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This paper studies the Rao-Blackwellized Monte Carlo data association (RBMCDA) filter for multiple target tracking.The elliptical
gating strategies are redesigned and incorporated into the framework of the RBMCDA filter. The obvious benefit is the reduction
of the time cost because the data association procedure can be carried out with less validated measurements. In addition, the
overlapped parts of the neighboring validation regions are divided into several separated subregions according to the possible
origins of the validated measurements. In these subregions, the measurement uncertainties can be taken into account more
reasonably than those of the simple elliptical gate.This would help to achieve higher tracking ability of the RBMCDA algorithm by a
better association prior approximation. Simulation results are provided to show the effectiveness of the proposed gating techniques.

1. Introduction

Data association plays an important role in filtering methods
for multitarget tracking in cluttered (or false alarm) environ-
ment. Many approaches have been developed to solve this
problem [2–7]. One solution is the Rao-Blackwellized Monte
Carlo data association (RBMCDA) [1, 8]. In this approach,
particle filter (PF) is only used to evaluate the data association
indicators instead of computing everything by pure Monte
Carlo sampling. Therefore, the required number of particles
can be significantly reduced.This can be a method with good
performance for tracking a single target ormultiple separated
targets in sparsely cluttered environment. Unfortunately, we
found in experiments that the time cost of this algorithm
is too large even in modest clutter environment. Besides, it
will lead to significantly low tracking performance of the
algorithm when several targets as well as clutter are present
in the same neighborhood. To address these problems, this
paper employs gating technique for improvement.

In traditional tracking algorithms, a gate (validation
region) can be used to guarantee that the target originated
measurement falls into it with high (gate) probability [2–4].

Theprobabilistic data association (PDA) [4] has been thought
to be a very good elliptical gate based method for tracking a
single target or several isolated targets even in dense cluttered
environment. On this basis, many types of gating techniques
have been studied [9–12]. Specially, the Voronoi measure
is used to select validated measurements for single target
tracking in [13]. When several targets are present in the same
neighborhood in addition to the random interference from
clutter, a more complicated situation should be considered.
The joint probabilistic data association (JPDA) can give
a joint probability by first enumerating the joint events
[3, 14]. In JPDA, not only the number of the validated
measurements can be reduced to a low level, but also the
problem of measurement uncertainty can be addressed very
well. Because enumerating the joint association events is often
computationally intensive [15], many time saving suboptimal
JPDA filtering methods are available, such as Fitzgerald’s and
other ad hoc implementations [2, 16, 17]. Recently, the ellip-
tical gating technique has also been studied and redesigned
for reducing the computational cost of the popular Gaussian
mixture- cardinalized probability hypothesis density (GM-
CPHD) filter [18, 19].
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The remainder of this paper is organized as follows.
Section 2 gives a brief introduction on the RBMCDA filter
and the validation region. Section 3 presents three different
gating strategies according to the framework of the RBM-
CDA filter. Numerical examples and simulation results are
presented in Section 4, followed by conclusions in Section 5.

2. Preliminaries

2.1. Rao-Blackwellized Monte Carlo Data Association Filter.
Consider the following time-varying system:

x1
𝑘
= F
𝑘−1

x1
𝑘−1

+ w
𝑘−1

,

z
𝑘
= H
𝑘
x1
𝑘
+ k
𝑘
,

(1)

where x1
𝑘
and z

𝑘
are the state and measurement variables

in time step 𝑘, respectively. w
𝑘−1

∼ N(0,Q
𝑘−1

) and k
𝑘

∼

N(0,R
𝑘
) are zero mean mutually independent Gaussian

noise and F
𝑘−1

and H
𝑘
are with compatible dimensions and

represent the state and measurement transition matrices,
respectively. Suppose thatwe are able to formanother variable
x2
𝑘
to describe thesematrices, the so-called Rao-Blackwellized

particle filter (RBPF) algorithm can be applied to estimate the
whole state x

𝑘
= {x1
𝑘
; x2
𝑘
} [20]. For space consideration, we

omit the details of the RBPF algorithm which can be found
in [21–24]. For this conditionally linear-Gaussian system,
the Kalman series filter prediction and update steps can be
performed for each target in each of the particles separately.

In [1], it has been shown that the RBMCDAalgorithm can
be obtained directly from the above RBPF framework when
the latent value x2

𝑘
is defined to be the data association event

indicators 𝑐
𝑘
,

x2
𝑘
= 𝑐
𝑘
, (2)

where the value 𝑐
𝑘
= 0 when the measurement is from clutter

and 𝑐
𝑘

= 𝑗 when the measurement is from target 𝑗. The
predictive probability 𝑝(𝑐

𝑘
| 𝑐
1:𝑘−1

) gives the priors of data
association given the data association results {𝑐

1:𝑘−1
} in the 𝑘−

1 previous time steps.The calculation of the 𝑝(𝑐
𝑘
| 𝑐
1:𝑘−1

, z
1:𝑘
)

(posterior distribution of 𝑐
𝑘
) is given by

𝑝 (𝑐
𝑘
| 𝑐
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𝑘
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𝑘
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1:𝑘−1
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) .

(3)

The main difficulty encountered in RBMCDA is the com-
putation of the association prior probabilities 𝑝(𝑐

𝑘
| 𝑐
1:𝑘−1

).
In [1], the data association priors are modeled as a recursive
Markov chain to make sure of one target per measurement in
the same time steps. Accordingly, the 𝑝(𝑐

𝑘
| 𝑐
1:𝑘−1

) in (3) has
been replaced by the 𝑝(𝑐

𝑘
| 𝑐
𝑘−𝑀:𝑘−1

) and

𝑝 (𝑐
𝑘
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, z
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) ∝ 𝑝 (z

𝑘
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, z
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) 𝑝 (𝑐
𝑘
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) .

(4)

The general form of the joint prior model is given by [1]

𝑝 (𝑐
𝑘+𝑀−1

, . . . , 𝑐
𝑘
) =

𝑀

∏

𝑚=1

𝑝 (𝑐
𝑘+𝑚

| 𝑐
𝑘
, . . . , 𝑐

𝑘+𝑚−1
) . (5)

That means if we obtain 𝑀 measurements in time step 𝑘,
the calculation of the 𝑚th (𝑚 = 2, . . . ,𝑀) measurement’s
association prior 𝑝(𝑐

𝑘+𝑚−1
| 𝑐
𝑘+𝑚−2

, . . . , 𝑐
𝑘
) only depends on

the𝑚−1 previous associations {𝑐
𝑘+𝑚−2

, . . . , 𝑐
𝑘
} in the 𝑘th time

step (note that, if 𝑚 = 1, 𝑐
𝑘
has the prior 𝑝(𝑐

𝑘
)). Assume

we track 𝑇 targets; the detection indicator for the 𝑗th (𝑗 =

1, . . . , 𝑇) target can be given by 𝛿
𝑗
(𝑚 − 1). It is a binary

indicator to indicate that if the 𝑗th target has been assigned
a measurement in {𝑐

𝑘+𝑚−2
, . . . , 𝑐

𝑘
}, the detection indicator

combinations 𝛿
1:𝑇

(𝑚 − 1) decide the data association priors
as

𝑝 (𝑐
𝑘+𝑚−1

| 𝛿
1:𝑇

(𝑚 − 1)) = 𝑓
𝑐
(𝑃

(𝑗)

𝑑
) , (6)

where 𝑓
𝑐
is a function with definite forms corresponding to

the results of 𝛿
1:𝑇

(𝑚 − 1) [1]. We can see that only the target
detection probability 𝑃

(𝑗)

𝑑
(in (6)) needs to be given at the

beginning of the Markov recursive calculation procedures.
Since𝑃(𝑗)

𝑑
is assumed to be a known value [1], data association

(the posterior distribution 𝑝(𝑐
𝑘

| 𝑐
1:𝑘−1

, z
1:𝑘
)) is in fact

totally determined by the measurement likelihood 𝑝(z
𝑘

|

𝑐
𝑘
, 𝑐
1:𝑘−1

, z
1:𝑘−1

) according to (4), (5), and (6).

2.2. Validation Region. A gate is set up for selecting the
measurement originated from the target in high probability,
and gate can also be called gating region or validation
region. In practical tracking algorithms, validation region
is often used to reduce the cardinality of measurement set.
Measurements outside the validation region can be ignored
reasonably because the probabilities of them being from the
corresponding targets are quite low according to the statistical
characterization. Data associationmethod often incorporates
an elliptical validation region [3] as

Γ
𝑘
(𝛾) = {z

𝑘
: [z
𝑘
− ẑ
𝑘|𝑘−1

]

󸀠S(𝑘)−1 [z
𝑘
− ẑ
𝑘|𝑘−1

] ≤ 𝛾} , (7)

where 𝛾 is the gate threshold corresponding to the gate
probability 𝑃

𝑔
which is the probability that the gate contains

the true measurement and S(𝑘) is the covariance of the
innovation corresponding to the truemeasurement z

𝑘
. In this

paper, we just consider the elliptical gating technique. For
each target 𝑗(𝑗 = 1, 2, . . . , 𝑇), the gate probability 𝑃

(𝑗)

𝑔
=

0.9997 with 𝛾 = 16 [3].
Figure 1(a) gives an example of a single target’s measure-

ment validation region. 𝑁 = 5 represents the number of
validated measurements in this elliptical region. For this 2𝐷
example, a measurement is considered to be validated for
target 𝑗 if it falls inside the elliptical region centered at the
predicted measurement ̂

𝑍 (“◼” represents the location of
̂
𝑍). The target originated measurement 𝑍 (“∘”) and clutter
originated measurement (“×”) are represented by the differ-
ent symbols, but they actually show no difference from a
tracker’s perspective in applications.Thus, each one of the five
measurements in the validation region can be originated from
the target or clutter.

Figure 1(b) illustrates a case of two targets aswell as clutter
being present in the same neighborhood. The predicted
measurements for target 1 and target 2 are denoted by ̂

𝑍
1



The Scientific World Journal 3

Validation region

Z
Ẑ N = 5

Measurement region

(a)

Measurement region

Z2

Ẑ1

Z1
Ẑ2

N1 = 7

n1 = 4

n12 = 3

N2 = 6

n2 = 3

(b)

Figure 1: Examples of measurement validation region: (a) for a
single target, (b) for two targets.

and ̂
𝑍
2
, respectively. There are three measurements in the

intersection of their validation regions (𝑛
12

= 3); 𝑛
1
= 4 and

𝑛
2
= 3 are the number of the validated measurements in the

isolated parts of the two elliptical validation regions.𝑁
1
= 7

and𝑁
2
= 6 represent the numbers of validatedmeasurements

in their elliptical regions, respectively. This example shows
the interdependence ofmeasurement origins.TheRBMCDA,
like all other data association methods, has also to deal with
these uncertainties.

2.3. Problem Statement. In the original RBMCDA
approaches [1, 8], all received measurements in the entire
measurement space are considered as the validated
measurements. From the tracker’s point of view, the target
detection probability𝑃(𝑗)

𝑑
mentioned in Section 2.1 represents

the probability that the target-originated measurement falls
into the whole measurement space. When a gating technique
is considered, the data association is restricted into the
validation regions so that the 𝑃

(𝑗)

𝑑
used in (6) should be

replaced by 𝑃(𝑗)
𝑒

accordingly. That is

𝑝 (𝑐
𝑘+𝑚−1

| 𝛿
1:𝑇

(𝑚 − 1)) = 𝑓
𝑐
(𝑃

(𝑗)

𝑒
) , (8)

where 𝑃(𝑗)
𝑒

defines the probability that the target-originated
measurement falls into a concerned (validation) region.
There is no doubt that the number of the validated measure-
ments will be reduced to a low level followed by the possible
reduction of the running time [19]. Consequently, the key
problem becomes the calculation of 𝑃(𝑗)

𝑒
.

N = 10

Measurement region

Z2

Ẑ1

Z1 Ẑ2

(a)

Measurement region

Z2

Ẑ1

Z1 Ẑ2

n1 = 4

n12 = 3 n2 = 3

(b)

Figure 2: Regulations of measurement validation regions, (a) as a
union, (b) in separated forms.

3. Gating Techniques for RBMCDA Filter

In this section, three different gating techniques are presented
applicable to the framework of the RBMCDA filter, and the
required 𝑃

(𝑗)

𝑒
is discussed in detail. A simple gating method

is first discussed. We then present the joint events (J-) based
gatingmethodwhich takes into account the interference from
the neighboring targets. To get a practical solution with low
time cost, then a simplified version of the “J-” method (SJ-) is
proposed. At last, the main procedure of the gating technique
based RBMCDA algorithm is given for clarity.

3.1. The Union Based Method. To reduce the cardinality
of the validated measurement set, we can define a union
which consists of all the elliptical validation regions (see
Figure 2(a)). In this example, only the validated measure-
ments in the defined union are depicted. The dotted lines
represent the boundaries of the common region of the two
elliptical validation regions. This union based RBMCDA
algorithm is termed U-RBMCDA for short. In this method,
the boundaries of the common region can be omitted and
each measurement falling inside the union is assumed to be
the validatedmeasurement of both the two targets.Hence, the
required 𝑃

(𝑗)

𝑒
can be obtained directly by

𝑃

(𝑗)

𝑒
= 𝑃

(𝑗)

𝑑
𝑃

(𝑗)

𝑔
. (9)

We can see that, in this union, the 𝑃(𝑗)
𝑒

will be a fixed value if
𝑃

(𝑗)

𝑑
and𝑃(𝑗)
𝑔

are known.The difference betweenU-RBMCDA
and the O-RBMCDA (the original RBMCDA [8]) algorithm
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is that the former just reserves the measurements within the
union as the validatedmeasurements for all targets. However,
it is not difficult to find that the validated measurements
outside the common region could be possibly originated from
only one target according to their locations. For example, as
shown in Figure 1(b), the four measurements (𝑛

1
= 4) in the

left part of the 1st target’s region could only be possibly from
target 1. That is to say, the union is too big to differentiate the
measurements with different possible origins. To address this,
the detailed measurement location information is needed to
consider, and it will gomore reasonable if we get the estimates
of the target existent probabilities in the smaller regions.

In fact, the joint validation region can be seen as con-
sisting of several sub-validation-regions (SVRs) according to
the possible origins of the validated measurements, and the
𝑃

(𝑗)

𝑒
for a target 𝑗 could have different values in different

subregions. Therefore, we should divide the joint validation
region into several SVRs to make sure the validated mea-
surements within a SVR are with the same possible origins.
To emphasize this point, Figure 2(b) gives a separated but
equivalent form of illustration as that of Figure 1(b). In this
example, the numbers of validated measurements in three
SVRs are 𝑛

1
= 4, 𝑛

2
= 3, and 𝑛

12
= 3, respectively.

3.2. Joint Events Based Gating Method. In a SVR with
identifier 𝑟, we need to calculate the probability𝑃(𝑗)

𝑒
𝑟

for the 𝑗th
(𝑗 = 1, 2, . . . , 𝑇) target. If we still want to calculate 𝑃(𝑗)

𝑒
𝑟

by the
way of 𝑃(𝑗)

𝑒
𝑟

= 𝑃

(𝑗)

𝑔
𝑟

𝑃

(𝑗)

𝑑
(𝑃(𝑗)
𝑑
𝑟

= 𝑃

(𝑗)

𝑑
), the target gate probability

𝑃

(𝑗)

𝑔
𝑟

should be known. Although the 𝑃

(𝑗)

𝑔
can be directly

obtained according to (7), it is hardly possible to obtain the
analytical solutions of the gate probability 𝑃(𝑗)

𝑔
𝑟

in an arbitrary
SVRwith identifier 𝑟.That is because a SVR is usually one part
of the ellipse or the other irregular shape (see Figure 2(b)). In
this case, the required measurements statistical information
which determines the𝑃(𝑗)

𝑔
𝑟

will be extremely difficult to obtain.
To solve this problem, we present the joint events based
method and use the weights of the probabilities of the feasible
events instead.

In this process, the possible events can be constructed
in a similar way as JPDA does [3, 17]. To build the joint
events and derive the joint probabilities, the key information
required is the numbers of the measurements in these SVRs.
In fact, the validated measurements in different SVRs can be
differentiated by using the distance measure from the center
points of the corresponding validation regions (see (7)), so
that the required measurements numbers are not difficult to
obtain. The probability of an event 𝜃

𝑘
for all 𝑀 validated

measurements in the joint validation region is given by

𝑃 {𝜃
𝑘
} = 𝑃 {𝜃

𝑘
, 𝛿, 𝑛
𝑐
} = 𝑃 {𝜃

𝑘
| 𝛿, 𝑛
𝑐
} 𝑃 {𝛿, 𝑛

𝑐
}

=

𝑛
𝑐
!

𝑀!

𝑀

∏

𝑚=1

(𝑃

(𝑗)

𝑑
)

𝛿
𝑗

(1 − 𝑃

(𝑗)

𝑑
)

1−𝛿
𝑗

𝑓
𝑝
(𝑛
𝑐
) ,

(10)

where 𝛿 indicates fromwhich target the presentmeasurement
is originated, while 𝛿

𝑗
(𝛿
𝑗
= 1 or 0) indicates that whether

the 𝑚th measurement has been considered to be originated

from the 𝑗th target. Both {𝜃
𝑘
} and 𝛿

𝑗
are determined by the

numbers of the validated measurements in the SVRs. 𝑃(𝑗)
𝑑

is
the detection probability for the 𝑗th target, 𝑛

𝑐
is the number of

the measurements considered to be form clutter, and 𝑓
𝑝
(𝑛
𝑐
)

represents the nonparametric prior probability of the number
of clutter originated measurements in the joint validation
region. Note that the 𝑓

𝑝
(𝑛
𝑐
) and 𝑀! can be canceled in a

normalizing factor 𝛼 [3] as

𝑃 {𝜃
𝑘
} =

𝑛
𝑐
!

𝛼

𝑀

∏

𝑚=1

(𝑃

(𝑗)

𝑑
)

𝛿
𝑗

(1 − 𝑃

(𝑗)

𝑑
)

1−𝛿
𝑗

. (11)

The weighting factor 𝑃(𝑚𝑗)
𝑘

represents the probability of the
𝑚th measurement being originated from target 𝑗 and it is
given by

𝑃

(𝑚𝑗)

𝑘
= ∑

𝜃
𝑘

𝑝 (𝜃
𝑘
) 𝛽 (𝜃
𝑘
) , (12)

where 𝛽(𝜃
𝑘
) is a binary variable which indicates whether

the 𝑚th measurement is possibly originated from the 𝑗th
target. In following discussions, the identifier and 𝑘 can be
omittedwithoutmisunderstanding and𝑃(𝑚𝑗)

𝑘
can be rewritten

as 𝑃(𝑚𝑗). In a SVR with identifier 𝑟, 𝑃(𝑗)
𝑒
𝑟

is the sum of the
weighting factor 𝑃(𝑚𝑗)

𝑃

(𝑗)

𝑒
𝑟

=

𝑚
𝑟

∑

𝑚=𝑚
1

𝑃

(𝑚𝑗)
, (13)

where {𝑚
1
, . . . , 𝑚

𝑟
} is set of themeasurements in the 𝑟th SVR.

If 𝑃(𝑗)
𝑒
𝑟

= 1, the 𝑗th target originated (true) measurement is
certainly in the 𝑟th SVR.

3.3. Simplified Joint Events Based Gating Method. To develop
a practical suboptimal J-RBMCDA method with less time
cost, we present a simplified joint events (SJ-) based gating
technique. In J-RBMCDA, the numbers of validated mea-
surements in the SVRs play the key roles to calculate the target
existent probability or even determine the results. In fact,
they represent the relative importance of these subregions, or
the gate weights of the SVRs. So we can use the normalized
weights and the target detection probability 𝑃(𝑗)

𝑑
to estimate

𝑃

(𝑗)

𝑒
. In each time step 𝑘, the computational formulas are as

follows:

𝑁
𝑗
= 𝑛
𝑗
+∑

𝐶
1

𝑛
𝑗𝑘
1

+ ⋅ ⋅ ⋅ + ∑

𝐶
𝑇−1

𝑛
𝑗𝑘
1
𝑘
2
⋅⋅⋅𝑘
𝑇−1

,

𝑃

(𝑗)

𝑗
=

𝑛
𝑗

𝑁
𝑗

;

𝑃

(𝑗)

𝑗𝑘
1

=

𝑛
𝑗𝑘
1

𝑁
𝑗

, 𝑘
1
∈ 𝐶
1
; . . . ;

𝑃

(𝑗)

𝑗𝑘
1
𝑘
2
⋅⋅⋅𝑘
𝑇−1

=

𝑛
𝑗𝑘
1
𝑘
2
⋅⋅⋅𝑘
𝑇−1

𝑁
𝑗

, {𝑘
1
𝑘
2
⋅ ⋅ ⋅ 𝑘
𝑇−1

} ∈ 𝐶
𝑇−1

.

(14)

In (14), 𝑁
𝑗
is the number of validated measurements in the

elliptical validation region of the 𝑗th (𝑗 = 1, 2, . . . , 𝑇) target
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and 𝑛
𝑗𝑘
1
𝑘
2
⋅⋅⋅𝑘
𝑡

(𝑡 = 1, 2, . . . , 𝑇 − 1) is the number of validated
measurements in the SVR with identifier 𝑗𝑘

1
𝑘
2
⋅ ⋅ ⋅ 𝑘
𝑡
. More-

over, 𝐶
𝑡
defines a SVR set in which each element is related to

the 𝑗th target itself and other 𝑡 targets:

𝐶
1
= {𝑘
1
: 1 ≤ 𝑘

1
≤ 𝑇, 𝑘

1
̸= 𝑗} ; . . . ;

𝐶
𝑇−1

= {(𝑘
1
𝑘
2
⋅ ⋅ ⋅ 𝑘
𝑇−1

) : 𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑇−1
are (𝑇 − 1)

different numbers in {1, 2, . . . , 𝑇} \ {𝑗}} .

(15)

As a result, 𝑃(𝑗)
𝑗𝑘
1
𝑘
2
⋅⋅⋅𝑘
𝑡

is the estimated gate weight of the
𝑗th target in the 𝑗𝑘

1
𝑘
2
⋅ ⋅ ⋅ 𝑘
𝑡
th SVR. Since the target gate

probability 𝑃

(𝑗)

𝑔
in the 𝑗th elliptical region and the target

detection probability 𝑃

(𝑗)

𝑑
have been assumed to be known,

in a SVR with identifier 𝑗𝑘
1
𝑘
2
⋅ ⋅ ⋅ 𝑘
𝑡
, the 𝑃(𝑗)

𝑒
𝑗𝑘
1
𝑘
2
⋅⋅⋅𝑘
𝑡

can be given
by

𝑃

(𝑗)

𝑒
𝑗𝑘
1
𝑘
2
⋅⋅⋅𝑘
𝑡

= 𝑃

(𝑗)

𝑗𝑘
1
𝑘
2
⋅⋅⋅𝑘
𝑡

𝑃

(𝑗)

𝑔
𝑃

(𝑗)

𝑑
. (16)

Note that the SVR identifier (𝑗𝑘
1
𝑘
2
⋅ ⋅ ⋅ 𝑘
𝑡
) is independent of

the order of 𝑗, 𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑡
. For example, when 𝑗 = 1 and

𝑘
1
= 2, there are 𝑛

12
= 𝑛
21

and 𝑃

(1)

𝑒
12

= 𝑃

(1)

𝑒
21

. However, in the
SVR with the identifier 12 (or 21), 𝑃(1)

𝑒
12

= (𝑛
12
/𝑁
1
)𝑃

(1)

𝑑
and

𝑃

(2)

𝑒
12

= (𝑛
12
/𝑁
2
)𝑃

(2)

𝑑
are different values for target 1 and target

2, respectively. Hence, even in the same SVR, 𝑃(1)
𝑒
𝑟

and 𝑃

(2)

𝑒
𝑟

have different values.
This simplified joint events based RBMCDA (SJ-

RBMCDA) can be seen as a very simple form of the
J-RBMCDA with the joint events being broken up into
several isolated events. The significant difference is that, in
SJ-RBMCDA, the procedure of enumerating the possible
association events is replaced by a simple nonparametric
method. Therefore, the required 𝑃

(𝑗)

𝑒
𝑟

can be computed by
directly using the numbers of the validated measurements in
the corresponding SVRs. Logically, less computational time
is needed.

It should be pointed out that the J-RBMCDA and SJ-
RBMCDA algorithms may provide more weights to the right
SVRs if the tracker can get the correct target estimates. Like
all other gating based algorithms, however, the performance
of the proposed gating based RBMCDA algorithms will
also be degraded in the cases that the tracker provides
incorrect target estimates. Another problem is that, for both
J-RBMCDA and SJ-RBMCDA, the number of SVRs seems
to increase dramatically with the number of targets to be
tracked. Figure 3 gives an example of tracking 11 targets, and
each of the arrows points to a SVR. We can see that the
total number of the SVRs is 20 including the empty SVRs
(pointed by dotted arrows), so that the number of the SVRs
needed to be computed is 18 (pointed by solid arrows). In
fact, the dimension curse occurs only in the extreme case
when all tracks are in the same neighborhood and with
incomplete coverage. In this cases, when tracking 𝑇 targets
the number of SVRs would be 2𝑇 − 1. For example, in the up
left of Figure 3 the joint validation consists of three elliptical
validation regions (centered at 𝑧̂1, 𝑧̂2, and 𝑧̂3, resp.). The total

Measurement region

Ẑ1

Ẑ2

Ẑ3

Ẑ4

Ẑ5

Ẑ6

Ẑ7

Ẑ8

Ẑ9 Ẑ10
Ẑ11

n1 = 2

n13 = 0

n123 = 1

n4 = 2

n12 = 1
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n56 = 2

n6 = 1
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n7 = 3

n8 = 3

n10-11 = 1

n10 = 3 n11 = 1

n78 = 0

n23 = 2

n3 = 2

n34 = 0

Z1

Figure 3: An example of measurement validation regions for a large
number of targets.

number of the SVRs is 23 − 1 = 7 including one empty SVR
(𝑛
13

= 0), so that the number of the SVRs needed to be
computed is 6 (𝑛

1
, 𝑛
2
, 𝑛
3
, 𝑛
12
, 𝑛
23
, and 𝑛

123
).

3.4. RBMCDA Algorithm with Gating Technique. The gat-
ing technique based RBMCDA algorithm is presented in
Algorithm 1. This algorithm includes four major parts: pre-
diction, finding validation regions and calculating 𝑃

(𝑗)

𝑒
𝑟

, cal-
culating data association probabilities and updating the state
of particles, and finally a particle weights calculation step. It
should be pointed out that only the second part is funda-
mentally different from the original RBMCDA algorithm. In
this algorithm, the target state priors can be represented as a
weighted importance samples set

𝑝 (x(𝑗)
0
) =

𝑁
𝑝

∑

𝑖=1

w
𝑖,0
N (x(𝑗)
0

| x(𝑗)
𝑖,0
,P(𝑗)
𝑖,0
) , (17)

where 𝑖 is the identifier of particle with𝑁
𝑝
being the number

of particles employed. The dynamics and measurements for
target 𝑗 (𝑗 = 1, . . . , 𝑇) are assumed to be linear Gaussian

𝑝 (x(𝑗)
𝑘

| x(𝑗)
𝑘−1

) = N (x(𝑗)
𝑘

| F(𝑗)
𝑘−1

x(𝑗)
𝑘−1

,Q(𝑗)
𝑘−1

) ,

𝑝 (z
𝑘
| x(𝑗)
𝑘
, 𝑐
𝑘
= 𝑗) = N (z

𝑘
| H(𝑗)
𝑘
x(𝑗)
𝑘
,R(𝑗)
𝑘
) .

(18)

4. Numerical Examples and Simulation Results

4.1. Numerical Examples. In some extreme cases (such as
that all elliptical validation regions are separated, or coincide
exactly), the 𝑃(𝑗)

𝑒
obtained by different gating techniques will

have the same value as 𝑃(𝑗)
𝑒

= 𝑃

(𝑗)

𝑔
𝑃

(𝑗)

𝑑
.

This section just concerns with the general cases. Since
𝑃

(𝑗)

𝑔
is very close to unity (see Section 2.2), the results

illustrated in the tables use 𝑃

(𝑗)

𝑔
= 1 (𝑗 = 1, . . . , 𝑇) for

convenience. Without loss of generality, these examples do
not consider the missed detection and assume 𝑃

(𝑗)

𝑑
= 1.

In these examples, the clutter is modeled as independent
and identically distributed with uniform spatial distribution.
Examples 1 and 2 are about tracking two targets; Example 3 is
about tracking three targets.
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For 𝑘 = 1 to 𝑛 do
For 𝑖 = 1 to𝑁

𝑝
do

For 𝑗 = 1 to 𝑇 do
x̂(𝑗)
𝑖,𝑘|𝑘−1

= F(𝑗)
𝑘−1

x̂(𝑗)
𝑖,𝑘−1|𝑘−1

, (i)

P(𝑗)
𝑖,𝑘|𝑘−1

= F(𝑗)
𝑘−1

P(𝑗)
𝑖,𝑘−1|𝑘−1

[F𝑗
𝑘−1

]

󸀠

+Q(𝑗)
𝑘−1

. (ii)
End for 𝑗

End for 𝑖
For 𝑗 = 1 to 𝑇 do

ẑ(𝑗)
𝑘|𝑘−1

= H(𝑗)
𝑘

[

[

𝑁
𝑝

∑

𝑖=1

w
𝑖,𝑘−1

x̂(𝑗)
𝑖,𝑘|𝑘−1

]

]

, (iii)

S(𝑗)
𝑘

= H(𝑗)
𝑘

[

[

𝑁
𝑝

∑

𝑖=1

w
𝑖,𝑘−1

P(𝑗)
𝑖,𝑘|𝑘−1

]

]

[H(𝑗)
𝑘
]

󸀠

+ R(𝑗)
𝑘
, (iv)

where ẑ(𝑗)
𝑘|𝑘−1

and S(𝑗)
𝑘

are the predicted measurement and innovation, respectively.
For𝑚 = 1 to𝑁measurements (number of the measurements) do

Choose z
𝑘
(𝑚) that satisfies the following condition as the validated measurement of the 𝑗th target:

[z
𝑘
(𝑚) − ẑ(𝑗)

𝑘|𝑘−1
]

󸀠

[S(𝑗)
𝑘
]

−1

[z
𝑘
(𝑚) − ẑ(𝑗)

𝑘|𝑘−1
] ≤ 𝛾. (v)

End for𝑚
End for 𝑗
For 𝑟 = 1 to𝑁SVRs (number of the SVRs) do

For 𝑗 = 1 to 𝑇
Calculate 𝑃(𝑗)

𝑒
𝑟

using gating techniques.
End for 𝑗
For𝑚 = 1 to𝑁

𝑟

For 𝑖 = 1 to𝑁
𝑝

Calculate data association priors 𝑝(𝑐
𝑖,𝑘

| 𝑐
𝑖,𝑘−𝑚:𝑘−1

) by (8) based on the Markov chain
model described in [1].
For 𝑗 = 1 to 𝑇 do

ẑ(𝑗)
𝑖,𝑘

= H(𝑗)
𝑘
x̂(𝑗)
𝑖,𝑘|𝑘−1

, (vi)

S(𝑗)
𝑖,𝑘

= H(𝑗)
𝑘
P(𝑗)
𝑖,𝑘|𝑘−1

[H(𝑗)
𝑘
]

󸀠

+ R(𝑗)
𝑘
. (vii)

Calculate the marginal measurement likelihood
𝑝(z
𝑘
| 𝑐
𝑖,𝑘

= 𝑗, 𝑐
𝑖,1:𝑘−1

, z
1:𝑘−1

) = N(z
𝑘
(𝑚) | ẑ(𝑗)

𝑖,𝑘
, S(𝑗)
𝑖,𝑘
). (viii)

End for 𝑗
Calculate the clutter likelihood
𝑝(z
𝑘
| 𝑐
𝑖,𝑘

= 0, 𝑐
𝑖,1:𝑘−1

, z
1:𝑘−1

) = 𝑉

−1. (ix)
Calculate the posterior distribution of 𝑐

𝑖,𝑘

𝑝(𝑐
𝑖,𝑘

| 𝑐
𝑖,1:𝑘−1

, z
1:𝑘
) = 𝑝(z

𝑘
| 𝑐
𝑖,𝑘
, 𝑐
𝑖,1:𝑘−1

, z
1:𝑘−1

)𝑝(𝑐
𝑖,𝑘

| 𝑐
𝑖,𝑘−𝑚:𝑘−1

). (x)
Sample an association indicator 𝑐

𝑖,𝑘
= 𝑗 with probability 𝜌(𝑗)

𝑖

𝜌

(𝑗)

𝑖
=

𝜌

(𝑗)

𝑖

∑

𝑇

𝑗
󸀠
=0
𝜌

(𝑗
󸀠
)

𝑖

, 𝑗 = 0, . . . , 𝑇, (xi)

where
𝜌

(0)

𝑖
= 𝑝(𝑐
𝑖,𝑘

= 0 | 𝑐
𝑖,1:𝑘−1

, z
1:𝑘
), (xii)

𝜌

(𝑗)

𝑖
= 𝑝(𝑐
𝑖,𝑘

= 𝑗 | 𝑐
𝑖,1:𝑘−1

, z
1:𝑘
). (xiii)

If 𝑗 ̸= 0, update the 𝑗th target using the measurement z
𝑘
(𝑚)

K
𝑖,𝑘

=

P(𝑗)
𝑖,𝑘|𝑘−1

[H(𝑗)
𝑘
]

󸀠

S(𝑗)
𝑖,𝑘

, (xiv)

x̂(𝑗)
𝑖,𝑘|𝑘

= x̂(𝑗)
𝑖,𝑘|𝑘−1

+ K
𝑖,𝑘
[z
𝑘
(𝑚) − ẑ(𝑗)

𝑖,𝑘
], (xv)

P(𝑗)
𝑖,𝑘|𝑘

= P(𝑗)
𝑖,𝑘|𝑘−1

− K
𝑖,𝑘
S(𝑗)
𝑖,𝑘
(K
𝑖,𝑘
)

󸀠. (xvi)
End if
Calculate the new weight

𝑤
𝑖,𝑘

∝ 𝑤
𝑖,𝑘−1

𝑝(z
𝑘
| 𝑐
𝑖,𝑘
, 𝑐
𝑖,1:𝑘−1

, z
1:𝑘−1

)𝑝(𝑐
𝑖,𝑘

| 𝑐
𝑖,𝑘−𝑚:𝑘−1

)

𝑝(𝑐
𝑖,𝑘

| 𝑐
𝑖,1:𝑘−1

, z
1:𝑘
)

. (xvii)

Algorithm 1: Continued.
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End for 𝑖
Resample the particles if needed.

End for𝑚
Calculate the target state vectors
For 𝑗 = 1 to

x̂(𝑗)
𝑘|𝑘

=

𝑁
𝑝

∑

𝑖=1

𝑤
𝑖,𝑘
x̂(𝑗)
𝑖,𝑘|𝑘

. (xviii)

End for 𝑗
End for 𝑟

End for 𝑘

Algorithm 1: RBMCDA using gating techniques.

Example 1. As shown in Figure 4, the numbers of the vali-
dated measurements in three SVRs will have four possible
cases if clutter does not exist, (a) 𝑛

1
= 1, 𝑛

2
= 1, 𝑛

12
= 0,

(b) 𝑛
1

= 1, 𝑛
2

= 0, 𝑛
12

= 1, (c) 𝑛
1

= 0, 𝑛
2

= 1,
𝑛
12

= 1, and (d) 𝑛
1

= 0, 𝑛
2

= 0, 𝑛
12

= 2. Table 1
gives the 𝑃(𝑗)

𝑒
𝑟

obtained by different gating techniques, where
“O-” represents the original RBMCDA and “U-,” “J-,” and
“SJ-” represent the “U-RBMCDA,” “J-RBMCDA,” and “SJ-
RBMCDA” algorithms, respectively. The results denoted as
“-” mean that the corresponding subregions do not consist
of any measurement. In this example, “O-” and “U-” have
the same results because both of them do not consider the
interrelations of the validated measurements. It can be seen
that only the “J-” gives the correct results as expected. As
a simplified version of the “J-,” the “SJ-” gives the trade-off
results.

Example 2. In cluttered environment (see Figure 1(b)), two
cases are studied, (e) 𝑛

1
= 1, 𝑛

2
= 1, 𝑛

12
= 3 and (f) 𝑛

1
= 1,

𝑛
2
= 8, 𝑛

12
= 2. In this example, “J-” and “SJ-” can give the

similar results as shown in Table 2. Note that, “U-” still gives
the result 𝑃(𝑗)

𝑒
𝑟

= 1 in each SVR 𝑟.

Example 3. In Figure 5, the numbers of validated measure-
ments in three elliptical regions are 𝑁

1
= 9, 𝑁

2
= 8, and

𝑁
3
= 6, respectively.Thenumbers of validatedmeasurements

in the SVRs are (g) 𝑛
1
= 5, 𝑛

2
= 3, 𝑛

3
= 3, 𝑛

12
= 2, 𝑛

13
= 0,

𝑛
23

= 1, and 𝑛
123

= 2. Table 3 gives the 𝑃(𝑗)
𝑒
𝑟

obtained by “J-
” and “SJ-.” In this three-target example, the “J-” and “SJ-”
can also give the similar results. Next, we will give tracking
examples to verify the performance of the algorithms.

4.2. Simulation Results. In the simulations, we model
each target with constant velocity model in 2-dimensional
Cartesian coordinates. The discrete-time state dynamic and
measurement models for targets are given by (18), where

F(𝑗)
𝑘−1

= (

1 0 Δ 0

0 1 0 Δ

0 0 1 0

0 0 0 1

) ,

H(𝑗)
𝑘

= (

1 0 0 0

0 1 0 0

) ,

G = (

1

2

Δ

2
0 Δ 0

0

1

2

Δ

2
0 Δ

)

󸀠

,

Q(𝑗)
𝑘−1

= GG󸀠

(19)

with the sample interval Δ = 1. The clutter is modeled as
independent and identically distributed with uniform spatial
distribution in a rectangular region of the coordinate plane,
[0, 500]×[0, 500].The number of cluttermeasurements obeys
a Poisson distribution with the Poisson random number
𝜆 (clutter rate). Three tracking examples are studied to
illustrate the performance and efficiency of the proposed
gating techniques based RBMCDA algorithms. The first one
involves a situation where two targets are crossing as shown
in Figure 6. We want to compare the performance of the
algorithms by the tracking position errors. The total number
of time steps is set to be 30, the number of particles𝑁

𝑝
= 100,

the Poisson number 𝜆 = 50, themeasurement varianceR(𝑗)
𝑘

=

diag ([20, 20]), and the detection probability 𝑃(𝑗)
𝑑

= 0.99 (𝑗 =
1, . . . , 2). Figures 7 and 8 show the average root mean square
errors (RMSE) of the four algorithms from 100 different runs.
Here, theRMSE is referring to the average position estimation
error. At time step 𝑘, the RMSE of the 𝑗th target is given by

√

1

100

2

∑

𝑗=1

100

∑

𝑚𝑐=1

(𝑥

(𝑚
𝑐
)

𝑗,𝑘
− 𝑥
𝑗,𝑘
)

2

+ (𝑦

(𝑚
𝑐
)

𝑗,𝑘
− 𝑦
𝑗,𝑘
)

2

, (20)

where (𝑥

(𝑚
𝑐
)

𝑗,𝑘
, 𝑦

(𝑚
𝑐
)

𝑗,𝑘
) are the corresponding position estima-

tion in the𝑚
𝑐
th Monte Carlo run.

The simulation results show that the tracking process can
be divided into two stages: before and after the happening
of target crossing. In the first stage, the RMSE curves by
all the algorithms have the similar values. It indicates that
the proposed gating methods do not have an impact on
the performance of the RBMCDA algorithm for tracking
separated targets. In the second half of the tracking process,
the significant arising of the RMSE curves by “O-” and
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Ẑ2
n1 = 0

n12 = 2

n2 = 0

(d)

Figure 4: All possible hypotheses for measurements that fall inside two validation regions on condition that 𝑃
𝑑
= 1.

Table 1: The 𝑃(𝑗)
𝑒
𝑟

obtained by four different methods: two-target situation.

(𝑎)/(𝑏)/(𝑐)/(𝑑) 𝑃

(1)

𝑒
1

𝑃

(2)

𝑒
2

𝑃

(1)

𝑒
12

𝑃

(2)

𝑒
12

O- 1/1/—/— 1/1/—/— 1/1/—/— 1/0.5/—/—
U- 1/—/1/— 1/—/1/— 1/—/1/— 1/—/0.5/—
J- —/1/1/1 —/1/1/1 —/0/1/1 —/0.5/1/1
SJ- —/1/1/1 —/1/1/1 —/1/0/1 —/1/0.5/1

Measurement region

Z2

Ẑ1

Ẑ3

Z1

Z3

Ẑ2

N1 = 9

n1 = 5

n13 = 0

n23 = 1

n12 = 2

N2 = 8

N3 = 6

n2 = 3

n3 = 3

n123 = 2

Figure 5: Example of measurement validation regions for tracking
three targets.

“U-” algorithms indicates that, when target crossing happens,
the “O-” and “U-” algorithms have more times of tracking
failures (or mistracking) than “S-” and “SJ-” algorithms. This

is because “S-” and “SJ-” can provide more accurate targets’
origins than the “O-” and “U-” algorithms. In this example,
the performance of “SJ-” is approximate to that of the “J-
.” This also supports the results obtained in the previous
numerical examples.

In the second example, we consider a three-target-
crossing situation (as shown in Figure 9) to compare the time
costs of the algorithms. The total number of time steps is set
to be 25, the measurement variance R(𝑗)

𝑘
= diag ([10, 10]),

and the detection probability 𝑃

(𝑗)

𝑑
= 0.8. We repeat each

experiment 100 times and the average running times are
listed in Tables 4 and 5, where we set a fixed clutter rate 𝜆 = 20

and a fixed number of particles𝑁
𝑝
= 20. All simulations are

performed on a PC with a 2.8-GHz Intel processor.
In Table 4, for all the four algorithms, the increases in

time cost are proportional to the increases in the number of
particles. In Table 5, only the computational time of “O-” is
increased apparently with the clutter rate 𝜆. This is because
all added clutter should be considered in the data association
procedures without using gating technique. The time costs
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Table 2: The 𝑃(𝑗)
𝑒
𝑟

obtained by “U”, “J-”, and “SJ-”: two-target situation.

(𝑒)/(𝑓) 𝑃

(1)

𝑒
1

𝑃

(2)

𝑒
2

𝑃

(1)

𝑒
12

𝑃

(2)

𝑒
12

U- 1/1 1/1 1/1 1/1
J- 0.3077/0.1220 0.3077/0.2195 0.6923/0.8780 0.6923/0.7805
SJ- 0.25/0.1111 0.25/0.2 0.75/0.8889 0.75/0.8

Table 3: The 𝑃(𝑗)
𝑒
𝑟

obtained by “J-” and “SJ-”: three-target situation.

(𝑔) 𝑃

(1)

𝑒
1

𝑃

(2)

𝑒
2

𝑃

(3)

𝑒
3

𝑃

(1)

𝑒
12

𝑃

(2)

𝑒
12

𝑃

(2)

𝑒
23

𝑃

(3)

𝑒
23

𝑃

(1)

𝑒
123

𝑃

(2)

𝑒
123

𝑃

(3)

𝑒
123

J- 0.61 0.42 0.55 0.21 0.25 0.12 0.16 0.18 0.21 0.29
SJ- 0.56 0.38 0.5 0.22 0.25 0.13 0.17 0.22 0.25 0.33
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Figure 6: Example of tracking two crossing targets.
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Figure 8: The average position estimation errors for target 2.
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Figure 9: Example of tracking three crossing targets.
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Table 4: Computational time (sec) using different numbers of particles.

Numbers of particles 20 40 60 80 100
O- 12.1373 18.2593 25.3149 31.7860 38.4171
U- 1.1085 2.2064 3.3344 4.4614 5.6046
J- 1.2446 2.5641 4.0014 5.3252 6.5214
SJ- 1.1248 2.3910 3.6465 4.8110 5.8696

Table 5: Computational time (sec) in different clutter rates.

Clutter rates (𝜆) 20 40 60 80 100
O- 12.0975 17.5701 22.9209 28.4144 34.0663
U- 1.0522 1.1306 1.2546 1.3155 1.3967
J- 1.1965 1.2832 1.4081 1.4914 1.6091
SJ- 1.0925 1.2024 1.3330 1.4350 1.5127

of the proposed gating based algorithms grow moderately
because only a small number of the added clutters can fall
into the validation regions.

In both Tables 4 and 5, we can find that “U-” is the
most efficient one. In the three gating based algorithms, “J-
” needs the most computational time for its dealing with the
joint events. Since “SJ-” uses a simple but more direct way, it
needs less computational time than that of “J-.” From the two
tables, the gating technique based RBMCDA algorithms are
much more efficient than the original RBMCDA algorithm
because of the reduction of validated measurements. The
relative efficiencies between these gating techniques can be
summarized by “U-” > “SJ-” > “J-.” In practice, although “U-”
needs less computational time than “J-” and “SJ,” but “U-”
is not suitable for the use to track multiple closely spaced
targets. In this situation, both the “J-” and “SJ-” can yield
desirable results because of the rational consideration of the
intersection regions.

5. Conclusion

This paper has studied the gating techniques in the appli-
cation of the RBMCDA filter to multitarget tracking. Three
different gating methods are presented and compared by
computing both the tracking errors and time cost. “U-
” incorporates a very simple gate into the framework of
the RBMCDA approach. “J-” can take the measurement
uncertainties into account reasonably by calculating the joint
events. As a simplification of “J,” “SJ-” ismore efficient than “J”
and the tracking performance loss incurred is not significant
in the experimental examples. Therefore, “SJ-” can be a time-
saving choice for practical applications. It should be pointed
out that the gating techniques discussed in this paper may
eliminate all measurements outside the validation regions
of the targets that have already been detected, which will
make it difficult to detect newly appearing targets. To address
this, the proposed gating techniques could be started after
the initialization periods of the RBMCDA filter to avoid
impairing the tracks initiation.
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