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The fractional derivative equation has extensively appeared in various applied nonlinear problems and methods for finding the
model become a popular topic. Very recently, a novel way was proposed by Duan (2010) to calculate the Adomian series which
is a crucial step of the Adomian decomposition method. In this paper, it was used to solve some fractional nonlinear differential
equations.

1. Introduction

The fractional derivative has good memory effects compared
with the ordinary calculus. In view of this point, it has been
proven as a good tool in nonlinear science, for example, the
anomalous diffusion [1, 2], the material’s viscoelasticity [3, 4],
the chaotic behaviors of biology population [5, 6], and so
forth.

However, everything has two sides.The fractional deriva-
tive’s memory effects also lead to the numerical solutions’
accumulative errors. Many nonlinear techniques cannot
perform the same role as those in ordinary differential
equation. For example, the variational iteration method
cannot be applied due to the fact that the integral by parts
cannot hold and the Lagrange multipliers there are not
easily identified; in the Adomian decomposition method,
the Adomian series cannot be expanded large enough which
greatly affects the solutions’ accuracies and even five- or six-
order approximation becomes impossible (see the analysis in
[7]).

Very recently and fortunately, for the ADM, Duan [8,
9] proposed a convenient way to calculate Adomian series
which is the main and crucial step of the classical ADM

developed by Adomian. This way can rapidly decompose the
nonlinear terms and some new high order approximation
schemes for nonlinear differential equations are proposed
[10]. The technique has been successfully extended to frac-
tional differential equations and boundary value problems
[11, 12].

In this paper, we investigate the following fractional
nonlinear differential equation:

𝐶

0𝐷
𝛼

𝑡
𝑥 = 1 + 2𝑥 (𝑡) − 𝑥 (𝑡)

2
, 0 < 𝛼 ≤ 2, (1)

where 𝐶
0𝐷
𝛼

𝑡
𝑥 is the Caputo derivative with respect to 𝑥(𝑡).

The paper is organized as follows: Section 2 introduces
some basics of the ADM and the fractional calculus;
Section 3 considers the differential equation from the case
𝛼 = 1 in (1)

𝑑𝑥

𝑑𝑡
= 1 + 2𝑥 (𝑡) − 𝑥 (𝑡)

2
, 𝑥 (0) = 0 (2)

and gives the analytical formula.
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2. Preliminaries

Definition 1 (see [13]). The Caputo derivative is defined as

𝐶

0𝐷
𝛼

𝑡
𝑢 =

1

Γ (𝑚 − 𝛼)
∫

𝑡

0

1

(𝑡 − 𝜏)
𝛼−𝑚+1

𝑑
𝑚

𝑑𝜏𝑚
𝑢 (𝜏) 𝑑𝜏,

0 < 𝑡, 0 < 𝛼, 𝑚 = [𝛼] + 1,

(3)

where Γ is the Gamma function.

Definition 2 (see [14]). The R-L integration of 𝛼 order is
defined by

0𝐼
𝛼

𝑡
𝑢 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑢 (𝜏) 𝑑𝜏,

0 < 𝑡, 0 < 𝛼.

(4)

Generally, consider the following nonlinear equation:

𝐿 [𝑢] + 𝑅 [𝑢] + 𝑁 [𝑢] = 𝑔 (𝑡) , (5)

where 𝐿 is the highest derivative, 𝑅 is the remaining linear
part containing the lower order derivatives, and 𝑁 is the
nonlinear operator.

Apply the inverse 𝐿−1 of the linear operator 𝐿 in (5) and
we can obtain

𝑢 = 𝑢 (0) + 𝑢
󸀠
(0) 𝑡 + ⋅ ⋅ ⋅ + 𝑢

(𝑚−1)
(0)

𝑡
𝑚−1

(𝑚 − 1)!

+ 𝐿
−1
(𝑔 (𝑡) − 𝑅 [𝑢] − 𝑁 [𝑢]) .

(6)

Assume that

𝑢 =

∞

∑

𝑖=0

𝑢
𝑖 (7)

and expand the term𝑁[𝑢] approximately as

𝑁[𝑢] =

∞

∑

𝑛=0

𝐴
𝑛
, (8)

where the 𝐴
𝑛
is calculated by

𝐴
𝑛
=
1

𝑛

𝑛−1

∑

𝑘=0

(𝑘 + 1) 𝑢𝑘+1

𝑑𝐴
𝑛−1−𝑘

𝑑𝑢0

. (9)

As a result, one can obtain the analytical iteration scheme as

𝑢
𝑛+1

= −𝐿
−1
(𝑅 [𝑢
𝑛
]) − 𝐿

−1
(𝐴
𝑛
[𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
]) ,

𝑢
0
= 𝑢 (0) + 𝑢

󸀠
(0) 𝑡 + ⋅ ⋅ ⋅ + 𝑢

(𝑚−1)
(0)

𝑡
𝑚−1

(𝑚 − 1)!
+ 𝐿
−1
(𝑔 (𝑡)) .

(10)

Here we conclude the application of the ADM: firstly, one
needs to have equivalent integral form of the original gov-
erning equations; second, decompose the nonlinear terms
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Figure 1: “∗” the 20th order approximate solution; “–” the explicit
solution.

into linear ones and determine the iteration schemes; third,
obtain the solutions successively. For the other applications
and modified versions, we do not introduce any more here.
The readers who feel interested in the development of the
method are referred to [7, 12, 15–19].

3. Numerical Schemes of Integer Equations

According to theADM,wefirst establish the integral equation
as the one

𝑥 (𝑡) = 𝑥 (0) + ∫

𝑡

0

(1 + 2𝑥 (𝜏) − 𝑥 (𝜏)
2
) 𝑑𝜏. (11)

If we directly use the classical ADM’s idea we can obtain the
formula

𝑥
𝑛+1

= 2𝐿
−1
(𝑥
𝑛
) + 𝐿
−1
(𝐴
𝑛
[𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
]) ,

𝑥 (𝑡) =

∞

∑

𝑖=0

𝑥
𝑖
.

(12)

The explicit solution of (2) was found to be [20]

𝑥 (𝑡) = 1 + √2 tanh(√2𝑡 + 1
2
log(

√2 − 1

√2 + 1

)) . (13)

We can assume that

𝐴
0
= −𝑥
0

2
,

𝑥
0
= 𝑥 (0) + 𝑡.

(14)

As a result, from the iteration equations (10) and (12), we can
obtain the approximate solutions in comparison with (13).

We find that the approximate solution has a good agree-
ment with the explicit solution in Figure 1. So the scheme is
efficient and useful.
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Figure 2: “–” the residual function.

4. Numerical Schemes of Fractional Equations

Case 1 (0 < 𝛼 ≤ 1). Similarly, we can have the integral
equation for (1):

𝑥 (𝑡) = 𝑥 (0) + ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

Γ (𝛼)
(1 + 2𝑥 (𝜏) − 𝑥 (𝜏)

2
) 𝑑𝜏,

0 < 𝛼 ≤ 1.

(15)

If we directly use the classical ADM’s idea we can obtain the
formula

𝑥
𝑛+1

= ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

Γ (𝛼)
𝐴
𝑛
[𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
] 𝑑𝜏,

𝑥 (𝑡) =

∞

∑

𝑖=0

𝑥
𝑖
.

(16)

Here 𝑥0 = 𝑥(0), we give the first solutions as

𝑥0 (𝑡) = 𝑡 +
𝑡
𝛼

Γ (𝛼) 𝛼
. (17)

For simplicity, we define the residual function as

err = ln 󵄨󵄨󵄨󵄨󵄨
𝐶

0𝐷
𝛼

𝑡
𝑥
𝑛
= 1 + 2𝑥

𝑛 (𝑡) − 𝑥𝑛 (𝑡)
2󵄨󵄨󵄨󵄨󵄨

(18)

and illustrate the errors for 𝑛 = 30 and 𝛼 = 0.9 in Figure 2.

Case 2 (1 < 𝛼 ≤ 2). Consider the following.

𝑥 (𝑡) = 𝑥 (0) + 𝑥
󸀠
(0) 𝑡

+ ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

Γ (𝛼)
(1 + 2𝑥 (𝜏) − 𝑥 (𝜏)

2
) 𝑑𝜏,

1 < 𝛼 ≤ 2.

(19)
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Figure 3: “–” the residual function.

Here we need two initial conditions 𝑥(0) and 𝑥󸀠(0). We set

𝑥 (0) = 0, 𝑥
󸀠
(0) = 1. (20)

Similarly, we can have the iteration formula as

𝑥𝑛+1 = ∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

Γ (𝛼)
𝐴
𝑛 [𝑥0, 𝑥1, . . . , 𝑥𝑛] 𝑑𝜏,

𝑥
0
= 𝑥 (0) + 𝑥

󸀠
(0) 𝑡 = 𝑡 +

𝑡
𝛼

Γ (𝛼) 𝛼
,

𝑥 (𝑡) =

∞

∑

𝑖=0

𝑥𝑖,

(21)

whose error analysis is given in Figure 3. We can see that the
approximate solution is reliable.

We plot the approximate solution in Figure 4 in the
interval [0, 1].

5. Conclusions

This paper applied the famous Adomian decomposition
method to FDEs whose fractional order varied from 0 to
2. First, we revisit the method for integer equation. We
conclude the general steps and use the method to solve FDEs
analytically. Through the analysis of the residual function,
it can be concluded that the ADM using Duan’s way to
calculate the Adomian series is very suitable and efficient
for obtaining analytical solutions of fractional nonlinear
differential equations.
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Figure 4: “∗” the 30th order approximate solution of (19).
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