
GLOBAL STABILITY OF HOPFIELD NEURAL NETWORKS
UNDER DYNAMICAL THRESHOLDS WITH
DISTRIBUTED DELAYS

FEI-YU ZHANG AND HAI-FENG HUO

Received 14 February 2006; Accepted 25 April 2006

We study the dynamical behavior of a class of Hopfield neural networks with distributed
delays under dynamical thresholds. Some new criteria ensuring the existence, uniqueness,
and global asymptotic stability of equilibrium point are derived. In the results, we do
not require the activation functions to satisfy the Lipschitz condition, and also not to
be bounded, differentiable, or monotone nondecreasing. Moreover, the symmetry of the
connection matrix is not also necessary. Thus, our results improve some previous works
in the literature. These conditions have great importance in designs and applications of
the global asymptotic stability for Hopfield neural networks involving distributed delays
under dynamical thresholds.

Copyright © 2006 F.-Y. Zhang and H.-F. Huo. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

During the last 30 years, Hopfield neural networks (Hopfield [9]) have been extensively
studied and developed and have found many applications in different areas such as pat-
tern recognition, model identification, and optimization. Such applications heavily de-
pend on the networks’ dynamical behaviors. Therefore, the analysis of dynamical behav-
iors has important leading significance in the design and application of Hopfield neural
networks.

For Hopfield neural networks, one of the most investigated problems in dynamical
behaviors is that of the existence, uniqueness, and global asymptotic stability of the equi-
librium point. The property of global asymptotic stability, which means that the domain
of attraction of the equilibrium point is the whole space and many pseudostable points
will be eliminated, is of importance from the theoretical point of view as well as in prac-
tical applications in several fields. In particular, globally asymptotically stable Hopfield
neural networks were well studied for solving some classes of optimization problems and
adaptive control. A globally asymptotically stable Hopfield neural network is guaranteed
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to compute the global optimal solution independent of the initial condition and avoid
some spurious suboptimal response (Kennedy and Chua [14]; Michel and Gray [17]).
Such globally asymptotically stable Hopfield neural networks can also be applied to solve
model identification or computational tasks, and so on (Kelly [13]). Thus many scientific
and technical workers have been joining the study fields with great interest, and many re-
sults about global asymptotic stability of Hopfield neural networks with constant delays
and continuous varying delays with boundedness or without delays have been reported
(Hopfield [10]; Cao[1]; Zhang and Jin [20]; Marcus and Westervelt [16]; Mohamad [18];
Hirsch [8]; Hopfield and Tank [11]; Liu and Dickson [15]; Huang and Cao [12]; Guan
and Chen [7]; Chen [2]). It is well known that the use of constant fixed delays and con-
tinuous varying delays provides a good approximation in some simple circuits. However,
due to the presence of parallel pathways with a verity of axon sizes and lengths, neu-
ral networks usually have a spatial extent and there will be a distribution of conduction
velocities along these pathways and a distribution of propagation delays. Under these cir-
cumstances, the signal propagation is not instantaneous and cannot be described with
discrete delays. An appropriate way is to introduce continuously distributed delay de-
termined by a delay kernel. To the best of our knowledge, few authors have studied the
global asymptotic stability of Hopfield neural networks with distributed delays, for ex-
ample, Feng and Plamondon [4], Gopalsamy and He [5], Zhang and Jin [20], and so on.

On the other hand, Hopfield neural networks with dynamical thresholds have not
received any attention until the nineties of the twentieth century. However, Gopalsmy and
Leung [6] first considered the Hopfield neural networks with distributed delays under
dynamical thresholds as follows:

x′(t)=−x(t) + a tanh
[
x(t)− b

∫∞
0
k(s)x(t− s)ds− c

]
, t ≥ 0, (1.1)

where x(t)∈ C(R,R) is the state of neuron, k(s)∈ C(R+,R+) is delayed ker-function and
satisfies

∫∞
0
k(s)ds= 1, (1.2)

∫∞
0
sk(s)ds < +∞. (1.3)

a, b, and c are nonnegative constants. For their physical meaning of signs in (1.1), one
can refer to Gopalsmy and Leung [6]. By using Lyapunov function, they established a
sufficient condition ensuring global asymptotic stability of the unique equilibrium point
x∗ = 0 of system (1.1) with the case c = 0.

In [22] Zhang et al. consider the more general model as follows:

x′(t)=−x(t) + a f
[
x(t)− b

∫∞
0
k(s)x(t− s)ds− c

]
, t ≥ 0, (1.4)

where f : R→ R is a globally Lipschitz function. By using Brouwer’s theorem and Lya-
punov function, they established some sufficient conditions for global asymptotic stabil-
ity and global exponential stability of equilibrium point x∗ for the cases c = 0 and c �= 0.
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Further, Zhang and Li [21] and Zhang et al. [22], respectively, considered the following
more general model:

x′i (t)=−dixi(t) +
n∑
j=1

ai j f j

[
xj(t)− bj

∫∞
0
kj(s)xj(t− s)ds− cj

]
, t ≥ 0,

x′i (t)=−gi
(
xi(t)

)
+

n∑
j=1

ai j f j

[
xj(t)− bi j

∫∞
0
ki j(s)xj(t− s)ds− cj

]
, t ≥ 0,

(1.5)

where i = 1, . . . ,n. f j : R→ R is a global Lipschitz function. By using homeomorphism
map in [21] and topological degrees tool in [22], constructing suitable Lyapunov func-
tions, and applying the property of M-matrix, they obtained some conditions for the
existence, uniqueness, and global asymptotic stability or global exponential stability for
model (1.5). However, in all the above-cited literatures, the authors always assumed that
the distributed delays k(s), kj(s), or ki j(s) satisfy the property (1.3). In [3] Cui consid-
ered the model (1.1) further. By using differential inequality and variations of constants,
he dropped the condition (1.3) and obtained new criteria for global asymptotic stabil-
ity of the equilibrium point x∗ = 0 of the system (1.1) with the case c = 0. However, the
method that he used cannot be used for the case c �= 0. In [23] Zhao considered the fol-
lowing model:

x′i (t)=−aixi(t) +
n∑
j=1

ai jg j
(
xj(t)

)
+ bi j

∫ t

−∞
ki j(t− s)gj

(
xj(s)

)
ds+ Ii, t ≥ 0. (1.6)

He obtained some condition for global asymptotic stability by dropping the Lipschitz
condition and the condition (1.3).

Motivated by the above discussion, our aim in this paper is to study further the exis-
tence, uniqueness, and global asymptotic stability for the equilibrium point of the follow-
ing Hopfield neural network (1.7) with distributed delays under dynamical thresholds:

x′i (t)=−dixi(t) +
n∑
j=1

ai j f j

[
xj(t)− bi j

∫∞
0
ki j(s)xj(t− s)ds− cj

]
, t ≥ 0, (1.7)

where i = 1,2, . . . ,n, n denotes the numbers of units in the neural networks (1.7), xi(t)
represents the states of the ith neuron at time t, ai j , bi j , cj , and dj are constants, ai j ≥ 0
denotes the strength of the jth neuron on the ith neuron, bi j ≥ 0 denotes a measure of
the inhibitory influence of the past history of the jth neuron on the ith neuron, cj ≥ 0
denotes the neural threshold of the jth neuron, and dj > 0 denotes the rate with which
the jth neuron will rest its potential to the resting state in isolation when disconnected
from the networks and external inputs. ki j : [0,+∞)→ [0,+∞) is a continuous delayed
ker-function satisfying (1.2); f j denotes the output of the ith neuron at time t.

The initial condition associated with (1.7) is of the form

x0i(t)= φi(t), t ∈ (−∞,0], i= 1,2, . . . ,n, (1.8)
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where φi ∈ C((−∞,0],R), φi(t) is bounded on (−∞,0], and the norm of C((−∞,0],Rn)
is denoted by

∥∥φ(t)
∥∥= sup

t∈(−∞,0]

n∑
i=1

∣∣φi(t)∣∣, (1.9)

where φ(t) = (φ1(t), . . . ,φn(t)). In the results, we assume that the activation functions
f j ( j = 1, . . . ,n) are not the globally Lipschitz functions and the delayed ker-functions
ki j (i, j = 1, . . . ,n) do not satisfy the assumption (1.3). Here, we point out that our meth-
ods are different from differential inequality methods which appeared in Cui [3]. More-
over, our conditions are easy to verify and apply in application fields and the design of
Hopfield neural networks.

For convenience, we introduce some notations. Let x = (x1, . . . ,xn)T denote a column
vector (the symbol “T” denotes transpose of x), let |x| denote the absolute-value vector
given by |x| = (|x1|, . . . ,|xn|)T , and let ‖x‖ =∑n

i=1 |xi| denote the norm of Rn. For x(t)∈
C(R,Rn), ‖x(t)‖∞ = (‖x1(t)‖∞, . . . ,‖xn(t)‖∞)T , where ‖xi(t)‖∞ = sup−∞<s≤0 |xi(t + s)|,
i= 1, . . . ,n. For matrices A and B, A≥ B (A < B) means that each pair of corresponding
elements of A≥ B satisfies “≥” (“<”). Especially, A is called a nonnegative matrix if A≥ 0.

2. Existence and uniqueness of the equilibrium point

In this section, we will study the existence and uniqueness of the equilibrium point of the
model (1.7). Before starting our main results, we first rewrite model (1.7) as follows:

X ′(t)=G
(
X(t)

)
, (2.1)

in which X(t)= (x1(t), . . . ,xn(t))T and

GX(t)= (h1(t), . . . ,hn(t)
)T

, (2.2)

where

hi(t)=−dixi(t) +
n∑
j=1

ai j f j

[
xj(t)− bi j

∫∞
0
ki j(s)xj(t− s)ds− cj

]
, t ≥ 0, i= 1, . . . ,n.

(2.3)

In order to study the existence and uniqueness of the equilibrium point, we consider
the initial value problem associated with the autonomous system (2.1), in which the ini-
tial functions are given by (1.8). Let Ω be an open subset of Rn.

Lemma 2.1. LetG : Ω→Rn be continuous and satisfy the following condition: corresponding
to any η ∈Ω and its neighborhood U , there exist a constant k > 0 and functions gj and Φl

( j, l = 1, . . . ,n), such that

∥∥G(ξ)−G(η)
∥∥≤ k‖ξ −η‖+ k

n∑
i=1

∣∣Φl
(
gj(ξ)

)−Φl
(
gj(η)

)∣∣ (2.4)
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on U , where each gj : U → R is a continuously differentiable function in η satisfying the
relation

n∑
j=1

∂gi(η)
∂ηi

Gi(η) �= 0 on U , (2.5)

and each Φl :R→R is continuous and of bounded variation on bounded subintervals. Then
there exists a unique solution for the initial value problem system (1.8)–(2.2) on any interval
containing the initial functions (1.8).

Proof. For η = (x1, . . . ,xn)T , consider the functions Φl (l = 1, . . . ,n) as follows

Φl
(
gj(η)

)=
n∑
j=1

ai j f j

[
xj(t)− bi j

∫∞
0
ki j(s)xj(t− s)ds− cj

]
, (2.6)

obviously, for each l = 1, . . . ,n, Φl is continuous and of bounded variation on bounded
subintervals of R. The functions gj(η) in (2.6) are also continuously differentiable. So
all conditions of [19, Theorem 1], by Norris and Driver hold, and the conclusion of
Lemma 2.1. is true.

Obviously, if x∗ = (x∗1 , . . . ,x∗n ) is an equilibrium point of system (1.7), then x∗ satisfies

dix
∗
i =

n∑
j=1

ai j f j
[
x∗j − bi jx

∗
j − cj

]
, i= 1, . . . ,n. (2.7)

�

Theorem 2.2. If the conditions of Lemma 2.1 hold for the functions f j ( j = 1, . . . ,n), then
system (2.7) has a unique solution, therefore, a unique equilibrium point for system (1.7).

Proof. By Lemma 2.1, the system (1.8)–(2.2) has a unique solution x(t) = (x1(t), . . . ,
xn(t))T , from this we obtain

x′i (t)=−di
(
xi(t)− x∗i

)

+

{ n∑
j=1

ai j f j

[
xj(t)− bi j

∫∞
0
ki j(s)xj(t− s)ds− cj

]
− f j

[
x∗j − bi jx

∗
j − cj

]}
.

(2.8)

Let yi(t)= xi(t)− x∗i , i= 1, . . . ,n, then it follows from (2.8) that

y′i (t)=−di yi(t) +
n∑
j=1

ai jg j

(
yj(t)− bi j

∫∞
0
ki j(s)yj(t− s)ds

)
, (2.9)

where, for i, j = 1, . . . ,n,

gj

(
yj(t)− bi j

∫∞
0
ki j(s)yj(t− s)ds

)

=
n∑
j=1

ai j f j

[
xj(t)− bi j

∫∞
0
ki j(s)xj(t− s)ds− cj

]
− f j

[
x∗j − bi jx

∗
j − cj

]
.

(2.10)



6 Global stability for DCNNs

The initial condition associated with system (2.9) is of the form

y0i(t)= ϕi(t)= φi(t)− x∗i , i= 1, . . . ,n. (2.11)

Now we choose the initial functions as follows:

yi(t)= 0, −∞ < t ≤ 0, i= 1, . . . ,n. (2.12)

By Lemma 2.1, the system (2.8) or (2.9) has a unique solution. Obviously, yi(t) = 0 is
the only solution of the system (2.8) or (2.9), which implies that xi(t)= x∗i (i= 1, . . . ,n)
is the unique solution that satisfies (2.8), so there exists a unique point which satisfies
(2.7) and guarantees the existence of a unique equilibrium point of the system (1.7). This
completes the proof. �

3. Global asymptotic stability of the equilibrium point

In this section, we will consider global asymptotic stability of system (1.7) and establish
some new criteria which do not require the signal propagation functions fi to satisfy
the Lipschitz condition and the delayed ker-functions ki j to satisfy the assumption (1.3)
which turns out that the hypotheses on the parameters of the system are less restrictive.
We note that the equilibrium point x∗ of system (1.7) is globally asymptotically stable if
and only if the equilibrium point y∗ = 0 of system (2.9) is globally asymptotically stable.

Throughout this paper, we assume that the following two hypotheses are always true.
(H1) The functions gj ( j = 1, . . . ,n) satisfy tg j(t) > 0 (t �= 0), and there exist positive

constants Lj ( j = 1, . . . ,n) such that

gj(t)≤ Ljt ∀t ∈R. (3.1)

(H2) ρ(M) < 1, M = (mij)n×n, mij = Ljai j(1 + bi j)/di, where the symbol ρ(M) denotes
the spectral radius of a square matrix M.

Theorem 3.1. Assume that (H1) and (H2) hold. Then the equilibrium point y∗ = 0 of
system (2.9) is uniformly stable.

Proof. For any ε > 0, let P = (p1, . . . , pn)= (I −M)−1Eε, where E = (1, . . . ,1)T , which im-
plies

∑n
j=1mij pj + ε = pi, (i= 1, . . . ,n). We firstly prove that the set S= {Ψ∈ C|‖Ψ‖∞ ≤

P} is a positive invariant set of system (2.9). In view of condition (H2) and applying
sufficient and necessary conditions of M-matrix, we know that (I −M)−1 ≥ 0, and so
(I −M)−1Eε≥ 0. In the following, we show that

∥∥Ψ∥∥∞ ≤ P implies
∣∣y(t)

∣∣≤ P for any t ≥ 0, Ψ∈ C. (3.2)

In order to prove (3.2), we only need to prove that

∣∣y(t)
∣∣≤ qP for t ≥ 0 and any given q > 1. (3.3)
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For the sake of contradiction, we suppose that there exist some i ∈ {1, . . . ,n} and t1 > 0
such that

∣∣yi(t1)
∣∣= qpi,

∣∣yi(t)∣∣ < qpi for t < t1, (3.4)∣∣y(t)
∣∣≤ qP for 0≤ t ≤ t1. (3.5)

By (H1), we have

∣∣yi(t1)∣∣≤ e−dit1
∥∥Ψi

∥∥∞ +
∫ t1

0
e−di(t1−s)

n∑
j=1

ai j

∣∣∣∣gj
(
yj(t)− bi j

∫∞
0
ki j(θ)yj(t− θ)dθ

)∣∣∣∣ds

≤ e−dit1
∥∥Ψi

∥∥∞ +
∫ t1

0
e−di(t1−s)

n∑
j=1

ai jLj

(∣∣yj(t)∣∣+ bi j

∫∞
0
ki j(θ)

∣∣yj(t− θ)
∣∣dθ

)
ds

≤ e−dit1qpi +
∫ t1

0
e−di(t1−s)

n∑
j=1

ai jLj

(
qpj + bi j

∫∞
0
ki j(θ)qpjdθ

)
ds

= e−dit1qpi +
∫ t1

0
e−di(t1−s)

( n∑
j=1

dimijqpj

)
ds

= e−dit1qpi +
(
1− e−dit1

) n∑
j=1

mijqpj

= e−dit1
(
qpi−

n∑
j=1

mijqpj

)
+

n∑
j=1

mijqpj .

(3.6)

Noting that q > 1 and
∑n

j=1mijqpj + qε = qpi, we have

∣∣yi(t1)∣∣≤ e−dit1qε+
n∑
j=1

mijqpj < qε+
n∑
j=1

mijqpj = qpi, (3.7)

hence we have a contradiction between (3.4) and (3.7), and so (3.3) holds; letting q→ 1,
then (3.2) holds. Therefore, set S is a positive invariant set of system (2.9), and it fol-
lows that the equilibrium point y(t)= 0 of system (2.9) is uniformly stable by using the
relation between positive invariant set and uniform stability. The proof is complete. �

In view of the above proof, we have the following result.

Corollary 3.2. Assume that (H1) and (H2) hold. Then all the solutions of system (2.9) are
uniformly bounded.

Proof. By the proof of Theorem 3.1, we have that for any given Ψ∈ C there must be q > 1
such that all the solutions of system (2.9) satisfy |y(t)| < qp for t ≥ 0 and ‖Ψ‖∞ < qp,
which implies that the conclusion of Corollary 3.2 is true. �

Theorem 3.3. Assume that (H1) and (H2) hold. Then the equilibrium point y∗ = 0 of
system (2.9) is globally attractive.
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Proof. For any given Ψ ∈ C, we only need to prove limt→∞ sup|y(t)| = 0, where limt→∞
sup|y(t)|=(limt→∞ sup|y1(t)|, . . . , limt→∞ sup|yn(t)|). According Corollary 3.2, there ex-
ists a nonnegative constant vector σ = (σ1, . . . ,σn)T such that limt→∞ sup|y(t)| = σ , there-
fore, for sufficient small constant ε > 0, there exists t2 > 0, such that

∣∣y(t)
∣∣≤ (1 + ε)σ for any t ≥ t2. (3.8)

By Corollary 3.2, there must be a positive constant Q > 0 such that |y(t)| ≤ Q for t ∈ R
and any given Ψ∈ C. In view of condition (1.2), for the above ε > 0, there must be T > 0
such that

∫ T

0
ki j(s)ds≤ 1,

( n∑
j=1

ai jLjbi jQ

)∫∞
T
ki j(s)ds < ε, i= 1, . . . ,n. (3.9)

From (2.9), (3.8), and (3.9), when t ≥ t2 +T ,

y′i (t) +di yi(t)≤
n∑
j=1

ai jLj

(∣∣yj(t)∣∣+ bi j

∫∞
0
ki j(s)

∣∣yj(t− s)
∣∣ds
)

=
n∑
j=1

ai jLj

[∣∣yj(t)∣∣+ bi j

(∫ T

0
ki j(s)

∣∣yj(t− s)
∣∣ds+

∫∞
T
ki j(s)

∣∣yj(t− s)
∣∣ds
)]

≤
n∑
j=1

ai jLj

[
(1 + ε)σj + bi j

∫ T

0
ki j(s)(1 + ε)σjds+ bi jQ

∫∞
T
ki j(s)ds

]

< di

( n∑
j=1

mij(1 + ε)σj + ε

)
,

(3.10)

hence it follows that

∣∣yi(t)∣∣ < e−dit
∥∥Ψ∥∥∞ +

∫ t

0
e−di(t1−s)di

( n∑
j=1

mij(1 + ε)σj + ε

)
ds

< e−dit
∥∥Ψ∥∥∞ +

(
1− e−dit

)( n∑
j=1

mij(1 + ε)σj + ε

)
,

(3.11)

then letting t → +∞, we have limt→+∞ sup|yi(t)| ≤
∑n

j=1mijσj , i = 1, . . . ,n, thus σi ≤∑n
j=1mijσj , namely, (I −M)σ ≤ 0. Since (I −M)−1 ≥ 0, so σ ≤ 0, note that σ is a non-

negative constant. It follows that σ = 0, therefore, limt→∞ sup|y(t)| = 0. This completes
the proof. �

By Theorems 3.1 and 3.3, we conclude the following result.

Theorem 3.4. Assume that (H1) and (H2) hold. Then the equilibrium point y∗ = 0 of
system (2.9) is globally asymptotically stable. Therefore, the equilibrium point x∗ of system
(1.7) is globally asymptotically stable.

If the signal propagation functions gj are globally Lipschitz functions, we have the
following corollary.
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Corollary 3.5. Assume that the signal propagation functions f j are globally Lipschitz with
Lipschitz constants Lj > 0 and condition (H2) holds. Then the equilibrium point x∗ of system
(1.7) is globally asymptotically stable.

Remark 3.6. When n= 1 and the signal propagation functions f (t)= tanhx, the system
(1.7) becomes the system (1.1) which is firstly considered by Gopalsmy and Leung [6];
in their article, they assumed that the delayed ker-function k(s) satisfies the condition
(1.3) and obtained global asymptotic stability of the unique equilibrium x∗ = 0 under
the conditions a(1− b) < 1 and a(1 + b) < 1 for the case c = 0. Cui [3] also considered the
system (1.1); he deleted the condition (1.3) and obtained global asymptotic stability of
the unique equilibrium x∗ = 0 under the conditions a(1− b) < 1 and a(1 + b) < 1 for the
case c = 0. Obviously, in the above-mentioned article, the signal propagation functions
f (t) = tanh t is globally Lipschitz. Zhang et al. [22] considered the system (1.4) which
generalizes the system (1.1); they also assumed that the delayed-ker-function k(s) satis-
fies the condition (1.3) and the signal propagation function f (t) is globally Lipschitz, and
obtained global asymptotic stability of the unique equilibrium x∗ = 0 under the condi-
tion a(1 + b) < d for the cases c = 0 and c �= 0. However, in Theorem 3.4 and Corollary 3.5
of this paper, the signal propagation functions f j(t) are not globally Lipschitz and the
condition (1.3) is not also needed. Clearly, our results in this paper contain and improve
those given in above-mentioned literatures, and the conditions in this paper require less
restrictive parameters than those given also in the above-mentioned articles.

Remark 3.7. Zhang and Li [21] and Zhang et al. [22] considered the system (1.5) which
further generalizes the system (1.1). When the signal propagation functions f j(t) are
globally Lipschitz with Lipschitz constants Lj and condition (1.3) holds, they proved that
the unique equilibrium point x∗ is globally asymptotically stable under the condition
M =DL−1−A(E+B) is an M-matrix, clearly M is an M-matrix is equivalent to the con-
dition ρ(M) < 1. However, the condition (1.3) and the Lipschitz condition associated to
the signal propagation functions f j(t) are not necessary in Theorem 3.4 of this paper;
obviously, the results in this paper improve the previous works.

4. Two illustrative examples

In this section, we will give two examples to illustrate our results.

Example 4.1. Consider the following model with two neurons:

x′1(t)=−x1(t) +
1
3

tanh
[
x1(t)− 1

5

∫∞
0

2
π
(
1 + s2

)x1(t− s)ds− 1
]

+
1
3

tanh
[
x2(t)− 1

3

∫∞
0

2
π
(
1 + s2

)x2(t− s)ds− 2
]

,

x′2(t)=−x2(t) +
1
3

tanh
[
x1(t)− 1

3

∫∞
0

2
π
(
1 + s2

)x1(t− s)ds− 1
]

+
1
3

tanh
[
x2(t)− 1

3

∫∞
0

2
π
(
1 + s2

)x2(t− s)ds− 2
]
.

(4.1)
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Obviously, ki j(s) = 2/π(1 + s2) satisfies condition (1.2), and functions f j(t) = tanh t sat-
isfy condition (H1) and also are globally Lipschitz with Lj = 1. It is easy to verify that

the matrix M =
[

2/3 4/9
4/9 4/9

]
and ρ(M) < 1. However, we should note that ki j(s) does not sat-

isfy the condition (1.3). Therefore, by Theorem 3.4 or Corollary 3.5, system (4.1) has a
globally asymptotically stable equilibrium point.

Example 4.2. Consider the following model with two neurons:

x′1(t)=−2x1(t) +
1
3
g
[
x1(t)− 1

4

∫∞
0

2
π
(
1 + s2

)x1(t− s)ds− 1
]

+
1
3
g
[
x2(t)− 1

3

∫∞
0

2
π(1 + s2)

x2(t− s)ds− 2
]

,

x′2(t)=−x2(t) +
1
4
g
[
x1(t)− 1

3

∫∞
0

2
π
(
1 + s2

)x1(t− s)ds− 1
]

+
1
2
g
[
x2(t)− 1

3

∫∞
0

2
π
(
1 + s2

)x2(t− s)ds− 2
]

,

(4.2)

where gj(s)=
∫ s
−∞ xj(θ)eθ−sdθ and xj(s) equals one when a pulse arrives at time t and zero

when no pulse arrives. Obviously, gj(s) satisfies condition (H1) with Lj = 1, but it does
not have to be a globally Lipschitz function. ki j(s) = 2/π(1 + s2) satisfies the condition

(1.2) but it does not satisfy the condition (1.3). It is easy to verify that M =
[

5/24 2/9
1/3 2/3

]
is an

M-matrix, so the condition (H2) of Theorem 3.4 holds. Therefore, By Theorem 3.4, the
system (4.2) has a globally exponentially stable equilibrium.
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