations occur once 𝜏 = 2.960 > 𝜏0 = 2.955 (see
Figure 5).

Now we choose appropriate value of parameter 𝛼 to
control singular biological economic system (6). By choosing
𝛼 = 0.85, which has the same equilibrium point as that of
the original system, we find that the periodic solutions of the
controlled system (44) are eliminated (Figure 6). Of course,

System without time delay
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50 100 150 2000
Time t

Figure 3: The positive equilibrium 𝑃
∗ of system (6) with 𝜏 = 0 is

locally asymptotically stable.

the onset of the Hopf bifurcationmay be advanced or delayed
if choosing appropriate parameter values.

4.3. System with the Fluctuating Environment. For numerical
simulation of the stochastic version corresponding to the
delayed model, the same set of data is used to simulate for
the stochastic model by increasing the magnitude of 𝜏 step
by step. Figure 7 exhibits the period orbits of the stochastic
model for 𝜏 = 1.5. The fluctuation intensity for 𝑥(𝑡) is
𝜎
2

𝑥
= 0.43012. Figure 8 depicts the oscillation orbits in the
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Figure 4: The positive equilibrium 𝑃
∗ of system (6) with 𝜏 = 2.950 < 𝜏0 = 2.955 is locally asymptotically stable.

case of the singular stochastic model with time delay 𝜏 =

2.960. The fluctuation intensities for 𝑥(𝑡) are 𝜎2
𝑥
= 0.3158.

Compared with the oscillation observed in a deterministic
environment, the amplitudes of oscillation for 𝑥(𝑡), 𝑦(𝑡), and
𝐸(𝑡) are enhanced. By comparing the frequencies of the
oscillations between Figures 4-5 and Figures 7-8, it is clear to
see that the environmental fluctuation plays a crucial role in
determining the magnitude of oscillation (as the magnitude
of delay parameters is the same in both cases). Figure 8 has
shown that the intensity of fluctuation for the population and
harvest effort increase gradually from their steady state values
as the delay parameter 𝜏 increases.

5. Conclusion and Discussion

After Ajraldi et al. [6] proposed a predator-prey system
(1) with square root functional response, Xu and Yuan [9]
introduced a time delay and studied the effect of time delay
on system (2). In addition, Zhang et al. [30] studied the
dynamics of a predator-prey system with stochastic fluctua-
tion. Based on the above work, we propose a singular delayed
biological economic system with herd behavior and within
the deterministic environment or fluctuating environment,
which yields system (4) and system (8).

For the deterministic model, we obtain the conditions for
the existence of the positive equilibrium. Singularity induced
bifurcation which only occurs in the singular system is also
obtained. Thus, a state feedback controller is designed to
eliminate the bifurcation phenomenon. The condition of
saddle-node bifurcation is also given. In order to study time
delay on the effect of system (6), we introduce the new
normal form of differential-algebraic systems due to the work
of literatures [38, 39] and analyze the local stability of the
positive equilibrium and the existence of Hopf bifurcation
by taking time delay 𝜏 as bifurcation parameter. From
simulations, we found that the critical value of time delay 𝜏 is
less than that in the literature [9]. From the biological point
of view, the predator species has to shorten its time interval to
survive when the prey species is predated by natural or man-
made factors. Since bifurcation oscillation is harmful in some
field, the hybrid control strategy is introduced into system
(6). Thus, the Hopf bifurcation may advance, delay, and even
eliminate by selecting the proper value of parameter. In fact,
Hopf bifurcation of the controlled system (44) with hybrid
control strategy can be eliminated when á = 0.85. In addition,
for the stochastic model, we find that the populations and
harvest effort oscillate when the system is effected by the
stochastic fluctuation (see Figures 7 and 8).
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Figure 5: Hopf bifurcation occurs at the positive equilibrium when 𝜏 = 2.960 > 𝜏0 = 2.955.
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Figure 8: Oscillation solutions of stochastic system (9) in the case
of 𝜏 = 2.960.

However, for controlled system (24), the explicit formulas
determining the direction of Hopf bifurcation and the sta-
bility of bifurcating periodic solutions by using the center
manifold theorem are not investigated. In addition, noise is
internal to system (8) since both the birth and the death
are randomly varying due to the outer environment, season
change, climate, and weather. For simplicity, the function
defined the Gaussian white noise 𝑡 as the derivative of the
Wiener process𝑊(𝑡). We leave this work in the future.
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