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A class of interval Cohen-Grossberg neural networks with time-varying delays and infinite distributed delays is investigated.
By employing H-matrix and M-matrix theory, homeomorphism techniques, Lyapunov functional method, and linear matrix
inequality approach, sufficient conditions are established for the existence, uniqueness, and global robust exponential stability of
the equilibrium point and the periodic solution to the neural networks. Our results improve some previously published ones.
Finally, numerical examples are given to illustrate the feasibility of the theoretical results and further to exhibit that there is a
characteristic sequence of bifurcations leading to a chaotic dynamics, which implies that the system admits rich and complex
dynamics.

1. Introduction

In the past two decades, neural networks have received a great
deal of attention due to the extensive applications in many
areas such as signal processing, associative memory, pattern
recognition, and parallel computation and optimization. It
should be pointed out that the successful applications heavily
rely on the dynamic behaviors of neural networks. Stability,
as one of the most important properties of neural networks,
is crucially required when designing neural networks.

In electronic implementation of neural networks, there
exist inevitably some uncertainties caused by the existence
of modeling errors, external disturbance, and parameter
fluctuation, whichwould lead to complex dynamic behaviors.
Thus, it is important to investigate the robustness of neural
networks against such uncertainties and deviations (see [1–
8] and references therein). In [4–6], employing homeomor-
phism techniques, Lyapunov method, 𝐻-matrix and 𝑀-
matrix theory, and linear matrix inequality (LMI) approach,
Shao et al. established some sufficient conditions for the
existence, uniqueness, and global robust exponential stability

of the equilibrium point for the following interval Hopfield
neural networks:
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𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝜏
𝑗
(𝑡) is time-varying delay which is variable with time

due to the finite switching speed of amplifiers. Recently, the
stability of neural networks with time-varying delays has
been extensively investigated, and various sufficient condi-
tions have been established for the global asymptotic and
exponential stability in [9–13]. Generally, neural networks
usually have a spatial extent due to the presence of amultitude
of parallel pathways with a variety of axon sizes and lengths.
It is desired to model them by introducing continuously
distributed delays over a certain duration of time such that
the distant past has less influence compared to the recent
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behavior of the state (see [14–16]). However, the distributed
delays were not taken into account in system (1).

As an important neural networks, Cohen-Grossberg neu-
ral networks (CGNNs) include Hopfield neural networks,
cellular neural networks, and other neural networks. CGNNs
have aroused a tremendous surge of investigation in these
years.Whereas, for the interval CGNNs, fewer robust stability
results have been reported in contrast to the results on
Hopfield neural networks [17–19]. On the other hand, the
research of neural networks involves not only the dynamic
analysis of equilibrium point but also that of the periodic
oscillatory solution, which is very important in learning
theory due to the fact that learning usually requires repetition
[20, 21]. Some important results for periodic solutions of
neural networks have been obtained in [7, 22–27] and
references therein. Motivated by the works of [4–6] and the
discussions above, the objective of this paper is to investigate
the global robust exponential stability and periodic solutions
of the following CGNNs with time-varying and distributed
delays:
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−
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]

,

𝑖 = 1, 2, . . . , 𝑛,

(2)

or equivalently

�̇� (𝑡) = − �̃� (𝑢 (𝑡)) [𝛽 (𝑢 (𝑡)) − 𝐴𝑓 (𝑢 (𝑡)) − 𝐵𝑓 (𝑢 (𝑡 − 𝜏 (𝑡)))
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𝐾 (𝑡 − 𝑠) 𝑓 (𝑢 (𝑠)) d𝑠 + 𝐽 (𝑡)] ,

(3)

where

𝑢 (𝑡) = (𝑢1 (𝑡) , . . . , 𝑢𝑛 (𝑡))
𝑇
,

�̃� (𝑢 (𝑡)) = diag (�̃�
1
(𝑢
1 (𝑡)) , . . . , �̃�𝑛 (𝑢𝑛 (𝑡))) ,

𝛽 (𝑢 (𝑡)) = (𝛽1 (𝑢1 (𝑡)) , . . . , 𝛽𝑛 (𝑢𝑛 (𝑡)))
𝑇

,

𝑓 (𝑢 (𝑡)) = (𝑓1 (𝑢1 (𝑡)) , . . . , 𝑓𝑛 (𝑢𝑛 (𝑡)))
𝑇
,
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𝑇
,
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,

(4)

where 𝑢
𝑖
(𝑡) denotes the state of the 𝑖th neuron at time

𝑡, �̃�
𝑖
(𝑢
𝑖
(𝑡)) denotes a positive, continuous, and bounded

amplification function; that is, 0 < 𝛼
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denotes the activation function, 𝜏
𝑗
(𝑡) denotes the time-

varying delay associated with the 𝑗th neuron, satisfying 0 ≤
𝜏
𝑗
(𝑡) ≤ 𝜏 and 0 ≤ ̇𝜏

𝑗
(𝑡) ≤ 𝛿 < 1, 𝑘

𝑗
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the delay kernel function, which is a real-valued continuous
function, 𝐴 is the connection weight matrix, 𝐵 is the time-
varying delayed connection weight matrix, 𝐶 is the infinite
distributed delayed connection weight matrix, 𝐽

𝑖
(𝑡) is the

external input bias. The coefficients 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, and 𝑐
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where for 𝑋 = 𝐴, 𝐵, 𝐶, 𝑋 = (𝑥
𝑖𝑗
)
𝑛×𝑛
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. Denote
𝐵
∗
= (𝐵+𝐵)/2 and𝐵

∗
= (𝐵−𝐵)/2. Clearly,𝐵

∗
is a nonnegative
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∗
, 𝐵
∗
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∗
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Consequently, 𝐵 = 𝐵∗ + Δ𝐵, Δ𝐵 ∈ [−𝐵
∗
, 𝐵
∗
]. 𝐶∗ and 𝐶

∗
are

defined correspondingly.
Throughout this paper, we make the following assump-

tions.

(H1) For the behaved functions 𝛽
𝑖
(⋅) (𝑖 = 1, 2, . . . , 𝑛), there

exist constants 𝛾
𝑖
> 0 such that

𝛽
𝑖 (𝑥) − 𝛽𝑖 (𝑦)

𝑥 − 𝑦
≥ 𝛾
𝑖
> 0, ∀𝑥, 𝑦 ∈ R, 𝑥 ̸= 𝑦. (6)

(H2) For the activation functions 𝑓
𝑖
(⋅) (𝑖 = 1, 2, . . . , 𝑛),

there exist constants 𝑙
𝑖
> 0 such that

0 ≤
𝑓
𝑖 (𝑥) − 𝑓𝑖 (𝑦)

𝑥 − 𝑦
≤ 𝑙
𝑖
, ∀𝑥, 𝑦 ∈ R, 𝑥 ̸= 𝑦. (7)

(H3) The delay kernels 𝑘
𝑗
(⋅) (𝑗 = 1, 2, . . . , 𝑛) satisfy

∫

∞

0

𝑘
𝑗 (𝑠) d𝑠 = 1, ∫

∞

0

𝑘
𝑗 (𝑠) 𝑒
𝜇𝑠d𝑠 < ∞, (8)

for some positive constant 𝜇.
A typical example of such delay kernels is given by 𝑘

𝑗
(𝑠) =

𝑠
𝑟
/𝑟!𝛾
𝑟+1

𝑗
𝑒
−𝛾𝑗𝑠 for 𝑠 ∈ [0,∞), where 𝛾

𝑗
∈ [0,∞), 𝑟 ∈ {0, 1, . . . ,

𝑛}, which are called the Gamma Memory Filter in [28].
The organization of this paper is as follows. In Section 2,

some preliminaries are given. In Section 3, sufficient condi-
tions are presented for the existence, uniqueness, and global
robust exponential stability of the equilibrium point for
system (2) with the external constant input bias (i.e., 𝐽

𝑖
(𝑡) ≡

𝐽
𝑖
, 𝐽
𝑖
is a constant). In Section 4, sufficient conditions are

givenwhich guarantee the uniqueness and global exponential



Discrete Dynamics in Nature and Society 3

stability of periodic solutions for system (2) when the time-
varying delay 𝜏

𝑖
(𝑡) and the external input bias 𝐽

𝑖
(𝑡) are

continuously periodic functions. Numerical examples are
provided to illustrate the effectiveness of the obtained results
in Section 5. A concluding remark is given in Section 6 to end
this work.

2. Preliminaries

We give some preliminaries in this section. Denote
Γ = diag(𝛾

1
, 𝛾
2
, . . . , 𝛾

𝑛
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𝑖𝑗
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𝑛×𝑛

,
𝐴
𝑇 denotes the transpose; 𝐴

−1 denotes the inverse;
𝐴 > (≥)0 means that 𝐴 is a symmetric positive definite
(semidefinite) matrix; 𝜆max(𝐴) and 𝜆min(𝐴) denote the
largest and the smallest eigenvalues of 𝐴, respectively; and
‖𝐴‖
2
= √𝜆max(𝐴

𝑇𝐴) denotes the spectral norm of 𝐴. 𝐼
denotes the identity matrix. ∗ denotes the symmetric block
in a symmetric matrix.

Definition 1 (see [29]). The neural network (2) with the
parameter ranges defined by (5) is globally robustly exponen-
tially stable, if for each 𝐴 ∈ 𝐴

𝐼
, 𝐵 ∈ 𝐵

𝐼
, 𝐶 ∈ 𝐶

𝐼
, and 𝐽, system

(2) has a unique equilibrium point 𝑢∗ = (𝑢
∗

1
, 𝑢
∗

2
, . . . , 𝑢

∗

𝑛
)
𝑇,

and there exist constants 𝑎 ≥ 1 and 𝜀 > 0 such that
𝑢 (𝑡) − 𝑢

∗ ≤ 𝑎
𝜙 (𝜃) − 𝑢

∗ 𝑒
−𝜀𝑡
, ∀𝑡 > 0, (9)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡), . . . , 𝑢

𝑛
(𝑡))
𝑇 is a solution of system

(2) with the initial value 𝑢
𝑖
(𝜃) = 𝜙

𝑖
(𝜃), 𝑖 = 1, 2, . . . , 𝑛, 𝜃 ∈

(−∞, 0], and 𝜙(𝜃) = (𝜙
1
(𝜃), 𝜙
2
(𝜃), . . . , 𝜙

𝑛
(𝜃)).

Definition 2 (see [30]). Let 𝑍
𝑛
= {𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

∈ 𝑀
𝑛
(R) :

𝑎
𝑖𝑗
≤ 0 if 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛}, where𝑀

𝑛
(R) denotes the

set of all 𝑛 × 𝑛matrices with entries fromR. Then a matrix 𝐴
is called an𝑀-matrix if 𝐴 ∈ 𝑍

𝑛
and all successive principal

minors of 𝐴 are positive.

Definition 3 (see [30]). An 𝑛 × 𝑛matrix𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

is said to
be an𝐻-matrix if its comparison matrix𝑀(𝐴) = (𝑚

𝑖𝑗
)
𝑛×𝑛

is
an𝑀-matrix, where𝑚

𝑖𝑗
= {
|𝑎𝑖𝑖|, if 𝑖=𝑗,
−|𝑎𝑖𝑗|, if 𝑖 ̸= 𝑗.

Lemma 4 (see [31]). For any vectors 𝑥, 𝑦 ∈ R𝑛 and positive
definite matrix 𝐺 ∈ R𝑛×𝑛, the following inequality holds:
2𝑥
𝑇
𝑦 ≤ 𝑥

𝑇
𝐺𝑥 + 𝑦

𝑇
𝐺
−1
𝑦.

Lemma 5 (see [30]). Let 𝐴, 𝐵 ∈ 𝑍
𝑛
. If 𝐴 is an M-matrix and

the elements of matrices 𝐴 and 𝐵 satisfy the inequalities 𝑎
𝑖𝑗
≤

𝑏
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, then 𝐵 is an M-matrix.

Lemma 6 (see [30]). The following LMI: ( 𝑄(𝑥) 𝑆(𝑥)
𝑆
𝑇
(𝑥) 𝑅(𝑥)

) > 0,
where 𝑄(𝑥) = 𝑄𝑇(𝑥), 𝑅(𝑥) = 𝑅𝑇(𝑥), is equivalent to 𝑅(𝑥) >
0 and 𝑄(𝑥) − 𝑆(𝑥)𝑅−1(𝑥)𝑆𝑇(𝑥) > 0 or 𝑄(𝑥) > 0 and 𝑅(𝑥) −
𝑆
𝑇
(𝑥)𝑄
−1
(𝑥)𝑆(𝑥) > 0.

Lemma 7 (see [32]). Suppose that the neural network param-
eters are defined by (5), and

Ξ = (

Φ − 𝑆 −𝑃𝐵
∗

−𝑃𝐶
∗

∗ (1 − 𝛿)𝑄 0

∗ ∗ 𝑅

) > 0, (10)

where 𝑃 = diag(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
), 𝑄 = diag(𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛
), and

𝑅 = diag(𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
) are positive diagonal matrices, Φ =

(Φ
𝑖𝑗
)
𝑛×𝑛

= 2𝑃Γ𝐿
−1
−((2−𝛿)/(1−𝛿))‖𝑃𝐵

∗
‖
2
𝐼−2‖𝑃𝐶

∗
‖
2
𝐼−𝑄−𝑅,

𝑆 = (𝑠
𝑖𝑗
)
𝑛×𝑛

with

𝑠
𝑖𝑗
= {

2𝑝
𝑖
𝑎
𝑖𝑖
, if 𝑖 = 𝑗,

max {𝑝𝑖𝑎𝑖𝑗 + 𝑝𝑗𝑎𝑗𝑖

,

𝑝
𝑖
𝑎
𝑖𝑗
+ 𝑝
𝑗
𝑎
𝑗𝑖


} , if 𝑖 ̸= 𝑗. (11)

Then, for all 𝐴 ∈ 𝐴
𝐼
, 𝐵 ∈ 𝐵

𝐼
, and 𝐶 ∈ 𝐶

𝐼
, we have

Θ = (

Φ − 𝑆


−𝑃Δ𝐵 −𝑃Δ𝐶

∗ (1 − 𝛿)𝑄 0

∗ ∗ 𝑅

) > 0, (12)

where 𝑆 = (𝑠
𝑖𝑗
)
𝑛×𝑛

= 𝑃𝐴 + 𝐴
𝑇
𝑃.

3. Global Robust Exponential Stability of
the Equilibrium Point

In this section, in system (2), we assume that the external
input bias 𝐽

𝑖
(𝑡) ≡ 𝐽

𝑖
, 𝐽
𝑖
is a constant (𝑖 = 1, 2, . . . , 𝑛),

and we will give a new sufficient condition for the existence
and uniqueness of the equilibrium point for system (2)
and analyze the global robust exponential stability of the
equilibrium point.

Theorem 8. Under assumptions (H1) and (H2), if there exist
positive diagonal matrices 𝑃 = diag(𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
), 𝑄 =

diag(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
), and 𝑅 = diag(𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
) such that Ξ >

0, where Ξ is defined by (10), then system (2) has a unique
equilibrium point.

Theproof ofTheorem 8 is similar to that in [32], therefore
we omit it here.

Let 𝑢∗ = (𝑢
∗

1
, 𝑢
∗

2
, . . . , 𝑢

∗

𝑛
)
𝑇 be the equilibrium point of

system (2). By coordinate transformation V(𝑡) = 𝑢(𝑡) − 𝑢
∗,

one can transform system (2) into the following system

V̇
𝑖 (𝑡) = − 𝛼

𝑖
(V
𝑖 (𝑡))

× [

[

𝛽
𝑖
(V
𝑖 (𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑔
𝑗
(V
𝑗 (𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏
𝑗 (𝑡)))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

−∞

𝑘
𝑗 (𝑡 − 𝑠) 𝑔𝑗 (V𝑗 (𝑠)) d𝑠]

]

,

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛,

(13)
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or equivalently

V̇ (𝑡) = − 𝛼 (V (𝑡))

× [𝛽 (V (𝑡)) − 𝐴𝑔 (V (𝑡)) − 𝐵𝑔 (V (𝑡 − 𝜏 (𝑡)))

−𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠] ,

(14)

where V(𝑡) = (V
1
(𝑡), . . . , V

𝑛
(𝑡))
𝑇, 𝛼(V(𝑡)) = diag(𝛼

1
(V
1
(𝑡)), . . .,

𝛼
𝑛
(V
𝑛
(𝑡))) with 𝛼

𝑖
(V
𝑖
(𝑡)) = �̃�

𝑖
(V
𝑖
(𝑡) + 𝑢

∗

𝑖
), 𝛽(V(𝑡)) =

(𝛽
1
(V
1
(𝑡)), . . . , 𝛽

𝑛
(V
𝑛
(𝑡)))
𝑇 with 𝛽

𝑖
(V
𝑖
(𝑡)) = 𝛽

𝑖
(V
𝑖
(𝑡) + 𝑢

∗

𝑖
) −

𝛽
𝑖
(𝑢
∗

𝑖
), 𝑔(V(𝑡)) = (𝑔

1
(V
1
(𝑡)),. . . , 𝑔

𝑛
(V
𝑛
(𝑡)))
𝑇, 𝑔(V(𝑡 − 𝜏(𝑡))) =

(𝑔
1
(V
1
(𝑡 − 𝜏
1
(𝑡))), . . . , 𝑔

𝑛
(V
𝑛
(𝑡 − 𝜏
𝑛
(𝑡))))
𝑇 with 𝑔

𝑗
(V
𝑗
(𝑡)) =

𝑓
𝑗
(V
𝑗
(𝑡) + 𝑢

∗

𝑗
) − 𝑓
𝑗
(𝑢
∗

𝑗
).

Theorem 9. Under assumptions (H1)–(H3), if there exist
positive diagonal matrices 𝑃 = diag(𝑝

1
,𝑝
2
, . . . , 𝑝

𝑛
), 𝑄 =

diag(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
), and 𝑅 = diag(𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
) such that Ξ >

0, where Ξ is defined by (10), then the equilibrium point of
system (2) is globally robustly exponentially stable.

Proof. Define a Lyapunov functional: 𝑉(𝑡) = ∑
4

𝑖=1
𝑉
𝑖
(𝑡),

where

𝑉
1 (𝑡) = 2ℎ𝑒

𝜀𝑡

𝑛

∑

𝑖=1

∫

V𝑖(𝑡)

0

𝑠

𝛼
𝑖 (𝑠)

d𝑠,

𝑉
2 (𝑡) = 2𝑒

𝜀𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
∫

V𝑖(𝑡)

0

𝑔
𝑖 (𝑠)

𝛼
𝑖 (𝑠)

d𝑠,

𝑉
3 (𝑡) =

𝑛

∑

𝑖=1

(𝑞
𝑖
+
𝑃𝐵
∗2
) ∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑒
𝜀(𝜏+𝑠)

𝑔
2

𝑖
(V
𝑖 (𝑠)) d𝑠,

𝑉
4 (𝑡)=

𝑛

∑

𝑖=1

(𝑟
𝑖
+
𝑃𝐶
∗2
) ∫

+∞

0

𝑘
𝑖 (𝜉) 𝑒
𝜀𝜉
∫

𝑡

𝑡−𝜉

𝑒
𝜀𝑠
𝑔
2

𝑖
(V
𝑖 (𝑠)) d𝑠 d𝜉.

(15)

Calculating the derivative of 𝑉(𝑡) along the trajectories of
system (13), we obtain that

�̇�
1 (𝑡) = 2ℎ𝜀𝑒

𝜀𝑡

𝑛

∑

𝑖=1

∫

V𝑖(𝑡)

0

𝑠

𝛼
𝑖 (𝑠)

d𝑠 − 2ℎ𝑒𝜀𝑡

×

𝑛

∑

𝑖=1

V
𝑖 (𝑡)

[

[

𝛽
𝑖
(V
𝑖 (𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑔
𝑗
(V
𝑗 (𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏
𝑗 (𝑡)))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

−∞

𝑘
𝑗 (𝑡 − 𝑠) 𝑔𝑗 (V𝑗 (𝑠)) d𝑠]

]

≤ ℎ𝜀𝑒
𝜀𝑡

𝑛

∑

𝑖=1

1

𝛼
𝑖

V2
𝑖
(𝑡) − 2ℎ𝑒

𝜀𝑡

𝑛

∑

𝑖=1

𝛾
𝑖
V2
𝑖
(𝑡) + 2ℎ𝑒

𝜀𝑡

×

𝑛

∑

𝑖=1

V
𝑖 (𝑡)

[

[

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑔
𝑗
(V
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏
𝑗 (𝑡)))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

−∞

𝑘
𝑗 (𝑡 − 𝑠) 𝑔𝑗 (V𝑗 (𝑠)) d𝑠]

]

= ℎ𝜀𝑒
𝜀𝑡V𝑇 (𝑡) 𝛼−1V (𝑡) + 2ℎ𝑒𝜀𝑡V𝑇 (𝑡)

× [ − ΓV (𝑡) + 𝐴𝑔 (V (𝑡)) + 𝐵𝑔 (V (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠] ,

�̇�
2 (𝑡) = 2𝜀𝑒

𝜀𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
∫

V𝑖(𝑡)

0

𝑔
𝑖 (𝑠)

𝛼
𝑖 (𝑠)

𝑑𝑠 − 2𝑒
𝜀𝑡

×

𝑛

∑

𝑖=1

𝑝
𝑖
𝑔
𝑖
(V
𝑖 (𝑡))

× [

[

𝛽
𝑖
(V
𝑖 (𝑡)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑔
𝑗
(V
𝑗 (𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏
𝑗 (𝑡)))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

−∞

𝑘
𝑗 (𝑡 − 𝑠) 𝑔𝑗 (V𝑗 (𝑠)) d𝑠]

]

≤ 𝜀𝑒
𝜀𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
𝑙
𝑖

𝛼
𝑖

V2
𝑖
(𝑡) − 2𝑒

𝜀𝑡

𝑛

∑

𝑖=1

𝑝
𝑖
𝛾
𝑖
𝑔
𝑖
(V
𝑖 (𝑡)) V𝑖 (𝑡) + 2𝑒

𝜀𝑡

×

𝑛

∑

𝑖=1

𝑝
𝑖
𝑔
𝑖
(V
𝑖 (𝑡))

× [

[

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑔
𝑗
(V
𝑗 (𝑡)) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(V
𝑗
(𝑡 − 𝜏
𝑗 (𝑡)))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫

𝑡

−∞

𝑘
𝑗 (𝑡−𝑠) 𝑔𝑗 (V𝑗 (𝑠)) d𝑠]

]

= 𝜀𝑒
𝜀𝑡V𝑇 (𝑡) 𝑃𝐿𝛼−1V (𝑡) − 2𝑒𝜀𝑡𝑔𝑇 (V (𝑡)) 𝑃ΓV (𝑡)

+ 2𝑒
𝜀𝑡
𝑔
𝑇
(V (𝑡))

× [𝑃𝐴𝑔 (V (𝑡)) + 𝑃𝐵𝑔 (V (𝑡 − 𝜏 (𝑡)))

+ 𝑃𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠]

≤ 𝜀𝑒
𝜀𝑡V𝑇 (𝑡) 𝑃𝐿𝛼−1V (𝑡) − 2𝑒𝜀𝑡𝑔𝑇 (V (𝑡)) 𝑃Γ𝐿−1𝑔 (V (𝑡))

+ 2𝑒
𝜀𝑡
𝑔
𝑇
(V (𝑡)) 𝑃𝐴𝑔 (V (𝑡)) + 𝑒𝜀𝑡𝑃𝐵

∗2

× (
1

1− 𝛿

𝑔 (V (𝑡))


2

2
+(1− 𝛿)

𝑔 (V (𝑡−𝜏 (𝑡)))


2

2
)

+ 𝑒
𝜀𝑡𝑃𝐶

∗2
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× (
𝑔(V(𝑡))



2

2
+



∫

𝑡

−∞

𝐾(𝑡 − 𝑠)𝑔(V(𝑠))d𝑠


2

2

)

+ 2𝑒
𝜀𝑡
𝑔
𝑇
(V (𝑡)) 𝑃Δ𝐵𝑔 (V (𝑡−𝜏 (𝑡)))

+2𝑒
𝜀𝑡
𝑔
𝑇
(V (𝑡)) 𝑃Δ𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠,

�̇�
3 (𝑡) =

𝑛

∑

𝑖=1

(𝑞
𝑖
+
𝑃𝐵
∗2
)

× [𝑒
𝜀(𝑡+𝜏)

𝑔
2

𝑖
(V
𝑖 (𝑡)) − (1 − ̇𝜏

𝑖 (𝑡)) 𝑒
𝜀(𝑡+𝜏−𝜏𝑖(𝑡))

𝑔
2

𝑖
(V
𝑖
(𝑡 − 𝜏
𝑖 (𝑡)))]

≤ 𝑒
𝜀(𝑡+𝜏)

𝑔
𝑇
(V (𝑡)) 𝑄𝑔 (V (𝑡)) + 𝑒𝜀(𝑡+𝜏)𝑃𝐵

∗2

𝑔(V(𝑡))


2

2

− (1 − 𝛿) 𝑒
𝜀𝑡
𝑔
𝑇
(V (𝑡 − 𝜏 (𝑡))) 𝑄𝑔 (V (𝑡 − 𝜏 (𝑡)))

− (1 − 𝛿) 𝑒
𝜀𝑡𝑃𝐵
∗2

𝑔(V(𝑡 − 𝜏(𝑡)))


2

2
,

�̇�
4 (𝑡) =

𝑛

∑

𝑖=1

(𝑟
𝑖
+
𝑃𝐶
∗2
)

× ∫

+∞

0

𝑘
𝑖 (𝜉) 𝑒
𝜀(𝑡+𝜉)

[𝑔
2

𝑖
(V
𝑖 (𝑡))−𝑒

−𝜀𝜉
𝑔
2

𝑖
(V
𝑖 (𝑡−𝜉))] d𝜉

= 𝑒
𝜀𝑡
∫

+∞

0

𝑘
𝑖 (𝜉) 𝑒
𝜀𝜉d𝜉𝑔𝑇 (V (𝑡)) (𝑅 + 𝑃𝐶

∗2
𝐼) 𝑔 (V (𝑡))

− 𝑒
𝜀𝑡

𝑛

∑

𝑖=1

(𝑟
𝑖
+
𝑃𝐶
∗2
) ∫

𝑡

−∞

𝑘
𝑖 (𝑡 − 𝑠) 𝑔

2

𝑖
(V
𝑖 (𝑠)) d𝑠

≤ 𝑒
𝜀𝑡
∫

+∞

0

𝑘
𝑖 (𝜉) 𝑒
𝜀𝜉d𝜉𝑔𝑇 (V (𝑡)) (𝑅 + 𝑃𝐶

∗2
𝐼) 𝑔 (V (𝑡))

− 𝑒
𝜀𝑡
(∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠)
𝑇

(𝑅 +
𝑃𝐶
∗2
𝐼)

× (∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠) .

(16)

Therefore, one can deduce that

�̇� (𝑡) ≤ 𝜀𝑒
𝜀𝑡V𝑇 (𝑡) (ℎ𝛼−1 + 𝑃𝐿𝛼−1) V (𝑡)

+ 𝑒
𝜀(𝑡+𝜏)

𝑔
𝑇
(V (𝑡)) (𝑄 + 𝑃𝐵

∗2
𝐼) 𝑔 (V (𝑡)) + 𝑒𝜀𝑡

× ∫

+∞

0

𝑘
𝑖 (𝑠) 𝑒
𝜀𝑠d𝑠𝑔𝑇 (V (𝑡)) (𝑅 + 𝑃𝐶

∗2
𝐼) 𝑔 (V (𝑡))

− 2ℎ𝑒
𝜀𝑡V𝑇 (𝑡) ΓV (𝑡)

− 𝑒
𝜀𝑡
𝑔
𝑇
(V (𝑡))

× (2𝑃Γ𝐿
−1
−2𝑃𝐴−

1

1−𝛿

𝑃𝐵
∗2
−
𝑃𝐶
∗2
)

× 𝑔 (V (𝑡))−𝑒𝜀𝑡 (1−𝛿) 𝑔𝑇 (V (𝑡−𝜏 (𝑡))) 𝑄𝑔 (V (𝑡−𝜏 (𝑡)))

− 𝑒
𝜀𝑡
(∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠)
𝑇

× 𝑅(∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠) + 2ℎ𝑒𝜀𝑡V𝑇 (𝑡)

× (𝐴𝑔 (V (𝑡)) + 𝐵𝑔 (V (𝑡 − 𝜏 (𝑡)))

+𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠)

+ 2𝑒
𝜀𝑡
𝑔
𝑇
(V (𝑡))

× (𝑃Δ𝐵𝑔 (V (𝑡 − 𝜏 (𝑡)))

+𝑃Δ𝐶∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠)

= 𝜀𝑒
𝜀𝑡V𝑇 (𝑡) (ℎ𝛼−1 + 𝑃𝐿𝛼−1) V (𝑡)

+ 𝑒
𝜀𝑡
(𝑒
𝜀𝜏
− 1) 𝑔

𝑇
(V (𝑡)) (𝑄 + 𝑃𝐵

∗2
𝐼) 𝑔 (V (𝑡))

+ 𝑒
𝜀𝑡
(∫

+∞

0

𝑘
𝑖 (𝑠) 𝑒
𝜀𝑠
𝑑𝑠 − 1)𝑔

𝑇
(V (𝑡)) (𝑅 + 𝑃𝐶

∗2
𝐼)

× 𝑔 (V (𝑡)) − 𝑒𝜀𝑡𝑤𝑇 (𝑡) Ψ𝑤 (𝑡) ,

(17)
where

Ψ = (

2ℎΓ −ℎ𝐴 −ℎ𝐵 −ℎ𝐶

∗ Φ − 𝑆


−𝑃Δ𝐵 −𝑃Δ𝐶

∗ ∗ (1 − 𝛿)𝑄 0

∗ ∗ ∗ 𝑅

) , (18)

𝑤 (𝑡) = (V𝑇 (𝑡) 𝑔𝑇 (V (𝑡)) 𝑔𝑇 (V (𝑡 − 𝜏 (𝑡)))

× (∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑔 (V (𝑠)) d𝑠)
𝑇

)

𝑇

.

(19)

Denote Υ = (𝐴 𝐵 𝐶). From Lemma 6, Ψ > 0 is
equivalent to Θ − (ℎ/2)Υ

𝑇
Γ
−1
Υ > 0, where Θ is defined

in (12). By Lemma 7, we have Θ > 0. Letting 0 < ℎ <

2min
1≤𝑖≤𝑛

{𝛾
𝑖
}𝜆min(Θ)/𝜆max(Υ

𝑇
Υ), we can derive that

Θ −
ℎ

2
Υ
𝑇
Γ
−1
Υ ≥ Θ −

ℎ

2min
1≤𝑖≤𝑛

{𝛾
𝑖
}
Υ
𝑇
Υ > 0, (20)

which yields Ψ > 0.
From assumption (H3), we can choose a constant 𝜀

3

sufficiently small satisfying 0 < 𝜀
3
< 𝜇 and

∫

∞

0

𝑘
𝑖 (𝑠) 𝑒
𝜀3𝑠d𝑠 ≤ 𝜆min (Ψ)

2max
1≤𝑖≤𝑛

{𝑟
𝑖
+ ‖𝑃𝐶

∗
‖2}

+ 1, 1 ≤ 𝑖 ≤ 𝑛.

(21)
Choosing 0 < 𝜀 < min

1≤𝑖≤3
{𝜀
𝑖
} with

𝜀
1
=

𝜆min (Ψ)

max
1≤𝑖≤𝑛

{𝛼
−1

𝑖
(ℎ + 𝑝

𝑖
𝑙
𝑖
)}
,

𝜀
2
=
1

𝜏
ln( 𝜆min (Ψ)

2max
1≤𝑖≤𝑛

{𝑞
𝑖
+ ‖𝑃𝐵

∗
‖2}

+ 1) ,

(22)

we get
�̇� (𝑡) ≤ 𝜀1𝑒

𝜀𝑡V𝑇 (𝑡) (ℎ𝛼−1 + 𝑃𝐿𝛼−1) V (𝑡)

+ 𝑒
𝜀𝑡
(𝑒
𝜀2𝜏 − 1) 𝑔

𝑇
(V (𝑡)) (𝑄 + 𝑃𝐵

∗2
𝐼) 𝑔 (V (𝑡))

+ 𝑒
𝜀𝑡
(∫

+∞

0

𝑘
𝑖 (𝑠) 𝑒
𝜀3𝑠d𝑠 − 1)𝑔𝑇 (V (𝑡))

× (𝑅 +
𝑃𝐶
∗2
𝐼) 𝑔 (V (𝑡)) − 𝑒𝜀𝑡𝑤𝑇 (𝑡) Ψ𝑤 (𝑡)

< 𝑒
𝜀𝑡
𝜆min (Ψ) [V

𝑇
(𝑡) V (𝑡) + 𝑔𝑇 (V (𝑡)) 𝑔 (V (𝑡))]

− 𝑒
𝜀𝑡
𝑤
𝑇
(𝑡) Ψ𝑤 (𝑡) ≤ 0.

(23)
Consequently, 𝑉(𝑡) ≤ 𝑉(0) for all 𝑡 ≥ 0.
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On the other hand,

𝑉 (0) = 2ℎ𝑒
𝜀𝑡

𝑛

∑

𝑖=1

∫

V𝑖(0)

0

𝑠

𝛼
𝑖 (𝑠)

𝑑𝑠 + 2

𝑛

∑

𝑖=1

𝑝
𝑖
∫

V𝑖(0)

0

𝑔
𝑖 (𝑠)

𝛼
𝑖 (𝑠)

d𝑠

+

𝑛

∑

𝑖=1

(𝑞
𝑖
+
𝑃𝐵
∗2
)

× ∫

0

−𝜏𝑖(0)

𝑒
𝜀(𝜏+𝑠)

𝑔
2

𝑖
(V
𝑖 (𝑠)) d𝑠 +

𝑛

∑

𝑖=1

(𝑟
𝑖
+
𝑃𝐶
∗2
)

× ∫

+∞

0

𝑘
𝑖 (𝜉) 𝑒
𝜀𝜉
∫

0

−𝜉

𝑒
𝜀𝑠
𝑔
2

𝑖
(V
𝑖 (𝑠)) d𝑠 d𝜉

≤ max
1≤𝑖≤𝑛

{
ℎ
𝑖

𝛼
𝑖

} ‖V (0)‖2
2
+max
1≤𝑖≤𝑛

{
𝑝
𝑖
𝑙
𝑖

𝛼
𝑖

} ‖V (0)‖2
2

+ 𝜏𝑒
𝜀𝜏max
1≤𝑖≤𝑛

{𝑙
2

𝑖
(𝑞
𝑖
+
𝑃𝐵
∗2
)} × sup
−𝜏≤𝜃≤0

‖V (𝜃)‖2
2

+
1

2𝜀
max
1≤𝑖≤𝑛

{𝑙
2

𝑖
} 𝜆min (Ψ) sup

−∞<𝜃≤0

‖V (𝜃)‖2
2

≤ 𝑎 sup
−∞<𝜃≤0

‖V(𝜃)‖2
2
,

(24)

where 𝑎 = max
1≤𝑖≤𝑛

{ℎ
𝑖
/𝛼
𝑖
} + max

1≤𝑖≤𝑛
{𝑝
𝑖
𝑙
𝑖
/𝛼
𝑖
} + 𝜏𝑒

𝜀𝜏

max
1≤𝑖≤𝑛

{𝑙
2

𝑖
(𝑞
𝑖
+ ‖𝑃𝐵

∗
‖
2
)} + (1/2𝜀)max

1≤𝑖≤𝑛
{𝑙
2

𝑖
}𝜆min(Ψ).

Hence, (ℎ/max
1≤𝑖≤𝑛

{𝛼
𝑖
})𝑒
𝜀𝑡
‖V(𝑡)‖2

2
≤ 𝑉(𝑡) ≤ 𝑉(0) ≤

𝑎sup
−∞<𝜃≤0

‖V(𝜃)‖2
2
; that is,

𝑢(𝑡) − 𝑢
∗2

≤ √
𝑎max
1≤𝑖≤𝑛

{𝛼
𝑖
}

ℎ

𝜙(𝜃) − 𝑢
∗2
𝑒
−𝜀𝑡/2

, 𝑡 > 0.

(25)

Combining Theorem 8, we get that system (2) is globally
robustly exponentially stable. The proof is complete.

Remark 10. Letting 𝑃 = 𝑝𝐼 be a positive scalar matrix in
Theorem 9, we can get a robust exponential stability criterion
based on LMI.

Remark 11. If �̃�
𝑖
(𝑢
𝑖
(𝑡)) = 1, 𝛽

𝑖
(𝑢
𝑖
(𝑡)) = 𝑑

𝑖
𝑢
𝑖
(𝑡), 0 < 𝑑

𝑖
≤

𝑑
𝑖
≤ 𝑑
𝑖
, and 𝑐

𝑖𝑗
= 0, system (2) turns into the interval

Hopfield neural networks (1), which was studied in [4–6].
It can be seen that the main results in [4] is a special case
of Theorem 9. Therefore, the obtained results in this paper
improve the results in [4–6]. Also, our results generalize some
previous ones in [33–35] as mentioned in [4]. In addition, in
[19], the authors dealt with the robust exponential stability of
CGNNs with time-varying delays. However, the distributed
delays were not taken into account. Therefore, our results in
this paper are more general than those reported in [19].

Remark 12. In previous works such as [6, 33–35], ‖𝐵
∗
‖
2

is often used as a part to estimate the bounds for ‖𝐵‖
2
.

Considering that 𝐵
∗
is a nonnegative matrix, we develop a

new approach based onH-matrix theory.Theobtained robust
stability criterion is in terms of thematrices𝐵

∗
and𝐵𝑇

∗
, which

can reduce the conservativeness of the robust results to some
extent.

4. Periodic Solutions of Interval CGNNs

In this section, we consider the periodic solutions of system
(2), in which 𝜏

𝑖
(𝑡) and 𝐽

𝑖
(𝑡) are continuously periodic func-

tions with period 𝜔; that is, 𝜏
𝑖
(𝑡 + 𝜔) = 𝜏

𝑖
(𝑡), 𝐽
𝑖
(𝑡 + 𝜔) =

𝐽
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛).

Theorem13. Under assumptions (H1)–(H3), system (2) has an
𝜔-periodic solution which is globally exponentially stable, if the
following condition holds:

(H4)M = Γ − 𝐷 is a nonsingular𝑀-matrix, where

𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛
, 𝑑

𝑖𝑗
= 𝑙
𝑗
(𝑎
𝑖𝑗
+

�̂�
𝑖𝑗

1 − 𝛿
+ 𝑐
𝑖𝑗
) . (26)

Proof. Let 𝑢
𝑖
(𝑡, 𝜙) and 𝑢

𝑖
(𝑡, 𝜓) be two solutions of system (2)

with initial values 𝜙, 𝜓 ∈ 𝐶((−∞, 0], 𝑅
𝑛
), respectively. Since

M is a nonsingular𝑀-matrix, M𝑇 is also a nonsingular𝑀-
matrix. It is well known that there exists a positive vector 𝑝 =
(𝜇
1
, . . . , 𝜇

𝑛
)
𝑇 such thatM𝑇𝑝 > 0; that is,

𝜇
𝑖
𝛾
𝑖
−

𝑛

∑

𝑗=1

𝜇
𝑗
𝑙
𝑖
(𝑎
𝑗𝑖
+

�̂�
𝑗𝑖

1 − 𝛿
+ 𝑐
𝑗𝑖
) > 0, 𝑖 = 1, 2, . . . , 𝑛. (27)

We can choose a constant 𝜀 > 0 sufficiently small such that

𝐹
𝑖 (𝜀) = 𝜇𝑖 (𝛾𝑖 −

𝜀

𝛼
𝑖

)

−

𝑛

∑

𝑗=1

𝜇
𝑗
𝑙
𝑖
(𝑎
𝑗𝑖
+

�̂�
𝑗𝑖

1 − 𝛿
𝑒
𝜀𝜏
+ 𝑐
𝑗𝑖
∫

+∞

0

𝑘
𝑖 (𝜉) 𝑒
𝜀𝜉d𝜉)

> 0, 𝑖 = 1, 2, . . . , 𝑛.

(28)

Denote 𝑋
𝑖
(𝑡) = |𝑢

𝑖
(𝑡, 𝜙) − 𝑢

𝑖
(𝑡, 𝜓)|. Define a Lyapunov

functional

𝑊(𝑡) =

𝑛

∑

𝑖=1

𝜇
𝑖
(𝑊
1𝑖 (𝑡) + 𝑊2𝑖 (𝑡) + 𝑊3𝑖 (𝑡)) , (29)

where

𝑊
1𝑖 (𝑡) = 𝑒

𝜀𝑡 sgn (𝑢
𝑖
(𝑡, 𝜙) − 𝑢

𝑖
(𝑡, 𝜓)) ∫

𝑢𝑖(𝑡,𝜙)

𝑢𝑖(𝑡,𝜓)

1

�̃�
𝑖 (𝑠)

d𝑠,

𝑊
2𝑖 (𝑡) =

𝑛

∑

𝑗=1

𝑙
𝑗
�̂�
𝑖𝑗

1 − 𝛿
∫

𝑡

𝑡−𝜏𝑗(𝑡)

𝑒
𝜀(𝜏+𝑠)

𝑋
𝑗 (𝑠) d𝑠,

𝑊
3𝑖 (𝑡) =

𝑛

∑

𝑗=1

𝑙
𝑗
𝑐
𝑖𝑗
∫

+∞

0

𝑘
𝑗 (𝜉) 𝑒
𝜀𝜉
∫

𝑡

𝑡−𝜉

𝑒
𝜀𝑠
𝑋
𝑗 (𝑠) d𝑠 d𝜉.

(30)
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Calculating the upper right derivative of 𝑊(𝑡) along the
solution of (2), together with assumptions (H1)–(H3) and
(28), we can derive that
𝐷
+
𝑊(𝑡)

≤ 𝑒
𝜀𝑡

𝑛

∑

𝑖=1

𝜇
𝑖
[(

𝜀

𝛼
𝑖

− 𝛾
𝑖
)𝑋
𝑖 (𝑡)

+

𝑛

∑

𝑗=1

𝑙
𝑗
(𝑎
𝑖𝑗
+

�̂�
𝑖𝑗

1 − 𝛿
𝑒
𝜀𝜏
+ 𝑐
𝑖𝑗

× ∫

+∞

0

𝑘
𝑗 (𝜉) 𝑒
𝜀𝜉d𝜉)𝑋

𝑗 (𝑡) ]

= −𝑒
𝜀𝑡

𝑛

∑

𝑖=1

[𝜇
𝑖
(𝛾
𝑖
−
𝜀

𝛼
𝑖

)

−

𝑛

∑

𝑗=1

𝜇
𝑗
𝑙
𝑖
(𝑎
𝑗𝑖
+

�̂�
𝑗𝑖

1 − 𝛿
𝑒
𝜀𝜏

+𝑐
𝑗𝑖
∫

+∞

0

𝑘
𝑖 (𝜉) 𝑒
𝜀𝜉d𝜉)]𝑋

𝑖 (𝑡)

= −𝑒
𝜀𝑡

𝑛

∑

𝑖=1

𝐹
𝑖 (𝜀)𝑋𝑖 (𝑡) ≤ 0.

(31)
Then, we have𝑊(𝑡) ≤ 𝑊(0) for 𝑡 ≥ 0. On the other hand, it
can be readily seen that

𝑊(𝑡) ≥ 𝑚0𝑒
𝜀𝑡

𝑛

∑

𝑖=1

𝑢𝑖 (𝑡, 𝜙) − 𝑢𝑖 (𝑡, 𝜓)
 ,

𝑊 (0) ≤ 𝑀0 sup
𝑠∈(−∞,0]

𝑛

∑

𝑖=1

𝜙𝑖 (𝑠) − 𝜓𝑖 (𝑠)
 ,

(32)

in which

𝑚
0
= min
1≤𝑖≤𝑛

{
𝜇
𝑖

𝛼
𝑖

} ,

𝑀
0
= max
1≤𝑖≤𝑛

{

{

{

𝜇
𝑖

𝛼
𝑖

+

𝑛

∑

𝑗=1

[

𝑙
𝑗
�̂�
𝑖𝑗
(𝑒
𝜀𝜏
− 1)

𝜀 (1 − 𝛿)
+

𝑙
𝑗
𝑐
𝑖𝑗

𝜀

× (∫

+∞

0

𝑘
𝑗 (𝜉) 𝑒
𝜀𝜉d𝜉 − 1)]

}

}

}

.

(33)

Hence, 𝑚
0
𝑒
𝜀𝑡
∑
𝑛

𝑖=1
|𝑢
𝑖
(𝑡, 𝜙) − 𝑢

𝑖
(𝑡, 𝜓)| ≤ 𝑊(𝑡) ≤ 𝑊(0) ≤

𝑀
0
sup
𝑠∈(−∞,0]

∑
𝑛

𝑖=1
|𝜙
𝑖
(𝑠) − 𝜓

𝑖
(𝑠)|. Let𝑀 = 𝑀

0
/𝑚
0
, then

𝑢(𝑡, 𝜙) − 𝑢(𝑡, 𝜓)
1
≤ 𝑀

𝜙 − 𝜓
1
𝑒
−𝜀𝑡
, 𝑡 > 0. (34)

We can always choose a positive integer 𝑁 such that
𝑒
−𝜀𝑁𝜔

𝑀 ≤ 1/2 and define a Poincaré mapping 𝑃 : 𝐶 → 𝐶 by
𝑃(𝜙) = 𝑢

𝜔
(𝜙). It follows from (34) that


𝑃
𝑁
𝜙 − 𝑃
𝑁
𝜓
1
≤
1

2

𝜙 − 𝜓
1
, (35)

2

1.5

1

0.5

0

−0.5

−1
0 5 10 15

u
(t
)

u1(t)
u2(t)

t

Figure 1: Time responses of the state variables 𝑢(𝑡) with different
initial values in Example 1.

which implies that 𝑃𝑁 is a contraction mapping. Thus, there
exists a unique fixed point 𝜑∗ such that𝑃𝑁𝜑∗ = 𝜑∗. Note that
𝑃
𝑁
(𝑃𝜑
∗
) = 𝑃(𝑃

𝑁
𝜑
∗
) = 𝑃𝜑

∗. It means that 𝑃𝜑∗ is also a fixed
point of 𝑃𝑁, then 𝑃𝜑∗ = 𝜑∗; that is, 𝑢

𝜔
(𝜑
∗
) = 𝜑
∗. Obviously,

if 𝑢(𝑡, 𝜑∗) is the solution of (2) through (0, 𝜑∗), 𝑢(𝑡 + 𝜔, 𝜑∗)
is also a solution of (2) and 𝑢

𝑡+𝜔
(𝜑
∗
) = 𝑢

𝑡
(𝑢
𝜔
(𝜑
∗
)) =

𝑢
𝑡
(𝜑
∗
) for 𝑡 > 0. This shows that 𝑢(𝑡, 𝜑∗) is exactly an 𝜔-

periodic solution of system (2) and all other solutions of (2)
exponentially converge to it as 𝑡 → +∞. This completes the
proof.

Remark 14. The periodic oscillatory behavior of the neural
networks is of great interest in many applications. For
instance, this phenomena of periodic solutions for neural
networks coincide with the fact that learning usually requires
repetition and periodic sequences of neural impulse are
also of fundament significance for the control of dynamic
functions of the body such as heart beat and respirationwhich
occur with great regularity.

Remark 15. In [23], the authors studied the existence and
attractivity of periodic solutions for two class of CGNNs
with discrete time delays or finite distributed time delays,
respectively. In this paper, we incorporated time-varying
delays and infinite distributed delays into CGNNs and
derived the uniqueness and global exponential stability of
periodic solutions. In [24, 27], two classes of CGNNs with
distributed delays were investigated, and sufficient conditions
were established to guarantee the uniqueness and global
exponential stability of periodic solutions of suchnetworks by
using Lyapunov functional and the properties of𝑀-matrix,
whereas, the time-varying delays were ignored in themodels.
Thus, our results effectually improve or complement the
results in [23, 24, 27].
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Figure 2: Bifurcation diagrams of system (2), and these show the effect of the parameter 𝛽 on the dynamic behavior.
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Figure 3: Time responses of the state variables 𝑢(𝑡) and phase plot in space (𝑡, 𝑢
1
, 𝑢
2
).

5. Numerical Simulation

In what follows, we give two examples to illustrate the results
obtained in Sections 3 and 4.

Example 1. In system (2), we choose

𝐴 = (
−0.3 −0.2

−0.5 −0.6
) , 𝐴 = (

0.3 0.2

0.2 0.1
) ,

𝐵 = (
−0.8 −0.9

−0.4 −1
) , 𝐵 = (

0.5 0.6

0.7 1
) ,

𝐶 = (
−0.5 −0.5

−0.3 −0.8
) , 𝐶 = (

0.5 0.6

0.3 1
) ,

�̃�
𝑖
(𝑢
𝑖 (𝑡)) = 2 + sin (𝑢

𝑖 (𝑡)) , 𝛽
𝑖
(𝑢
𝑖 (𝑡)) = 5𝑢𝑖 (𝑡) ,

𝐽
1
= −1, 𝐽

2
= −1.5, 𝑓

𝑗 (𝑥) = tanh (𝑥) ,

𝜏
𝑗 (𝑡) = 1 −

𝑒
−𝑡

2
, 𝑘

𝑗 (𝑡) = 𝑡𝑒
−𝑡
, 𝑖, 𝑗 = 1, 2.

(36)

It is clear that 𝛾
1
= 𝛾
2
= 5, 𝑙

1
= 𝑙
2
= 1, 𝜏 = 1, 𝛿 = 0.5,

𝜇 = 1. Using the optimization toolbox of Matlab and solving
the optimization problem (10), we obtain

𝑝
1
= 1.6495, 𝑝

2
= 1.4828, 𝑞

1
= 2,

𝑞
2
= 2, 𝑟

1
= 1.2143, 𝑟

2
= 2.

(37)
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By Theorem 9, system (2) is globally robustly exponentially
stable. To illustrate the theoretical result, we present a
simulation with

𝐴 = (
0.2 0.1

−0.1 −0.4
) , 𝐵 = (

0.1 0.5

0.6 0.5
) ,

𝐶 = (
0.2 0.36

0.2 0.8
) .

(38)

We can find that the neuron vector 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇

converges to the unique equilibrium point 𝑥
∗

=

(0.3031, 0.4095)
𝑇 (see Figure 1).

For system (2), we choose 𝛽
𝑖
(𝑢
𝑖
(𝑡)) = 𝛽𝑢

𝑖
(𝑡). In Figure 2,

we exhibit a typical bifurcation and chaos diagrams when
we fix other parameters as (36) and (38) and choose 𝛽 as a
bifurcation parameter (0.01 ≤ 𝛽 ≤ 0.3). It clearly shows that
system (2) admits rich dynamics including period-doubling
bifurcation and chaos.

Example 2. In system (2), we take 𝜏
1
(𝑡) = 𝜏

2
(𝑡) = 1, 𝐽

1
(𝑡) =

2 + sin 𝑡, 𝐽
2
(𝑡) = cos 𝑡, and the other parameters are the same

as those in (36). One can obtain thatM = (
3.6 −2.6

−2.2 2.4
), which

is a nonsingular𝑀-matrix. According toTheorem 13, system
(2) has a 2𝜋-periodic solution which is globally exponentially
stable. We present a simulation with the parameters in (38)
(see Figure 3).

6. Conclusion

In this paper, we discussed a class of interval CGNNs
with time-varying delays and infinite distributed delays.
By employing 𝐻-matrix and 𝑀-matrix theory, Lyapunov
functional method, and LMI approach, sufficient conditions
were established for the existence, uniqueness, and global
robust exponential stability of the equilibrium point and the
periodic solution to the neural networks. It was shown that
the obtained results improve or complement the previously
published results. Numerical simulations demonstrated the
main results and further showed that chaotic phenomena
may occur for the system, which coincide with the fact
of recognition character of human beings. On the other
hand, it is well known that chaotic synchronization has
been successfully applied to secure communication; chaotic
behaviors of neural networks imply that they may be used to
create secure communication systems.
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