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We obtain the lag, anticipated, and complete hybrid projective synchronization control (LACHPS) of dynamical systems to study
the chaotic attractors and control problem of the chaotic systems. For illustration, we take the Colpitts oscillators as an example to
achieve the analytical expressions of control functions. Numerical simulations are used to show the effectiveness of the proposed
technique.

1. Introduction

Chaotic control and the structure of chaotic systems have
attracted much attention in nonlinear sciences, especially
in physics, chemistry, and biology. Different types of the
structure and control method have been found in a variety of
chaotic systems, such as constructingmethod [1–10], adaptive
method [11], projective-Lag synchronization method [12–15],
backstepping method [16], Q-S synchronizationmethod [17–
20], and many others.

At the same time,many different types of synchronization
in chaotic (hyperchaotic) systems were presented, for exam-
ple, complete synchronization, generalized synchronization,
phase synchronization, antisynchronization, general projec-
tive synchronization, lag synchronization, and anticipate
synchronization, and so on.

To two dynamical systems, consider a full state hybrid
projective synchronization (FSHPS) method [21], where the
responses of the synchronized dynamical states synchronize
up to a constant scaling matrix. In this paper, based on
the Lyapunov stability theory, we propose a scheme of lag,
anticipated, and complete hybrid projective synchronization
control (LACHPS). In this method, every state variable of
master system synchronizes other incompatible state vari-
ables of slave system; particularly, for oscillators, two different
designs are shown.

When 𝑥(𝑡) and 𝑦(𝑡) are the state vectors of two 𝑛-
dimensional chaotic systems. These two systems are com-
pletely synchronized [22] if the synchronization error ‖𝑦(𝑡) −
𝑥(𝑡)‖ → 0 as 𝑡 → ∞. AS [23] is defined when the error
‖𝑦(𝑡) + 𝑥(𝑡)‖ → 0 as 𝑡 → ∞. PS [24] is a situation in which
the state vectors 𝑥(𝑡) and 𝑦(𝑡) synchronize up to a constant
factor 𝛼 (i.e. ‖𝑦(𝑡) − 𝛼𝑥(𝑡)‖ → 0 as 𝑡 → ∞. MPS [25] is
defined if the state vectors of two systems synchronize up to a
constant scaling matrix which means that ‖𝑦(𝑡) −𝑀𝑥(𝑡)‖ →
0 as 𝑡 → ∞. LS [13] implies that the state variables of the
two coupled chaotic systems become synchronized but with
a time lag with respect to each other; that is, ‖𝑦(𝑡) − 𝑥(𝑡 −
𝜏)‖ → 0 as 𝑡 → ∞, where 𝜏 is the positive time lag. PLS
has been introduced recently in [15, 26–28] as ‖𝑦(𝑡) − 𝛽𝑥(𝑡 −
𝜏)‖ → 0 as 𝑡 → ∞, where 𝛽 is a constant scaling factor.
Synchronization can be addressed as a stabilization problem.
This means that the trajectories of the synchronization error
have to be stabilized at the origin.

In realistic and engineering applications, LS and PLS
always affect the dynamical behaviors of chaotic systems. For
example, in the telephone communication system, the voice
one hears on the receiver side at time 𝑡 is the voice from the
transmitter side at time 𝑡. LS and PLS have been recently
studied on systems described in [15, 28–30]. For more details
about chaotic control see [31–38] and for the elements of the
cyclicity theory of planar systems see [39–41]. Our goal in
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Table 1

Setting the matrix𝑀 Setting the matrix𝑁 and the value of 𝜏 Type of synchronization
𝑀 = diag(𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
) 𝑁 = diag(𝜖

1
, 𝜖
2
, . . . , 𝜖

𝑛
), 𝜏 = 0 HPS

𝑀 = diag(1, 1, . . . , 1) 𝑁 = diag(𝜖
1
, 𝜖
2
, . . . , 𝜖

𝑛
), 𝜏 > 0 PLS

𝑀 = diag(1, 1, . . . , 1) 𝑁 = diag(𝜖
1
, 𝜖
2
, . . . , 𝜖

𝑛
), 𝜏 = 0 PS

𝑀 = diag(1, 1, . . . , 1) 𝑁 = diag(1, 1, 1, . . . , 1), 𝜏 > 0 LS
𝑀 = diag(1, 1, . . . , 1) 𝑁 = diag (1, 1, 1, . . . , 1) , 𝜏 = 0 CS
𝑀 = diag(1, 1, . . . , 1) 𝑁 = diag(𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
), 𝜏 = 0 FS

this paper is to introduce and investigate the lag, anticipated,
and complete hybrid projective synchronization control
(LACHPS) of two 𝑛-dimensional nonlinear systems.

Definition 1. For 𝑛-dimensional master and slave nonlinear
systems as �̇� = 𝐹(𝑥, 𝑡), ̇𝑦 = 𝐺(𝑦, 𝑡) + 𝑈, where 𝑥 =

(𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇, 𝑦 = (𝑦

1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇, 𝑈 =

(𝑢
1
(𝑥, 𝑦), 𝑢

2
(𝑥, 𝑦), . . . , 𝑢

𝑛
(𝑥, 𝑦)) is a controller to be deter-

mined later. The LACHPS is defined if the synchronization
error lim

𝑡→∞
‖𝑀𝑦(𝑡) − 𝑁𝑥(𝑡 − 𝜏)‖ → 0, where 𝑥(𝑡)

and 𝑦(𝑡) are the state vectors of two systems, the matrixes
𝑀 and 𝑁 are defined as 𝑀 = diag(𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
) and

𝑁 = diag(𝜖
1
, 𝜖
2
, . . . , 𝜖

𝑛
), 𝛿
𝑖
(𝜖
𝑖
) = constants or a “scaling

function matrix” (𝑖 = 1, 2, . . . , 𝑛), and 𝜏 is the time lag
or anticipated. It is said that the master system and slave
system are globally (i) lag hybrid projective synchronization
control (𝜏 > 0, 𝜏 is called the synchronization lag); (ii) hybrid
complete projective synchronization control (𝜏 = 0); and (iii)
anticipated hybrid projective synchronization control (𝜏 <
0, −𝜏 > 0 is called the synchronization anticipation).

We remark that the above-mentioned types of synchro-
nization are special cases of our definition. Table 1 illustrates
these types of synchronization.

In order to show the results of LACHPS of two nonlinear
systems, we choose the chaotic Colpitts oscillators as an
example.

This paper is organized as follows. In Section 2, we show
the general scheme description and theorem. In Sections 3
and 4, the Colpitts oscillator as a example is shown via appli-
cations of the LACHPS control method and cascade method.
Andnumerical simulations are used to show the effectiveness.
Finally, conclusions are drawn.

2. The Extended Control Method and
the Main Results

In this section, the extended hybrid projective control meth-
od is designed to achieve synchronization control based on
[42–49] method. Consider the master system in the form of

�̇� (𝑡) = Φ𝑥 (𝑡) + 𝐹 (𝑥 (𝑡) , 𝑡) , (1)
where 𝑥(𝑡) ∈ 𝑅𝑛, Φ is an 𝑚 × 𝑚 constant matrix, and 𝐹 :
𝑅
𝑛
→ 𝑅

𝑛 is a nonlinear function. Assume that the slave
system coupled with (1) is as follows:

̇𝑦 (𝑡) = Φ𝑦 (𝑡) + 𝐺 (𝑦 (𝑡) , 𝑡) + 𝑈, (2)

where 𝑦(𝑡) ∈ 𝑅𝑛, and𝑈 is a controller to be determined later.
Denote 𝑒

𝑖
= 𝛿
𝑖
𝑥
𝑖
(𝑡) − 𝜖

𝑖
𝑦
𝑖
(𝑡 − 𝜏)(𝑖 = 1, 2, . . . , 𝑛) and 𝛿

𝑖
(𝜖
𝑖
) =

constants or a scaling function matrix. If lim
𝑡→∞

‖𝑒‖ = 0, 𝑒 =
(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
), these two chaotic systems can be controlled via

the LACHPS.

Proposition 2. When the matrices 𝑀 = diag(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑛
)

and 𝑁 = diag(𝜖
1
, 𝜖
2
, . . . , 𝜖

𝑛
) are two invertible diagonal func-

tion matrices; lag, anticipated, and complete hybrid projective
synchronization between the two systems (1) and (2)will occur,
if the following conditions are satisfied:

(i)

𝑈 = 𝑁
−1
(𝑔𝑥 (𝑡) − ℎ𝑦 (𝑡 − 𝜏)) + 𝑁

−1
𝑀𝐹(𝑥 (𝑡) , 𝑡)

− 𝐺 (𝑦 (t − 𝜏) , 𝑡) + 𝑁−1𝐾[𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏)] ,
(3)

where 𝑔 = diag( ̇𝛿
1
,
̇
𝛿
2
, . . . ,

̇
𝛿
𝑛
), ℎ = diag( ̇𝜖

1
, ̇𝜖
2
, . . . , ̇𝜖

𝑛
)

and 𝐾 ∈ 𝑅𝑛×𝑛;
(ii) the real parts of all the eigenvalues of (Φ + 𝐾) are

negative.

Proof. According to 𝑒 = 𝑀𝑥(𝑡) − 𝑁𝑦(𝑡 − 𝜏) in definition of
LACHPS, one can get

̇𝑒 (𝑡) = �̇�𝑥 (𝑡) + 𝑀�̇� (𝑡) − �̇�𝑦 (𝑡 − 𝜏) − 𝑁 ̇𝑦 (𝑡 − 𝜏)

= 𝑔𝑥 (𝑡) + 𝑀 [Φ𝑥 (𝑡) + 𝐹 (𝑥 (𝑡) , 𝑡)] − ℎ𝑦 (𝑡 − 𝜏)

− 𝑁 (Φ𝑦 (𝑡 − 𝜏) + 𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡) + 𝑈)

= Φ (𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏)) + 𝑔𝑥 (𝑡) + 𝑀𝐹 (𝑥 (𝑡) , 𝑡)

− ℎ𝑦 (𝑡 − 𝜏) − 𝑁𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡)

− 𝑁 [𝑁
−1
(𝑔𝑥 (𝑡) − ℎ𝑦 (𝑡 − 𝜏)) + 𝑁

−1
𝑀𝐹(𝑥 (𝑡) , 𝑡)

− 𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡)

+𝑁
−1
𝐾(𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏))]

= (Φ + 𝐾) 𝑒 (𝑡) .

(4)

We solve the above equation ̇𝑒(𝑡) = (Φ + 𝐾)𝑒(𝑡), and

‖𝑒 (𝑡)‖ =






𝑒
(Φ+𝐾)𝑡

𝑒 (0)






. (5)

Because the real parts of all the eigenvalues of (Φ + 𝐾) are
negative, ‖𝑒(𝑡)‖ → 0 if 𝑡 → 0. Namely, lim

𝑡→0
‖𝑒(𝑡)‖ = 0.
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For a feasible control, the feedback 𝐾 must be selected such
that all the eigenvalues of (Φ + 𝐾), if any, have negative real
parts. Thus, if the matrix (Φ + 𝐾) is in full rank, the system
̇𝑒 is asymptotically stable at the origin, which implies that (1)
and (2) are in the state of LACHPS control.

Proposition 3. Let a constant matrix𝑀 and a diagonal func-
tion matrix 𝑁 = diag(𝜖

1
, 𝜖
2
, . . . , 𝜖

𝑛
); lag, anticipated, and

complete hybrid projective synchronization between the two
systems (1) and (2) will occur, if the following conditions are
satisfied:

(i)

𝑈 = −𝑁
−1
ℎ𝑦 (𝑡 − 𝜏) + 𝑁

−1
𝑀𝐹(𝑥 (𝑡) , 𝑡)

−𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡) − 𝑁
−1
𝐾[𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏)] ,

(6)

where 𝑀 = diag(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑛
), ℎ = diag( ̇𝜖

1
, ̇𝜖
2
, . . . ,

̇𝜖
𝑛
), and 𝐾 ∈ 𝑅𝑛×𝑛;

(ii) the real parts of all the eigenvalues of (Φ + 𝐾) are
negative.

Similar to the way of Theorem 5, the proof of
Proposition 3 is straightforward in Appendix.

Proposition 4. Let a diagonal function matrix𝑀 = diag(𝛿
1
,

𝛿
2
, . . . , 𝛿

𝑛
) and a constant matrix 𝑁; the extended hybrid

projective synchronization control between the two systems (1)
and (2) will occur, if the following conditions are satisfied:

(i)

𝑈 = −𝑁
−1
𝑔𝑥 (𝑡) + 𝑁

−1
𝑀𝐹(𝑥 (𝑡) , 𝑡)

−𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡) − 𝑁
−1
𝐾[𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏)] ,

(7)

where 𝑔 = diag( ̇𝛿
1
,
̇
𝛿
2
, . . . ,

̇
𝛿
𝑛
), ℎ = diag(𝜖

1
, 𝜖
2
, . . . , 𝜖

𝑛
),

and 𝐾 ∈ 𝑅𝑛×𝑛;
(ii) The real parts of all the eigenvalues of (Φ + 𝐾) are

negative.

Similar to the way of the Proposition 2, the proof of
Proposition 4 is straightforward in Appendix.

In order to choose a suitable control law 𝑈 or a vector
function 𝐾, and ̇𝑒(𝑡) = (Φ + 𝐾)𝑒(𝑡) is asymptotically stable,
we give the following theorem such that systems (1) and (2)
are in the state of LACHPS control.

Theorem 5. If the conditions are satisfied 𝑃(Φ + 𝐾) + (Φ +
𝐾)
𝐻
𝑃 = −𝑄, lag, anticipated, and complete hybrid projective

synchronization between the two systems (1) and (2) can be
achieved, where 𝑃, 𝑄 are real symmetric positive definite
matrix,𝐾 ∈ 𝑅𝑛×𝑛,𝐻 stands for conjugate transpose of amatrix.

Proof. According to 𝑒 = 𝑀𝑥(𝑡) − 𝑁𝑦(𝑡 − 𝜏) in definition of
LACHPS, one can get

̇𝑒 (𝑡) = (Φ + 𝐾) 𝑒 (𝑡) . (8)

If 𝜆 is one of the eigenvalues of matrix Φ + 𝐾 and the
corresponding nonzero eigenvector is 𝛽,

(Φ + 𝐾) 𝛽 = 𝜆𝛽. (9)

Multiplying the above equation left by 𝛽𝐻𝑃, we obtain

𝛽
𝐻
𝑃 (Φ + 𝐾) 𝛽 = 𝛽

𝐻
𝑃𝜆𝛽. (10)

Similarly, we also can derive that

[𝛽
𝐻
(Φ + 𝐾)

𝐻
] 𝑃𝛽 = 𝜆𝛽

𝐻
𝑃𝛽. (11)

From the above two equations, we can obtain

𝜆 + 𝜆 =

𝛽
𝐻
[𝑃 (Φ + 𝐾) + (Φ + 𝐾)

𝐻
𝑃] 𝛽

𝛽
𝐻
𝑃𝛽

. (12)

Since 𝛽𝐻[𝑃(Φ + 𝐾) + (Φ + 𝐾)𝐻𝑃]𝛽 = −𝑄, and 𝑃 and 𝑄 are
real symmetric positive definite matrix,

𝛽
𝐻
𝑃𝛽 > 0, 𝛽

𝐻
𝑄𝛽 > 0,

𝜆 + 𝜆 = −

𝛽
𝐻
𝑄𝛽

𝛽
𝐻
𝑃𝛽

< 0.

(13)

According to the stability theory, the system ̇𝑒 is asymptoti-
cally stable at the origin.

Remark 6. If we rewrite (2) as
̇𝑦 (𝑡) = 𝜃𝑦 (𝑡) + 𝐺 (𝑦 (𝑡) , 𝑡) + 𝑈, (14)

we can obtain the following results.

(1) Let two invertible diagonal function matrix 𝑀 =

diag(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑛
) and 𝑁 = diag(𝜖

1
, 𝜖
2
, . . . , 𝜖

𝑛
); lag,

anticipated, and complete hybrid projective synchro-
nization between the two systems (1) and (2) will
occur, if the following conditions are satisfied:

(i)

𝑈 = 𝑁
−1
(𝑔𝑥 (𝑡) − ℎ𝑦 (𝑡 − 𝜏)) + 𝑁

−1
𝑀𝐹(𝑥 (𝑡) , 𝑡)

− 𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡) + (𝜙 + 𝐾) 𝑦 (𝑡 − 𝜏)

− 𝑁
−1
(𝜃 + 𝐾)𝑀𝑥 (𝑡) ,

(15)

where 𝑔 = diag( ̇𝛿
1
,
̇
𝛿
2
, . . . ,

̇
𝛿
𝑛
), ℎ = diag( ̇𝜖

1
,

̇𝜖
2
, . . . , ̇𝜖

𝑛
), 𝜃 ∈ 𝑅𝑛×𝑛, and𝐾 ∈ 𝑅𝑛×𝑛.

(2) Let a constant matrix 𝑀 and a diagonal function
matrix 𝑁 = diag(𝜖

1
, 𝜖
2
, . . . , 𝜖

𝑛
); lag, anticipated, and

complete hybrid projective synchronization between
the two systems (1) and (2) will occur, if the following
conditions are satisfied:

(ii)

𝑈 = 𝑁
−1
[𝑀𝐹 (𝑥 (𝑡) , 𝑡) − ℎ𝑦 (𝑡 − 𝜏)] − 𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡)

+ 𝑁
−1
(𝜃 + 𝐾) [𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏)] ,

(16)

where 𝑀 = diag(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑛
), ℎ = diag( ̇𝜖

1
,

̇𝜖
2
, . . . , ̇𝜖

𝑛
), 𝜃 ∈ 𝑅𝑛×𝑛, and𝐾 ∈ 𝑅𝑛×𝑛.

(3) Let a diagonal function matrix𝑀 = diag(𝛿
1
, 𝛿
2
, . . . ,

𝛿
𝑛
) and a constant matrix 𝑁; lag, anticipated, and

complete hybrid projective synchronization between
the two systems (1) and (2) will occur, if the following
conditions are satisfied:
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(iii)

𝑈 = 𝑁
−1
𝑀𝐹(𝑥 (𝑡) , 𝑡) + 𝑁

−1
𝑔𝑥 (𝑡) − 𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡)

− 𝑁
−1
(𝜃 + 𝐾)𝑀𝑥 (𝑡) + (𝜃 + 𝐾) 𝑦 (𝑡 − 𝜏) ,

(17)

where 𝑔 = diag( ̇𝛿
1
,
̇
𝛿
2
, . . . ,

̇
𝛿
𝑛
), 𝜃 ∈ 𝑅𝑛×𝑛, and

𝐾 ∈ 𝑅
𝑛×𝑛.

(iv) The real parts of all the eigenvalues of (𝜙+𝜃+𝐾)
are negative with Cases 1–3.

3. Applications of the LACHPS
Control Method

Now, we introduce the following nonlinear system:

�̇� (𝑡) = 𝑎𝑧 (𝑡) − 𝑐




𝑦 (𝑡)





+ 𝑑,

̇𝑦 (𝑡) = 𝑎𝑧 (𝑡) ,

�̇� (𝑡) = −

𝑥 (𝑡)

2𝑎

−

𝑦 (𝑡)

2𝑎

− 𝑏𝑧 (𝑡) ,

(18)

where 𝑎, 𝑏, 𝑐, and 𝑑 are real constants, if 𝑎 = −2, 𝑏 = 0.4,
𝑐 = 1.62, and 𝑑 = 3, the simulation results of system (18)
with the initial conditions (0, 0, 0). System (18) has chaotic
attractor as shown in Figures 1 and 2. System (18) temporal
evolution of the state variables is shown in Figure 3. For more
detailed dynamical properties of system (2), the reader should
refer to [50].

In the following, we rewrite the chaotic system (18) as a
master system:

�̇�
𝑚
(𝑡) = 𝑎𝑧

𝑚
(𝑡) − 𝑐





𝑦
𝑚
(𝑡)




+ 𝑑,

̇𝑦
𝑚
(𝑡) = 𝑎𝑧

𝑚
(𝑡) ,

�̇�
𝑚
(𝑡) = −

𝑥
𝑚
(𝑡)

2𝑎

−

𝑦
𝑚
(𝑡)

2𝑎

− 𝑏𝑧
𝑚
(𝑡)

(19)

and the system related to (20), given by

�̇�
𝑠
(𝑡) = 𝑎𝑧

𝑠
(𝑡) − 𝑐





𝑦
𝑠
(𝑡)




+ 𝑑 + 𝑢

1
,

̇𝑦
𝑠
(𝑡) = 𝑎𝑧

𝑠
(𝑡) + 𝑢

2
,

�̇�
𝑠
(𝑡) = −

𝑥
𝑠
(𝑡)

2𝑎

−

𝑦
𝑠
(𝑡)

2𝑎

− 𝑏𝑧
𝑠
(𝑡) + 𝑢

3

(20)

as a slave system, where the subscripts “𝑚” and “𝑠” stand for
themaster system and slave system, respectively. Let the error
state be

𝑒 (𝑡) = (𝑒
1
, 𝑒
2
, 𝑒
3
)
𝑇

= [𝛿
1
𝑥
𝑚
(𝑡) − 𝜖

1
𝑥
𝑠
(𝑡 − 𝜏) ,

𝛿
2
𝑦
𝑚
(𝑡) − 𝜖

2
𝑦
𝑠
(𝑡 − 𝜏) ,

𝛿
3
𝑧
𝑚
(𝑡) − 𝜖

3
𝑧
𝑠
(𝑡 − 𝜏)]

𝑇

.

(21)

Then from (18) and (19), we obtain the error system

̇𝑒
1
= 𝛿
1
[𝑎𝑧
𝑚
(𝑡) − 𝑐





𝑦
𝑚
(𝑡)




+ 𝑑]

− 𝜖
1
[𝑎𝑧
𝑠
(𝑡 − 𝜏) − 𝑐





𝑦
𝑠
(𝑡 − 𝜏)





+ 𝑑 + 𝑢

1
] ,

̇𝑒
2
= 𝛿
2
𝑎𝑧
𝑚
(𝑡) − 𝜖

2
𝑎𝑧
𝑠
(𝑡 − 𝜏) − 𝜖

2
𝑢
2
,

̇𝑒
3
= 𝛿
3
[−

𝑥
𝑚
(𝑡)

2𝑎

−

𝑦
𝑚
(𝑡)

2𝑎

− 𝑏𝑧
𝑚
(𝑡)]

− 𝜖
3
[−

𝑥
𝑠
(𝑡 − 𝜏)

2𝑎

−

𝑦
𝑠
(𝑡 − 𝜏)

2𝑎

− 𝑏𝑧
𝑠
(𝑡 − 𝜏) + 𝑢

3
] .

(22)

To the LACHPS synchronization control between sys-
tems (18) and (19), we have the following theorem.

Proposition 7. For the chaotic Colpitts oscillator (18), if one
of the following feedback controllers 𝑢

𝑖
(𝑖 = 1, 2, 3) is chosen for

the slave system (19)

𝑢
1
= (𝛿
1
𝑎𝑧
𝑚
(𝑡) − 𝛿

1
𝑐




𝑦
𝑚
(𝑡)




+ 𝛿
1
𝑑 − 𝜖
1
𝑎𝑧
𝑠
(𝑡 − 𝜏)

+ 𝜖
1
𝑐




𝑦
𝑠
(𝑡 − 𝜏)





− 𝜖
1
𝑑 − 𝑎𝑒

3
) × 𝜖
−1

1
,

𝑢
2
=

𝛿
2
𝑎𝑧
𝑚
(𝑡) − 𝜖

2
𝑎𝑧
𝑠
(𝑡 − 𝜏) − 𝑎𝑒

3
+ 𝑒
2

𝜖
2

,

𝑢
3
= (−𝛿

3
𝑥
𝑚
(𝑡) − 𝛿

3
𝑦
𝑚
(𝑡) − 2𝛿

3
𝑏𝑧
𝑚
(𝑡) 𝑎

+ 𝜖
3
𝑥
𝑠
(𝑡 − 𝜏) + 𝜖

3
𝑦
𝑠
(𝑡 − 𝜏)) × (2𝜖

3
𝑎)
−1

+

2𝜖
3
𝑏𝑧
𝑠
(𝑡 − 𝜏) 𝑎 + 𝑒

1
+ 𝑒
2
+ 2𝑏𝑒
3
𝑎

2𝜖
3
𝑎

,

(23)

𝑢
1
=

(𝜖
3
𝑎 − 𝜖
1
𝑎) 𝑧
𝑠
(𝑡 − 𝜏)

𝜖
1

+

(𝜖
1
𝑐 − 𝑐𝜖

2
)




𝑦
𝑠
(𝑡 − 𝜏)






𝜖
1

+

(𝛿
1
𝑎 − 𝑎𝛿

3
) 𝑧
𝑚
(𝑡)

𝜖
1

+

(𝑐𝛿
2
− 𝛿
1
𝑐)




𝑦
𝑚
(𝑡)





𝜖
1

+

−𝜖
1
𝑑 + 𝛿
1
𝑑

𝜖
1

,

𝑢
2
=

(−𝜖
2
𝑎 + 𝑎𝜖

3
) 𝑧
𝑠
(𝑡 − 𝜏)

𝜖
2

+

(−𝑎𝛿
3
+ 𝛿
2
𝑎) 𝑧
𝑚
(𝑡)

𝜖
2

+ ( − 𝛿
1
𝑥
𝑚
(𝑡) − 𝛿

2





𝑦
𝑚
(𝑡)





+ 𝜖
2





𝑦
𝑠
(𝑡 − 𝜏)





+ 𝜖
1
𝑥
𝑠
(𝑡 − 𝜏)) × 𝜖

−1

2
,

𝑢
3
=

(−2𝜖
3
𝑎 + 2𝜖

3
𝑏𝑎) 𝑧
𝑠
(𝑡 − 𝜏)

2𝜖
3
𝑎

+

(𝜖
3
− 2𝜖
2
𝑎)




𝑦
𝑠
(𝑡 − 𝜏)






2𝜖
3
𝑎

+

(𝜖
3
− 2𝜖
1
𝑎) 𝑥
𝑠
(𝑡 − 𝜏)

2𝜖
3
𝑎

+

(−2𝛿
3
𝑏𝑎 + 2𝛿

3
𝑎) 𝑧
𝑚
(𝑡)

2𝜖
3
𝑎

+

(−𝛿
3
+ 2𝛿
2
𝑎)




y
𝑚
(𝑡)





2𝜖
3
𝑎

+

(2𝛿
1
𝑎 − 𝛿
3
) 𝑥
𝑚
(𝑡)

2𝜖
3
𝑎

,

(24)

where 𝑎 < 0, 𝑏 > 0, 𝑐 > 0, 𝑑 > 0, and 𝜖
𝑖
and 𝛿

𝑖
are real, then

the zero solution of the error system (21) is globally stable, and
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Figure 1: Chaotic attractors for the Colpitts system with temporal evolution in different 3D spaces.
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Figure 2: The phase figure for the Colpitts system with temporal evolution in different plane.
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Figure 3: The temporal evolution of the state variables.

thus (i) globally lag synchronization for 𝜏 < 0, (ii) anticipated
synchronization for 𝜏 > 0, and (iii) complete synchronization
for 𝜏 = 0 occur between the master system (18) and the slave
system (19).

Proof. Similar to the way of Propositions 2–4, the proof of
Proposition 7 is straightforward and we omit the detail steps.
We give another proof method via Lyapunov function in the
following.

Consider the controller (22) and choose the following
quadratic form, positive definite of Lyapunov function:

𝑉 (𝑒
1
, 𝑒
2
, 𝑒
3
) =

1

2

(𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
) , (25)

which implies that𝑃 = diag(1/2, 1/2, 1/2) and thus𝜆min(𝑃) =
1/2, 𝜆max(𝑃) = 1/2. Differentiating 𝑉(𝑡) along the trajectory
of system (21) yields
𝑑𝑉 (𝑡)

𝑑𝑡








(21)

= 𝑒
1
̇𝑒
1
+ 𝑒
2
̇𝑒
2
+ 𝑒
3
̇𝑒
3

= 𝑒
1
[𝛿
1
(𝑎𝑧
𝑚
(𝑡) − 𝑐





𝑦
𝑚
(𝑡)




+ 𝑑)

− 𝜖
1
(𝑎𝑧
𝑠
(𝑡 − 𝜏) − 𝑐





𝑦
𝑠
(𝑡 − 𝜏)





+ 𝑑 + 𝑢

1
)]

+ 𝑒
2
[𝛿
2
𝑎𝑧
𝑚
(𝑡) − 𝜖

2
𝑎𝑧
𝑠
(𝑡 − 𝜏) − 𝑢

2
]

+ 𝑒
3
[𝛿
3
(−

𝑥
𝑚
(𝑡)

2𝑎

−

𝑦
𝑚
(𝑡)

2𝑎

− 𝑏𝑧
𝑚
(𝑡))]

− 𝑒
3
[𝜖
3
(−

𝑥
𝑠
(𝑡 − 𝜏)

2𝑎

−

𝑦
𝑠
(𝑡 − 𝜏)

2𝑎

−𝑏𝑧
𝑠
(𝑡 − 𝜏) + 𝑢

3
)] .

(26)
We put 𝑢

1
, 𝑢
2
, and 𝑢

3
into (25) and then simplify and yield

𝑑𝑉 (𝑡)

𝑑𝑡








(21)

= 𝑎𝑒
1
𝑒
3
+ 𝑒
2
(𝑎𝑒
3
− 𝑒
2
)

+ 𝑒
3
(

−𝑒
1

2𝑎

−

−1

2𝑎

𝑒
2
− 𝑏𝑒
3
)

= −𝑒
2

2
− 𝑏𝑒
2

3
+ (𝑎 −

1

2𝑎

) 𝑒
1
𝑒
3
+ (𝑎 −

1

2𝑎

) 𝑒
2
𝑒
3

≤ (

𝑎

2

−

1

4𝑎

) 𝑒
2

1
+ (

𝑎

2

−

1

4𝑎

− 1) 𝑒
2

2

+ (𝑎 −

1

2𝑎

− 𝑏) 𝑒
2

3
,

(27)

where𝑄 = diag(𝑎/2−1/4𝑎, 𝑎/2−1/4𝑎−1, 𝑎−1/2𝑎−𝑏).Then
using Lemma 1 [20], we have the estimation

𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3

≤

𝜆max
𝜆min

[𝑒
2

1
(0) + 𝑒

2

2
(0) + 𝑒

2

3
(0)] 𝑒
−(𝜆min(𝑄)/𝜆max(𝑃))(𝑡−𝑡0)
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Figure 4: (a) The synchronized attractors in (𝑥, 𝑦, 𝑧) space and (b) the synchronized attractors with scaling factor in (𝑥, 𝑦, 𝑧) space, “ − −”
denotes for the master system, “ ⋅ ⋅ ⋅ ” denotes for the slave system synchronized.
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Figure 5: The orbits of error states: (a) 𝑒
1
= 𝛿
1
𝑥
𝑚
(𝑡) − 𝜖

1
𝑥
𝑠
(𝑡 − 𝜏), (b) 𝑒

2
= 𝛿
2
𝑦
𝑚
(𝑡) − 𝜖

2
𝑦
𝑠
(𝑡 − 𝜏), and (c) 𝑒

3
= 𝛿
3
𝑧
𝑚
(𝑡) − 𝜖

3
𝑧
𝑠
(𝑡 − 𝜏).

= [𝑒
2

1
(0) + 𝑒

2

2
(0) + 𝑒

2

3
(0)]

× 𝑒
−2(𝜆min(𝑎/2−1/4𝑎,𝑎/2−1/4𝑎−1,𝑎−1/2𝑎−𝑏))(𝑡−𝑡0)

.

(28)

Namely, if 𝑎/2 − 1/4𝑎 < 0, 𝑎/2 − 1/4𝑎 − 1 < 0, and 𝑎 − 1/2𝑎 −
𝑏 < 0, which implies that the conclusion is true. Similarly, for
the controllers (23), we can still use the method to obtain the
estimation.

Remark 8. (1)The nonlinear feedback controllers can be used
to simultaneously obtain (i) hybrid lag synchronization for
𝜏 > 0, (ii) hybrid anticipated synchronization for 𝜏 < 0, and
(iii) hybrid complete synchronization for 𝜏 = 0 between the
master system (19) and the slave system (20).

(2) Although the above-obtained feedback controllers are
nonlinear, they are simpler than those of the so-called natural
control controllers, which are derived by using with a simple
stable matrix 𝑀 and 𝑁 for the master system (19) and the
slave system (20).
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Figure 7: The orbits of error states: (a) 𝑒
1
= 𝛿
1
𝑥
𝑚
(𝑡) − 𝜖

1
𝑥
𝑠
(𝑡 − 𝜏), (b) 𝑒

2
= 𝛿
2
𝑦
𝑚
(𝑡) − 𝜖

2
𝑦
𝑠
(𝑡 − 𝜏), and (c) 𝑒

3
= 𝛿
3
𝑧
𝑚
(𝑡) − 𝜖

3
𝑧
𝑠
(𝑡 − 𝜏).
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Figure 8: The orbits of error states: (a) 𝑒
1
= 𝛿
1
𝑥
𝑚
(𝑡) − 𝜖

1
𝑥
𝑠
(𝑡 − 𝜏), (b) 𝑒

2
= 𝛿
2
𝑦
𝑚
(𝑡) − 𝜖

2
𝑦
𝑠
(𝑡 − 𝜏), and (c) 𝑒

3
= 𝛿
3
𝑧
𝑚
(𝑡) − 𝜖

3
𝑧
𝑠
(𝑡 − 𝜏).

In the following, we obtain the numerical simulations
results to prove the effective control. Numerical simulations
results are presented to demonstrate the effectiveness of
the proposed synchronization methods. The parameters are
chosen to be [𝑎, 𝑏, 𝑐, 𝑑] = [−2, 0.4, 1.62, 3] in all simulations
so that the chaotic system exhibits a chaotic behavior if no
control is applied. The initial value [𝑥

𝑚
(0), 𝑦
𝑚
(0), 𝑧

𝑚
(0)]

is taken as the random number [0, 0, 0] and [𝑥
𝑠
(0), 𝑦
𝑠
(0),

𝑧
𝑠
(0)] = [3, 4, 5]. The parameters [𝛿

1
, 𝛿
2
, 𝛿
3
, 𝜖
1
, 𝜖
2
, 𝜖
3
] = [2,

−2, 0.5, 2, 1, 3].

Case 1. Hybrid complete projective control: in the case 𝜏 =
0, without loss of generality, the initial values of the error
dynamical system (21) are 𝑒

1
(0) = 𝛿

1
𝑥
𝑚
(0) − 𝜖

1
𝑥
𝑠
(0) = −6,

𝑒
2
(0) = 𝛿

2
𝑦
𝑚
(0)−𝜖

2
𝑦
𝑠
(0) = 8, and 𝑒

3
(0) = 𝛿

3
𝑧
𝑚
(0)−𝜖

3
𝑧
𝑠
(0) =

−2.5. The dynamics of hybrid complete control errors for the
master system (19) and the slave system (20) is displayed in
Figures 4, 5, and 6. Figure 4 shows the chaotic attractors of
themaster and slave systemswith different initial values in the
same coordinate. Figures 5(a)–5(c) show the evolutions of the
error functions 𝑒

1
, 𝑒
2
, and 𝑒

3
. Figures 6(a)–6(c) the solutions

of the master and slave systems with control law.

Case 2. Hybrid lag projective control: in the case 𝜏 > 0, with-
out loss of generality, we set 𝜏 = 0.3. Thus the initial values
of the error dynamical system (21) are 𝑒

1
(0) = 𝛿

1
𝑥
𝑚
(0) −

𝜖
1
𝑥
𝑠
(−0.3) = 1.784475527, 𝑒

2
(0) = 𝛿

2
𝑦
𝑚
(0) − 𝜖

2
𝑦
𝑠
(−0.3) =

0.01384929027, and 𝑒
3
(0) = 𝛿

3
𝑧
𝑚
(0) − 𝜖

3
𝑧
𝑠
(−0.3) =

0.01162129660. For simplification, we only give the dynamics
of the evolutions of hybrid lag control errors for the master
system (19) and the slave system (20) displayed in Figure 7.

Case 3. Hybrid anticipated projective control: in the case
𝜏 < 0, without loss of generality, we set 𝜏 = −0.3. Thus the
initial values of the error dynamical system (21) are 𝑒

1
(0) =

𝛿
1
𝑥
𝑚
(0) − 𝜖

1
𝑥
𝑠
(−0.3) = −1.785359335, 𝑒

2
(0) = 𝛿

2
𝑦
𝑚
(0) −

𝜖
2
𝑦
𝑠
(−0.3) = −0.01304389936, and 𝑒

3
(0) = 𝛿

3
𝑧
𝑚
(0) −

𝜖
3
𝑧
𝑠
(−0.3) = 0.01072905365. For simplification, we only give

the dynamics of the evolutions of hybrid lag control errors for
the master system (19) and the slave system (20) as displayed
in Figure 8.

4. Applications of the LACHPS Control
Method via Cascade Control Idea

In the section, based on the idea of cascade approach [42, 50,
51], we achieve the effectiveness control idea.

Firstly, we take the system (18) asmaster system.The slave
system is given by

�̇� (𝑡 − 𝜏) = 𝑎𝑧 (𝑡 − 𝜏) − 𝑐 |𝑄 (𝑡 − 𝜏)| + 𝑑 + 𝑢1
,

�̇� (𝑡 − 𝜏) = 𝑎𝑧 (𝑡 − 𝜏) + 𝑢
2
,

(29)
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Figure 9: (a) The synchronized attractors in (𝑥, 𝑦, 𝑧) space and the phase figure in the different space (b) (𝑥, 𝑦) space, (c) (𝑥, 𝑧) space, (d)
(𝑦, 𝑧) space “ − −” denotes for the master system, “ ⋅ ⋅ ⋅ ” denotes for the slave system synchronized.

where (𝑢
1
, 𝑢
2
)
𝑇 is external control functions that is to be

designed below.
Let the error states functions of systems (18) and (29) as

follows:

𝑒
1
= 𝑋 (𝑡 − 𝜏) − 𝜖

1
𝑥 (𝑡) , 𝑒

2
= 𝑄 (𝑡 − 𝜏) − 𝜖

2
𝑦 (𝑡) , (30)

where 𝜖
1
= 𝑎
11
𝑥(𝑡) + 𝑎

12
, 𝜖
2
= 𝑎
21
𝑦(𝑡) + 𝑎

22
, and 𝜏 is the time

lag or anticipated.The goal of the control is to find a controller
(𝑢
1
, 𝑢
2
)
𝑇 such that the states of the master system (18) and

the states of the slave system (29) are globally synchronized
asymptotically; that is,

lim
𝑡→∞





𝑋 (𝑡 − 𝜏) − 𝜖

1
𝑥 (𝑡)





= 0,

lim
𝑡→∞





𝑄 (𝑡 − 𝜏) − 𝜖

2
𝑦 (𝑡)





= 0.

(31)

Let us define the Lyapunov functions as

𝑉
1
=

1

2

(𝑒
2

1
+ 𝑒
2

2
) . (32)

If the Lyapunov function (32) satisfies the conditions

𝑉
1
> 0 if (𝑒

1
, 𝑒
2
) ̸= (0, 0) ,

𝑉
1
= 0 if (𝑒

1
, 𝑒
2
) = (0, 0) ,

�̇�
1
< 0 if (𝑒

1
, 𝑒
2
) ̸= (0, 0) ,

�̇�
1
= 0 if (𝑒

1
, 𝑒
2
) = (0, 0) .

(33)

then 𝑒
𝑖
(𝑖 = 1, 2) will asymptotically tend to zero and

lim
𝑡→∞





𝑋 (𝑡 − 𝜏) − 𝜖

1
𝑥 (𝑡)





= 0,

lim
𝑡→∞





𝑄 (𝑡 − 𝜏) − 𝜖

2
𝑦 (𝑡)





= 0.

(34)

With the aid of Maple and we omit the details by the aid of
Maple soft, we choose

𝑢
1
= −𝑒
1
(𝑡) − 𝑎𝑧 (𝑡 − 𝜏) + 𝑐 |𝑄 (𝑡 − 𝜏)| − 𝑑

+ 2𝑎
11
𝑥 (𝑡) 𝑎𝑧 (𝑡) − 2𝑎

11
𝑥 (𝑡) 𝑐





𝑦 (𝑡)





+ 2𝑎
11
𝑥 (𝑡) 𝑑

+ 𝑎
12
𝑎𝑧 (𝑡) − 𝑎

12
𝑐




𝑦 (𝑡)





+ 𝑎
12
𝑑 + 𝑘
1
,

𝑢
2
= −𝑒
2
(𝑡) − 𝑎𝑧 (𝑡 − 𝜏)

+ 2𝑎
21
𝑎𝑧 (𝑡) 𝑦 (𝑡) + 𝑎𝑧 (𝑡) 𝑎

22
+ 𝑘
2
;

(35)

then (18) and (29) will be satisfied. Next we take (29) as the
master system, and the slave one is as follows:

�̇� (𝑡 − 𝜏) = 𝑎𝑍 (𝑡 − 𝜏) + 𝑢
3
,
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Figure 10: The orbits of error states: (a) 𝑒
1
= 𝑋(𝑡 − 𝜏) − 𝜖

1
𝑥(𝑡), (b) 𝑒

3
= 𝑌(𝑡 − 𝜏) − 𝜖

3
𝑦(𝑡), and (c) 𝑒

4
= 𝑍(𝑡 − 𝜏) − 𝜖

4
𝑧(𝑡).

̇
𝑍 (𝑡 − 𝜏) = −

𝑥 (𝑡 − 𝜏)

2𝑎

−

𝑦 (𝑡 − 𝜏)

2𝑎

− 𝑏𝑧 (𝑡 − 𝜏) + 𝑢
4
,

(36)

where (𝑢
3
, 𝑢
4
)
𝑇 is a desired controller.

The relevant Lyapunov function can be chosen as

𝑉
2
=

1

2

(𝑒
2

3
+ 𝑒
2

4
) , (37)

where 𝑒
3
= 𝑌(𝑡−𝜏)−𝜖

3
𝑦(𝑡), 𝑒

4
= 𝑍(𝑡−𝜏)−𝜖

4
𝑧(𝑡), 𝜖

3
= 𝑎
31
𝑦(𝑡)+

𝑎
32
, 𝜖
4
= 𝑎
41
𝑧(𝑡) + 𝑎

42
, and 𝜏 is the time lag or anticipated. We

take 𝑢
3
, 𝑢
4
as

𝑢
3
= −𝑌 (𝑡 − 𝜏) + 𝑎

31
𝑦(𝑡)
2
+ 𝑦 (𝑡) 𝑎

32
− 𝑎𝑍 (𝑡 − 𝜏)

+ 2𝑎
31
𝑎𝑧 (𝑡) 𝑦 (𝑡) + 𝑎𝑧 (𝑡) 𝑎

32
+ 𝑘
3
,

𝑢
4
= −

1

2𝑎

[2𝑎𝑍 (𝑡 − 𝜏) − 2𝑎𝑎
41
𝑧(𝑡)
2

− 2𝑎𝑎
42
𝑧 (𝑡) − 𝑌 (𝑡 − 𝜏) + 𝑎

42
𝑥 (𝑡)

+ 𝑎
42
𝑦 (𝑡) + 2𝑎

42
𝑏𝑧 (𝑡) 𝑎 + 2𝑎

41
𝑧 (𝑡) 𝑦 (𝑡)

− 𝑋 (𝑡 − 𝜏) − 2𝑏𝑍 (𝑡 − 𝜏) 𝑎

+ 2𝑎
41
𝑧 (𝑡) 𝑥 (𝑡) + 4𝑎

41
𝑧(𝑡)
2
𝑏𝑎 − 2𝑘

4
𝑎] ,

(38)

which make 𝑒
3
and 𝑒

4
approach to zero when 𝑡 → +∞.

Therefor the LACHPS is achieved for the systems (29) and
(36) via cascade method.

For simplicity and illustration, the parameters 𝑘
1
= 2,

𝑘
2
= 3, 𝑘

3
= 4, 𝑘

4
= 2, we consider [𝑎

11
, 𝑎
12
, 𝑎
21
, 𝑎
21
, 𝑎
31
, 𝑎
32
,

𝑎
41
, 𝑎
42
] = [1, 0, 0, 3, 0, 2, 0, −5] and the initial values [𝑥(0),

𝑦(0), 𝑧(0), 𝑋(0), 𝑌(0), 𝑍(0), 𝑄(0)] = [0, 1, 1, 3, 1, 5, −5]. We
may only choose 𝜏 = 0; other cases are similar. Figure 9 shows
the LACHPS via cascade method for the system (18). And
Figures 10(a)–10(c) show the numeric simulations of the error
functions 𝑒

1
, 𝑒
3
, and 𝑒

4
.

5. Conclusion

In this paper, based on the stability theory and an active con-
trol technique, we investigate the lag, anticipated, and com-
plete hybrid projective synchronization control (LACHPS)
for nonlinear chaotic systems. A nonlinear controller has
been proposed to achieve lag, anticipated, and complete
projective synchronization of chaotic systems. The proposed
synchronization is simple and theoretically rigorous. Col-
pitts oscillators are used to illustrate the effectiveness of
the proposed synchronization scheme. It should be note
that lag synchronization control, anticipated synchronization
control, and complete synchronization control.Therefore, the
results of this paper are more applicable and representative.
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Appendix

Proof of Proposition 3. According to 𝑒 = 𝑀𝑥(𝑡)−𝑁𝑦(𝑡−𝜏) in
definition of LACHPS, one can get

̇𝑒 (𝑡) = 𝑀�̇� (𝑡) − �̇�𝑦 (𝑡 − 𝜏) − 𝑁 ̇𝑦 (𝑡 − 𝜏)

= 𝑀[𝜙𝑥 (𝑡) + 𝐹 (𝑥 (𝑡) , 𝑡)] − ℎ𝑦 (𝑡 − 𝜏)

− 𝑁 (𝜙𝑦 (𝑡 − 𝜏) + 𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡) + 𝑈)

= 𝜙 (𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏)) + 𝑀𝐹 (𝑥 (𝑡) , 𝑡)

− ℎ𝑦 (𝑡 − 𝜏) − 𝑁𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡)

− 𝑁 [−𝑁
−1
ℎ𝑦 (𝑡 − 𝜏)

+ 𝑁
−1
𝑀𝐹(𝑥 (𝑡) , 𝑡) − 𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡)

−𝑁
−1
𝐾(𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏))]

= (𝜙 + 𝐾) 𝑒 (𝑡) .

(A.1)

We solve the above equation ̇𝑒(𝑡) = (𝜙 + 𝐾)𝑒(𝑡), and

‖𝑒 (𝑡)‖ =






𝑒
(𝜙+𝐾)𝑡

𝑒 (0)






. (A.2)

Because the real parts of all the eigenvalues of (𝜙 + 𝐾) are
negative, ‖𝑒(𝑡)‖ → 0 if 𝑡 → 0. Namely, lim

𝑡→0
‖𝑒(𝑡)‖ = 0.

For a feasible control, the feedback 𝐾 must be selected such
that all the eigenvalues of (𝜙 + 𝐾), if any, have negative real
parts.Thus, if the matrix (𝜙+𝐾) is in full rank, the system ̇𝑒 is
asymptotically stable at the origin, which implies that (1) and
(2) are in the state of LACHPS control.

Proof of Proposition 4. From 𝑒 = 𝑀𝑥(𝑡) − 𝑁𝑦(𝑡 − 𝜏) in
definition of LACHPS, one can get

̇𝑒 (𝑡) = �̇�𝑥 (𝑡) + 𝑀�̇� (𝑡) − 𝑁 ̇𝑦 (𝑡 − 𝜏)

= 𝑀 [𝜙𝑥 (𝑡) + 𝐹 (𝑥 (𝑡) , 𝑡)] + 𝑔𝑥 (𝑡)

− 𝑁 (𝜙𝑦 (𝑡 − 𝜏) + 𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡) + 𝑈)

= 𝜙 (𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏))

+ 𝑀𝐹 (𝑥 (𝑡) , 𝑡) + 𝑔𝑥 (𝑡) − 𝑁𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡)

− 𝑁 [ − 𝑁
−1
𝑔𝑥 (𝑡) + 𝑁

−1
𝑀𝐹(𝑥 (𝑡) , 𝑡)

− 𝐺 (𝑦 (𝑡 − 𝜏) , 𝑡)

−𝑁
−1
𝐾[𝑀𝑥 (𝑡) − 𝑁𝑦 (𝑡 − 𝜏)]]

= (𝜙 + 𝐾) 𝑒 (𝑡) .

(A.3)

We solve the above equation ̇𝑒(𝑡) = (𝜙 + 𝐾)𝑒(𝑡), and

‖𝑒 (𝑡)‖ =






𝑒
(𝜙+𝐾)𝑡

𝑒 (0)






. (A.4)

Because the real parts of all the eigenvalues of (𝜙 + 𝐾) are
negative, ‖𝑒(𝑡)‖ → 0 if 𝑡 → 0. Namely, lim

𝑡→0
‖𝑒(𝑡)‖ = 0.

For a feasible control, the feedback 𝐾 must be selected
such that all the eigenvalues of (𝜙 + 𝐾), if any, have negative
real parts.Thus, if thematrix (𝜙+𝐾) is in full rank, the system
̇𝑒 is asymptotically stable at the origin, which implies that (1)
and (2) are in the state of LACHPS control.

In this case, the active control method [22] is usually
adopted to obtain the gain matrix 𝐾 for any specified
eigenvalues of (𝜙 + 𝐾).
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Lü systems,” International Journal of Bifurcation and Chaos in
Applied Sciences and Engineering, vol. 17, no. 12, pp. 4295–4308,
2007.

[34] G. M. Mahmoud, E. E. Mahmoud, andM. E. Ahmed, “A hyper-
chaotic complex Chen system and its dynamics,” International
Journal of Applied Mathematics & Statistics, vol. 12, no. D07, pp.
90–100, 2007.

[35] G. M. Mahmoud, M. E. Ahmed, and E. E. Mahmoud, “Analysis
of hyperchaotic complex Lorenz systems,” International Journal
of Modern Physics C, vol. 19, no. 10, pp. 1477–1494, 2008.

[36] G. M.Mahmoud, M. A. Al-Kashif, and A. A. Farghaly, “Chaotic
and hyperchaotic attractors of a complex nonlinear system,”
Journal of Physics A, vol. 41, no. 5, Article ID 055104, 2008.

[37] G. M. Mahmoud, S. A. Aly, and M. A. AL-Kashif, “Dynamical
properties and chaos synchronization of a new chaotic complex
nonlinear system,” Nonlinear Dynamics, vol. 51, no. 1-2, pp. 171–
181, 2008.

[38] G. M. Mahmoud, T. Bountis, G. M. AbdEl-Latif, and E. E.
Mahmoud, “Chaos synchronization of two different chaotic
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