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We study the exponential synchronization problem for a class of stochastic competitive neural networks with different timescales,
as well as spatial diffusion, time-varying leakage delays, and discrete and distributed time-varying delays. By introducing several
important inequalities and using Lyapunov functional technique, an adaptive feedback controller is designed to realize the
exponential synchronization for the proposed competitive neural networks in terms of 𝑝-norm. According to the theoretical
results obtained in this paper, the influences of the timescale, external stimulus constants, disposable scaling constants, and
controller parameters on synchronization are analyzed.Numerical simulations are presented to show the feasibility of the theoretical
results.

1. Introduction

Neural networks are mathematical models that are inspired
by the structure and functional aspects of biological neu-
ral networks. Meyer-Baese et al. [1] proposed competitive
neural networks with different timescales, which describe
the dynamics of cortical cognitive maps with unsupervised
synaptic modifications. In the competitive neural networks
model, there are two types of state variables: the short-term-
memory (STM) variables describing the fast neural activity
and the long-term-memory (LTM) variables describing the
slow unsupervised synaptic modifications. Hence, there are
two timescales in the competitive neural networks, one of
which corresponds to the fast change of the state and the
other to the slow change of the synapse by external stimuli.
The above competitive neural networks are described by the

following differential equations:

STM: 𝜀d𝑦𝑖 (𝑡)
d𝑡 = −𝑐𝑖𝑦𝑖 (𝑡) + 𝑛∑

𝑗=1

𝑎𝑖𝑗𝑓 (𝑦𝑗 (𝑡))
+ 𝐻𝑖

𝑟∑
𝑙=1

𝑚𝑖𝑙 (𝑡) 𝑤𝑙,
LTM:

d𝑚𝑖𝑙 (𝑡)
d𝑡 = −𝑚𝑖𝑙 (𝑡) + 𝑤𝑙𝑓 (𝑦𝑖 (𝑡)) ,

(1)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑦𝑖(𝑡) is the neuron current activity
level,𝑚𝑖𝑙(𝑡) is the synaptic efficiency, 𝑓(𝑦𝑗(𝑡)) is the output of
neurons, 𝑐𝑖 > 0 is the time constant of the neuron, 𝑎𝑖𝑗 denotes
the connection strength of the 𝑗th neuron on the 𝑖th neuron,𝐻𝑖 is the strength of the external stimulus, 𝑤𝑙 is the constant
external stimulus, 𝑟 is the number of the constant external
stimuli, and 𝜀 > 0 is the timescale of the STM state.
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Synchronization problems of neural networks have been
widely researched because of their extensive applications in
secure communication, information processing, and chaos
generators design. Synchronization of competitive neural
networks with different timescales has attracted a great inter-
est [2–7]. In [7], Gan et al. studied the adaptive synchroniza-
tion for a class of competitive neural networks with different
timescales and stochastic perturbation by constructing a
Lyapunov-Krasovskii functional:

STM: 𝜀d𝑦𝑖 (𝑡)
d𝑡 = −𝑐𝑖𝑦𝑖 (𝑡) + 𝑛∑

𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡) , 𝑥))

+ 𝑛∑
𝑗=1

𝑑𝑖𝑗 ∫𝑡

𝑡−𝜏∗(𝑡)
𝑓𝑗 (𝑦𝑗 (𝑠)) d𝑠

+ 𝐻𝑖

𝑟∑
𝑙=1

𝑚𝑖𝑙 (𝑡) 𝑤𝑙,
LTM:

d𝑚𝑖𝑙 (𝑡)
d𝑡 = −𝐾𝑖𝑚𝑖𝑙 (𝑡) + 𝑤𝑙𝑓𝑖 (𝑦𝑖 (𝑡)) ,

(2)

where 𝜏(𝑡) and 𝜏∗(𝑡) are the discrete time-varying delay and
the distributed time-varying delay, respectively; 𝑏𝑖𝑗 and 𝑑𝑖𝑗
are, respectively, the discrete time-varying delay connection
strength and the distributed time-varying delay connection
strength of the 𝑗th neuron on the 𝑖th neuron; 𝐾𝑖 is the
disposable scaling constant.

The first term 𝑦𝑖(𝑡) in each of the right sides of (2) is
called leakage term corresponding to a stabilizing negative
feedback of the system [8, 9]. In real world, the transmission
delays often appear in leakage terms, which are called leakage
delays [10]. It is well known that leakage delays have been
incorporated into neural networks by many researchers [11–
14]. However, leakage delays of neural networks in most
bibliographies listed above are constants. As pointed out
in [15–18], the delays in neural networks are usually time-
varying. Hence, the results about the neural networks with
constant delays in the leakage term are imperfect.

In addition, dynamic behaviors of neural networks derive
from the interactions of neurons, which is dependent on
not only the time of each neuron but also its space position
[19, 20]. From this point, diffusion phenomena should not
be ignored in neural networks. Many good results about
reaction-diffusion neural networks have been obtained [21–
25]. The boundary conditions in most literatures listed are
assumed to be Dirichlet boundary conditions. In engineering
applications, such as thermodynamics, Neumann boundary
conditions need to be considered. As far as we know, there
are few results concerning the synchronization of competitive
neural networks with reaction-diffusion term under Neu-
mann boundary conditions.

Based on the above discussion, we are concerned with the
combined effects of time-varying leakage delays, stochastic
perturbation, and spatial diffusion on the synchronization

of competitive neural networks with Neumann boundary
conditions in terms of 𝑝-norm via an adaptive feedback
controller to improve the previous results. To this end, we
discuss the following neural networks:

STM: 𝜀𝜕𝑦𝑖 (𝑡, 𝑥)𝜕𝑡 = 𝐷𝑖Δ𝑦𝑖 (𝑡, 𝑥) − 𝑐𝑖𝑦𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)
+ 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡, 𝑥))

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥))

+ 𝑛∑
𝑗=1

𝑑𝑖𝑗 ∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)
𝑓𝑗 (𝑦𝑗 (𝑠, 𝑥)) d𝑠

+ 𝐻𝑖

𝑟∑
𝑙=1

𝑚𝑖𝑙 (𝑡, 𝑥) 𝑤𝑙,
LTM:

𝜕𝑚𝑖𝑙 (𝑡, 𝑥)𝜕𝑡 = −𝐾𝑖𝑚𝑖𝑙 (𝑡, 𝑥) + 𝑤𝑙𝑓𝑖 (𝑦𝑖 (𝑡, 𝑥)) ,

(3)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑚)𝑇 ∈ Ω ⊂ R𝑚 andΩ = {𝑥 = (𝑥1, 𝑥2,. . . , 𝑥𝑚)𝑇 | |𝑥𝑘| < 𝑚𝑘} is a bound compact set with smooth
boundary 𝜕Ω and mesΩ > 0 in spaceR𝑚; 𝑦(𝑡, 𝑥) = (𝑦1(𝑡, 𝑥),𝑦2(𝑡, 𝑥), . . . , 𝑦𝑛(𝑡, 𝑥)) with 𝑦𝑖(𝑡, 𝑥) denotes the state of the 𝑖th
neuron at time 𝑡 and in space 𝑥; Δ = ∑𝑚

𝑘=1(𝜕2/𝜕𝑥2𝑘) is the
Laplace operator; 0 < 𝜏𝑖𝑗(𝑡) ≤ 𝜏 and 0 < 𝜏∗𝑖𝑗(𝑡) ≤ 𝜏∗ are the
discrete time-varying delay and the distributed time-varying
delay, respectively; 0 < 𝛿𝑖(𝑡) ≤ 𝛿 is the time-varying leakage
delay; 𝐷𝑖 > 0 corresponds to the transmission diffusion
coefficient along the 𝑖th neuron.

Let 𝑠𝑖(𝑡, 𝑥) = ∑𝑟
𝑙=1𝑚𝑖𝑙(𝑡, 𝑥)𝑤𝑙 = 𝑚𝑇

𝑖 (𝑡, 𝑥)𝑤, where𝑚𝑖(𝑡, 𝑥) = (𝑚𝑖1(𝑡, 𝑥), 𝑚𝑖2(𝑡, 𝑥), . . . , 𝑚𝑖𝑟(𝑡, 𝑥))𝑇 and 𝑤 = (𝑤1,𝑤2, . . . , 𝑤𝑟)𝑇, and then then system (3) can be rewritten as

STM: 𝜀𝜕𝑦𝑖 (𝑡, 𝑥)𝜕𝑡 = 𝐷𝑖Δ𝑦𝑖 (𝑡, 𝑥) − 𝑐𝑖𝑦𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)
+ 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡, 𝑥))

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥))

+ 𝑛∑
𝑗=1

𝑑𝑖𝑗 ∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)
𝑓𝑗 (𝑦𝑗 (𝑠, 𝑥)) d𝑠

+ 𝐻𝑖𝑠𝑖 (𝑡, 𝑥) ,
LTM:

𝜕𝑠𝑖 (𝑡, 𝑥)𝜕𝑡 = −𝐾𝑖𝑠𝑖 (𝑡, 𝑥) + |𝑤|2 𝑓𝑖 (𝑦𝑖 (𝑡, 𝑥)) ,

(4)

where |𝑤|2 = 𝑤2
1 + 𝑤2

2 + ⋅ ⋅ ⋅ + 𝑤2
𝑟 . Without loss of generality,

the input stimulus vector𝑤 is assumed to be normalized with
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magnitude |𝑤|2 = 1. System (4) is simplified to

STM: 𝜀𝜕𝑦𝑖 (𝑡, 𝑥)𝜕𝑡 = 𝐷𝑖Δ𝑦𝑖 (𝑡, 𝑥) − 𝑐𝑖𝑦𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)
+ 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡, 𝑥))

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥))

+ 𝑛∑
𝑗=1

𝑑𝑖𝑗 ∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)
𝑓𝑗 (𝑦𝑗 (𝑠, 𝑥)) d𝑠

+ 𝐻𝑖𝑠𝑖 (𝑡, 𝑥) ,
LTM:

𝜕𝑠𝑖 (𝑡, 𝑥)𝜕𝑡 = −𝐾𝑖𝑠𝑖 (𝑡, 𝑥) + 𝑓𝑖 (𝑦𝑖 (𝑡, 𝑥)) .

(5)

The boundary condition of system (5) takes the form

𝜕𝑦𝑖 (𝑡, 𝑥)𝜕n fl (𝜕𝑦𝑖 (𝑡, 𝑥)𝜕𝑥1 , 𝜕𝑦𝑖 (𝑡, 𝑥)𝜕𝑥2 , . . . , 𝜕𝑦𝑖 (𝑡, 𝑥)𝜕𝑥𝑚 )𝑇

= 0, (𝑡, 𝑥) ∈ [−𝜏, +∞) × 𝜕Ω,
𝜕𝑠𝑖 (𝑡, 𝑥)𝜕n fl (𝜕𝑠𝑖 (𝑡, 𝑥)𝜕𝑥1 , 𝜕𝑠𝑖 (𝑡, 𝑥)𝜕𝑥2 , . . . , 𝜕𝑠𝑖 (𝑡, 𝑥)𝜕𝑥𝑚 )𝑇 = 0,

(𝑡, 𝑥) ∈ [−𝜏, +∞) × 𝜕Ω.

(6)

The initial value of system (5) takes the form

𝑦 (𝜃, 𝑥) = 𝜙𝑦 (𝜃, 𝑥) ,
𝑠 (𝜃, 𝑥) = 𝜙𝑠 (𝜃, 𝑥) ,

(𝜃, 𝑥) ∈ [−𝜏, 0] × Ω,
(7)

where 𝜏 = max {𝛿, 𝜏, 𝜏∗}, 𝑠(𝜃, 𝑥) = (𝑠1(𝜃, 𝑥), 𝑠2(𝜃, 𝑥),. . . , 𝑠𝑛(𝜃, 𝑥))𝑇, 𝜙𝑦(𝜃, 𝑥) = (𝜙𝑦1 (𝜃, 𝑥), 𝜙𝑦2 (𝜃, 𝑥), . . . , 𝜙𝑦𝑛 (𝜃, 𝑥))𝑇,𝜙𝑠(𝜃, 𝑥) = (𝜙𝑠1(𝜃, 𝑥), 𝜙𝑠2(𝜃, 𝑥), . . . , 𝜙𝑠𝑛(𝜃, 𝑥))𝑇 ∈ C([−𝜏, 0) ×Ω,R𝑛), and C([−𝜏, 0) × Ω,R𝑛) is the Banach space of
continuous functions which maps [−𝜏, 0) × Ω into R𝑛 with
the topology of uniform converge and𝑝-norm (𝑝 is a positive
integer) defined by

󵄩󵄩󵄩󵄩𝜙𝑦󵄩󵄩󵄩󵄩𝑝 = (∫
Ω

𝑛∑
𝑖=1

sup
−𝜏≤𝜃≤0

󵄨󵄨󵄨󵄨𝜙𝑦𝑖 (𝜃, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥)
1/𝑝 ,

󵄩󵄩󵄩󵄩𝜙𝑠󵄩󵄩󵄩󵄩𝑝 = (∫
Ω

𝑛∑
𝑖=1

sup
−𝜏≤𝜃≤0

󵄨󵄨󵄨󵄨𝜙𝑠𝑖 (𝜃, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥)
1/𝑝 .

(8)

In order to observe the exponential synchronization
behavior of system (5), the response system with stochastic
perturbation is designed as

STM: d𝑧𝑖 (𝑡, 𝑥) = 1𝜀 [[
𝐷𝑖Δ𝑧𝑖 (𝑡, 𝑥) − 𝑐𝑖𝑧𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)

+ 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑧𝑗 (𝑡, 𝑥)) + 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑧𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥))

+ 𝑛∑
𝑗=1

𝑑𝑖𝑗 ∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)
𝑓𝑗 (𝑧𝑗 (𝑠, 𝑥)) d𝑠 + 𝐻𝑖ℎ𝑖 (𝑡, 𝑥) + 𝑢𝑖 (𝑡,

𝑥)]
]
d𝑡 + 𝑛∑

𝑗=1

𝜎𝑖𝑗 (𝑒𝑗 (𝑡, 𝑥) , 𝑒𝑗 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥) ,
𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥) , 𝑒𝑗 (𝑡 − 𝜏∗𝑖𝑗 (𝑡) , 𝑥)) d𝜔𝑗 (𝑡) ,

LTM:
𝜕ℎ𝑖 (𝑡, 𝑥)𝜕𝑡 = −𝐾𝑖ℎ𝑖 (𝑡, 𝑥) + 𝑓𝑖 (𝑧𝑖 (𝑡, 𝑥)) ,

(9)

where 𝑧(𝑡, 𝑥) = (𝑧1(𝑡, 𝑥), 𝑧2(𝑡, 𝑥), . . . , 𝑧𝑛(𝑡, 𝑥))𝑇 and ℎ(𝑡, 𝑥) =(ℎ1(𝑡, 𝑥), ℎ2(𝑡, 𝑥), . . . , ℎ𝑛(𝑡, 𝑥))𝑇 denote the state of the
response system; 𝑒(𝑡, 𝑥) = 𝑧(𝑡, 𝑥) − 𝑦(𝑡, 𝑥) and 𝑅(𝑡, 𝑥) =ℎ(𝑡, 𝑥) − 𝑠(𝑡, 𝑥) are the synchronization error system; 𝜎 =(𝜎𝑖𝑗)𝑛×𝑛 is the noise intensity matrix and the stochastic
disturbance 𝜔(𝑡) = [𝜔1(𝑡), 𝜔2(𝑡), . . . , 𝜔𝑛(𝑡)]𝑇 ∈ R𝑛 is a
Brownian motion defined on (Ω,F,P) (where Ω is the
sample, F is the 𝜎-algebra of subsets of the sample space,
andP is the probability measure onF), and

E {d𝜔 (𝑡)} = 0,
E {d𝜔2 (𝑡)} = 0, (10)

where E{⋅} is the mathematical expectation operator with
respect to the given probability measure P; 𝑢(𝑡, 𝑥) =(𝑢1(𝑡, 𝑥), 𝑢2(𝑡, 𝑥), . . . , 𝑢𝑛(𝑡, 𝑥))𝑇 is a feedback controller of the
following form:

𝑢 (𝑡, 𝑥) = 𝜖𝑒 (𝑡, 𝑥) . (11)

The feedback strength 𝜖 = diag (𝜖1, 𝜖2, . . . , 𝜖𝑛) is updated by
the following law:

𝜕𝜖𝑖𝜕𝑡 = −]𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑒𝜇𝑡, (12)

where 𝜇 > 0 and ]𝑖 > 0 (𝑖 = 1, 2, . . . , 𝑛) are arbitrary positive
constants.

The boundary condition and initial condition for
response system (9) are given in the following forms:

𝜕𝑧𝑖 (𝑡, 𝑥)𝜕n fl (𝜕𝑧𝑖 (𝑡, 𝑥)𝜕𝑥1 , 𝜕𝑧𝑖 (𝑡, 𝑥)𝜕𝑥2 , . . . , 𝜕𝑧𝑖 (𝑡, 𝑥)𝜕𝑥𝑚 )𝑇

= 0, (𝑡, 𝑥) ∈ [−𝜏, +∞) × 𝜕Ω,
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𝜕ℎ𝑖 (𝑡, 𝑥)𝜕n fl (𝜕ℎ𝑖 (𝑡, 𝑥)𝜕𝑥1 , 𝜕ℎ𝑖 (𝑡, 𝑥)𝜕𝑥2 , . . . , 𝜕ℎ𝑖 (𝑡, 𝑥)𝜕𝑥𝑚 )𝑇

= 0, (𝑡, 𝑥) ∈ [−𝜏, +∞) × 𝜕Ω,
(13)

𝑧 (𝜃, 𝑥) = 𝜓𝑧 (𝜃, 𝑥) ,
ℎ (𝜃, 𝑥) = 𝜓ℎ (𝜃, 𝑥) ,

(𝜃, 𝑥) ∈ [−𝜏, 0] × Ω,
(14)

where 𝜓𝑧(𝜃, 𝑥) = (𝜓𝑧1 (𝜃, 𝑥), 𝜓𝑧2 (𝜃, 𝑥), . . . , 𝜓𝑧𝑛(𝜃, 𝑥))𝑇 and𝜓ℎ(𝜃, 𝑥) = (𝜓ℎ1 (𝜃, 𝑥), 𝜓ℎ2 (𝜃, 𝑥), . . . , 𝜓ℎ𝑛 (𝜃, 𝑥))𝑇 ∈ C([−𝜏, 0) ×Ω,R𝑛).
Subtracting (5) from (9) yields the error system as follows:

STM: d𝑒𝑖 (𝑡, 𝑥) = 1𝜀 [[
𝐷𝑖Δ𝑒𝑖 (𝑡, 𝑥) − 𝑐𝑖𝑒𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)

+ 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑓∗𝑗 (𝑒𝑗 (𝑡, 𝑥)) + 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓∗𝑗 (𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥))

+ 𝑛∑
𝑗=1

𝑑𝑖𝑗 ∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)
𝑓∗𝑗 (𝑒𝑗 (𝑠, 𝑥)) d𝑠 + 𝐻𝑖𝑅𝑖 (𝑡, 𝑥)

+ 𝑢𝑖 (𝑡, 𝑥)]]
d𝑡 + 𝑛∑

𝑗=1

𝜎𝑖𝑗 (𝑒𝑗 (𝑡, 𝑥) , 𝑒𝑗 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥) ,
𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥) , 𝑒𝑗 (𝑡 − 𝜏∗𝑖𝑗 (𝑡) , 𝑥)) d𝜔𝑗 (𝑡) ,

LTM:
𝜕𝑅𝑖 (𝑡, 𝑥)𝜕𝑡 = −𝐾𝑖𝑅𝑖 (𝑡, 𝑥) + 𝑓∗𝑖 (𝑒𝑖 (𝑡, 𝑥)) ,

(15)

where 𝑓∗𝑗 (𝑒𝑗(⋅, 𝑥)) = 𝑓𝑗(𝑧𝑗(⋅, 𝑥)) − 𝑓𝑗(𝑦𝑗(⋅, 𝑥)).
In this paper, we give the following hypotheses.(H1)There exists a positive constant 𝐿 𝑖 such that the neu-

ron activation function 𝑓𝑖 satisfies the following conditions:󵄨󵄨󵄨󵄨𝑓𝑖 (V̂𝑖) − 𝑓𝑖 (V̌𝑖)󵄨󵄨󵄨󵄨 ≤ 𝐿 𝑖 󵄨󵄨󵄨󵄨V̂𝑖 − V̌𝑖
󵄨󵄨󵄨󵄨 , (16)

where V̂𝑖, V̌𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛.(H2)There exists a positive constant 𝜂𝑖𝑗 such that

󵄨󵄨󵄨󵄨󵄨𝜎𝑖𝑗 (Ṽ1, V̂1, V̌1, V̆1) − 𝜎𝑖𝑗 (Ṽ2, V̂2, V̌2, V̆2)󵄨󵄨󵄨󵄨󵄨2
≤ 𝜂𝑖𝑗 (󵄨󵄨󵄨󵄨Ṽ1 − Ṽ2

󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨V̂1 − V̂2
󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨V̌1 − V̌2

󵄨󵄨󵄨󵄨2
+ 󵄨󵄨󵄨󵄨V̆1 − V̆2

󵄨󵄨󵄨󵄨2) ,
(17)

for all Ṽ1, Ṽ2, V̂1, V̂2, V̌1, V̌2, V̆1, V̆2 ∈ R, and 𝜎𝑖𝑗(0, 0, 0, 0) = 0,𝑖, 𝑗 = 1, 2, . . . , 𝑛.(H3) There exist positive constants 𝜌󸀠 and 𝜌󸀠󸀠 such thaṫ𝛿𝑖(𝑡) ≤ 𝜌󸀠 < 1 or ̇𝛿𝑖(𝑡) ≥ 𝜌󸀠󸀠 > 1 for all 𝑡, 𝑖 = 1, 2, . . . , 𝑛.(H4) There exist positive constants 󰜚󸀠 and 󰜚󸀠󸀠 such thaṫ𝜏𝑖𝑗(𝑡) ≤ 󰜚󸀠 < 1 or ̇𝜏𝑖𝑗(𝑡) ≥ 󰜚󸀠󸀠 > 1 for all 𝑡, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.(H5)There exist positive constants 󰜚∗󸀠 and 󰜚∗󸀠󸀠 such thaṫ𝜏∗𝑖𝑗(𝑡) ≤ 󰜚∗󸀠 < 1 or ̇𝜏𝑖𝑗(𝑡) ≥ 󰜚∗󸀠󸀠 > 1 for all 𝑡, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

The paper is organized as follows. In the next section, we
introduce some definitions and state several lemmas which
will be essential to our proofs. In Section 3, by constructing a
suitable Lyapunov functional, some new criteria are obtained
to ensure the exponential synchronization of systems (5)
and (9) under the adaptive feedback controller (11) and
(12). Numerical simulations are carried out in Section 4 to
illustrate the feasibility of the main theoretical results. A brief
conclusion is given in Section 5.

2. Preliminary

In this section, we introduce some notations and lemmas
which will be useful in the next section.

Definition 1. The noise-perturbed response system (9) and
the drive system (5) can be exponentially synchronized under
the adaptive controller (11) and (12) based on 𝑝-norm, if there
exist constants 𝛾, 𝛾∗ > 0 and𝑀,𝑀∗ ≥ 1 such that

E {󵄩󵄩󵄩󵄩𝑧 (𝑡, 𝑥) − 𝑦 (𝑡, 𝑥)󵄩󵄩󵄩󵄩𝑝} + E {‖ℎ (𝑡, 𝑥) − 𝑠 (𝑡, 𝑥)‖𝑝}
≤ 𝑀E {󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝} 𝑒−𝛾𝑡

+𝑀∗E {󵄩󵄩󵄩󵄩󵄩𝜓ℎ − 𝜙𝑠󵄩󵄩󵄩󵄩󵄩𝑝} 𝑒−𝛾∗𝑡,
(𝑡, 𝑥) ∈ [0, +∞) × Ω,

(18)

where 𝑧(𝑡, 𝑥), ℎ(𝑡, 𝑥) and 𝑦(𝑡, 𝑥), 𝑠(𝑡, 𝑥) are solutions of sys-
tems (9) and (5) with differential initial functions (14) and (7),
respectively, and󵄩󵄩󵄩󵄩𝑧 (𝑡, 𝑥) − 𝑦 (𝑡, 𝑥)󵄩󵄩󵄩󵄩𝑝

= (∫
Ω

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑧𝑖 (𝑡, 𝑥) − 𝑦𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥)
1/𝑝 ,

‖ℎ (𝑡, 𝑥) − 𝑠 (𝑡, 𝑥)‖𝑝
= (∫

Ω

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨ℎ𝑖 (𝑡, 𝑥) − 𝑠𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥)
1/𝑝 .

(19)

Lemma 2 (Wang [26], Itô’s formula). Let 𝑥(𝑡) (𝑡 ≥ 0) be Itô
processes, and

d𝑥 (𝑡) = 𝑓 (𝑡) d𝑡 + 𝑔 (𝑡) d𝐵𝑡, (20)

where𝑓 ∈ L1(𝑅+, 𝑅𝑛) (L1 is the space of absolutely integrable
function) and 𝑔 ∈ L2(𝑅+, 𝑅𝑛×𝑚) (L2 is the space of square
integrable function). If 𝑉(𝑥, 𝑡) ∈ 𝐶2,1(𝑅𝑛 × 𝑅+; 𝑅), (𝐶2,1(𝑅𝑛 ×𝑅+; 𝑅) is the family of all nonnegative functions on 𝑅+ × 𝑅𝑛
which are continuously twice differentiable in 𝑥 and once
differentiable in 𝑡), then 𝑉(𝑥(𝑡), 𝑡) are still It𝑜 processes, and

d𝑉 (𝑥 (𝑡) , 𝑡) = [𝑉𝑡 (𝑥 (𝑡) , 𝑡) + 𝑉𝑥 (𝑥 (𝑡) , 𝑡) 𝑓 (𝑡)
+ 12 tr (𝑔𝑇 (𝑡) 𝑉𝑥𝑥 (𝑥 (𝑡) , 𝑡) 𝑔 (𝑡))] d𝑡
+ 𝑉𝑥 (𝑥 (𝑡) , 𝑡) 𝑔 (𝑡) d𝐵𝑡,

(21)
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where

𝑉𝑡 (𝑥 (𝑡) , 𝑡) = 𝜕𝑉 (𝑥 (𝑡) , 𝑡)𝜕𝑡 ,
𝑉𝑥 (𝑥 (𝑡) , 𝑡) = (𝜕𝑉 (𝑥 (𝑡) , 𝑡)𝜕𝑥1 , . . . , 𝜕𝑉 (𝑥 (𝑡) , 𝑡)𝜕𝑥𝑛 ) ,
𝑉𝑥𝑥 (𝑥 (𝑡) , 𝑡) = (𝜕2𝑉 (𝑥 (𝑡) , 𝑡)𝜕𝑒𝑖𝜕𝑒𝑗 )

𝑛×𝑛

.
(22)

Lemma 3 (Mei et al. [27]). Let 𝑝 ≥ 2 and let 𝑎, 𝑏, ℎ > 0. Then

𝑎𝑝−1𝑏 ≤ (𝑝 − 1) ℎ𝑎𝑝𝑝 + 𝑏𝑝𝑝ℎ𝑝−1 , (23)

𝑎𝑝−2𝑏2 ≤ (𝑝 − 2) ℎ𝑎𝑝𝑝 + 2𝑏𝑝𝑝ℎ(𝑝−2)/2 . (24)

Lemma 4 (Mao [28]). Let 𝐹(𝑥), 𝐺(𝑥) : [𝑎, 𝑏] → R be
continuous functions. Suppose that positive constants 𝑝 and 𝑞
satisfy

1𝑝 + 1𝑞 = 1. (25)

Then

∫𝑏

𝑎
|𝐹 (𝑥) 𝐺 (𝑥)| d𝑥
≤ [∫𝑏

𝑎
|𝐹 (𝑥)|𝑝 d𝑥]1/𝑝 [∫𝑏

𝑎
|𝐺 (𝑥)|𝑞 d𝑥]1/𝑞 .

(26)

Lemma 5 (Gu et al. [29]). Suppose thatΩ is a bound domain
of 𝑅𝑚 with a smooth boundary 𝜕Ω. 𝑢(𝑥), V(𝑥) are real-valued
functions belonging toC2(Ω ∪ 𝜕Ω). Then

∫
Ω
𝑢 (𝑥) ΔV (𝑥) d𝑥 = ∫

𝜕Ω
𝑢 (𝑥) 𝜕V (𝑥)𝜕n d𝑥

− ∫
Ω
(∇𝑢 (𝑥))𝑇 ∇V (𝑥) d𝑥,

(27)

where ∇ = (𝜕/𝜕𝑥1, 𝜕/𝜕𝑥2, . . . , 𝜕/𝜕𝑥𝑚)𝑇 is the gradient opera-
tor.

Lemma 6. Let 𝑝 ≥ 2 be a positive integer and letΩ be a bound
domain of 𝑅𝑙∗ with a smooth boundary 𝜕Ω. 𝜑(𝑥) ∈ C1(Ω) is a
real-valued function and (𝜕𝜑(𝑥)/𝜕n)|𝜕Ω = 0. Then

∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥 ≤ 𝑝 − 1𝜆1 ∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥)󵄨󵄨󵄨󵄨𝑝−2 󵄨󵄨󵄨󵄨∇𝜑 (𝑥)󵄨󵄨󵄨󵄨2 d𝑥, (28)

where 𝜆1 is the smallest positive eigenvalue of the Neumann
boundary problem:

−Δ𝜗 (𝑥) = 𝜆𝜗 (𝑥) , 𝑥 ∈ Ω,

𝜕𝜗 (𝑥)𝜕n = 0, 𝑥 ∈ 𝜕Ω.
(29)

The proof of Lemma 6 is attached in Appendix.

Remark 7. If𝑝 = 2, the integral inequality (28) is the Poincaré
integral inequality in [30]. The smallest eigenvalue 𝜆1 of
the Neumann boundary problem (29) is determined by the
boundary of Ω [30]. If Ω = {𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑙∗)𝑇 | 𝑚−

𝑘 ≤
𝑥𝑘 ≤ 𝑚+

𝑘 , 𝑘 = 1, 2, . . . , 𝑙∗} ⊂ 𝑅𝑙∗ , then
𝜆1 = min{( 𝜋𝑚+

1 − 𝑚−
1

)2 , ( 𝜋𝑚+
2 − 𝑚−

2

)2 , . . . ,

( 𝜋𝑚+
𝑙∗
− 𝑚−

𝑙∗
)2} .

(30)

3. Exponential Synchronization Criterion

In this section, the exponential synchronization criterion
of the drive system (5) and the response system (9) is
obtained under the adaptive feedback controller (11) and
(12). For convenience, the following denotations are intro-
duced.

Denote

𝛼𝑖 = 1𝜅 󵄨󵄨󵄨󵄨1 − 𝜌󵄨󵄨󵄨󵄨 𝑒𝜇𝛿 [[
1𝜀 1
𝜉∗∗𝑝−1𝑖

+ (𝑝 − 1) 𝑛∑
𝑗=1

𝜂𝑗𝑖
𝜍∗((𝑝−2)/2)𝑖

]
]
,

𝛽𝑖𝑗 = 1𝑒𝜇𝜏𝜅 󵄨󵄨󵄨󵄨1 − 󰜚󵄨󵄨󵄨󵄨 [
(𝑝 − 1) 𝜂𝑗𝑖
𝜍∗∗((𝑝−2)/2)𝑖

+ 1𝜀
󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿 𝑖𝜛∗𝑝−1𝑖

] ,

𝛾𝑖𝑗 = (𝑝 − 1) 𝜂𝑗𝑖
𝑒𝜇𝜏∗𝜅 󵄨󵄨󵄨󵄨1 − 󰜚∗󵄨󵄨󵄨󵄨 𝜍∗∗∗((𝑝−2)/2)𝑖

,
𝛼∗𝑖 = 𝛼𝑖 − 𝜅𝛼𝑖 sgn (1 − 𝜌) ,
𝛽∗𝑖𝑗 = 𝛽𝑖𝑗 − 𝜅𝛽𝑖𝑗 sgn (1 − 󰜚) ,
𝛾∗𝑖𝑗 = 𝛾𝑖𝑗 − 𝜅𝛾𝑖𝑗 sgn (1 − 󰜚∗) ,

𝛾∗∗𝑖𝑗 = 1𝜀
(𝜏∗)𝑝−1 𝐿 𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨𝜛∗∗𝑝−1𝑖

,

𝑙𝑖 = 𝜀𝑝 [
[
−1𝜀𝑝𝜆1𝐷𝑖 + 𝜇 + 𝛼𝑖𝑒𝜇𝛿 + 1𝜀 𝑐𝑖 (𝑝 − 1) 𝜉∗∗𝑖

+ 𝐿 𝑖𝜉𝑝−1𝑖

+ 1𝜀 󵄨󵄨󵄨󵄨𝐻𝑖
󵄨󵄨󵄨󵄨 (𝑝 − 1) 𝜉∗𝑖 + 𝑒𝜇𝜏 𝑛∑

𝑗=1

𝛽𝑖𝑗 + 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾𝑖𝑗

+ 𝜏∗𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗 + 1𝜀
𝑛∑
𝑗=1

1
𝜛𝑝−1𝑖

󵄨󵄨󵄨󵄨󵄨𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿 𝑖
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+ 1𝜀 (𝑝 − 1) 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛∗𝑗

+ 1𝜀 (𝑝 − 1) 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛∗∗𝑗

+ 1𝜀 (𝑝 − 1) 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛𝑗 + (𝑝 − 1) (𝑝 − 2)
2

𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍𝑗

+ (𝑝 − 1) (𝑝 − 2)2
𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍∗𝑗

+ (𝑝 − 1) (𝑝 − 2)2
𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍∗∗𝑗

+ (𝑝 − 1) (𝑝 − 2)2
𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍∗∗∗𝑗 + (𝑝 − 1) 𝑛∑
𝑗=1

𝜂𝑗𝑖
𝜍(𝑝−2)/2𝑖

]
]
,

(31)

where 0 < 𝜅 < 1, |1 − 𝜌| = max{|1 − 𝜌󸀠|, |1 − 𝜌󸀠󸀠|}, |1 − 󰜚| =
max{|1 − 󰜚󸀠|, |1 − 󰜚󸀠󸀠|}, |1 − 󰜚∗| = max{|1 − 󰜚∗󸀠|, |1 − 󰜚∗󸀠󸀠|}, and𝜉𝑖, 𝜉∗𝑖 , 𝜉∗∗𝑖 , 𝜍𝑖, 𝜍∗𝑖 , 𝜍∗∗𝑖 , 𝜍∗∗∗𝑖 , 𝜛𝑖, 𝜛∗𝑖 , and 𝜛∗∗𝑖 are nonnegative
real numbers, respectively.

Theorem 8. Under assumptions (H1)–(H5), the nonlinear
couple neural networks (9) and (5) can be exponentially
synchronized under the adaptive feedback controller (11) and
(12) based on𝑝-norm, if the following condition is also satisfied.(H6) 𝜇 − 𝑝𝐾𝑖 + 𝐿 𝑖(𝑝 − 1)𝜉𝑖 + (1/𝜀)(|𝐻𝑖|/𝜉∗𝑝−1𝑖 ) ≤ 0.

Proof. Define

𝑉 (𝑡) = ∫
Ω

𝑛∑
𝑖=1

[
[
𝑉𝑖 (𝑡, 𝑥) + 𝛼𝑖𝑒𝜇𝛿 ∫𝑡

𝑡−𝛿𝑖(𝑡)
𝑉𝑖 (𝑠, 𝑥) d𝑠

+ 𝛼∗𝑖 𝑒𝜇𝛿 ∫𝑡−𝛿𝑖(𝑡)

𝑡−𝛿
𝑉𝑖 (𝑠, 𝑥) d𝑠

+ 𝑒𝜇𝜏 𝑛∑
𝑗=1

𝛽𝑖𝑗 ∫𝑡

𝑡−𝜏𝑖𝑗(𝑡)
𝑉𝑖 (𝑠, 𝑥) d𝑠

+ 𝑒𝜇𝜏 𝑛∑
𝑗=1

𝛽∗𝑖𝑗 ∫𝑡−𝜏𝑖𝑗(𝑡)

𝑡−𝜏
𝑉𝑖 (𝑠, 𝑥) d𝑠

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾𝑖𝑗 ∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)
𝑉𝑖 (𝑠, 𝑥) d𝑠

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾∗𝑖𝑗 ∫𝑡−𝜏∗𝑖𝑗 (𝑡)

𝑡−𝜏∗
𝑉𝑖 (𝑠, 𝑥) d𝑠

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗 ∫0

−𝜏∗
∫𝑡

𝑡+𝑠
𝑉𝑖 (𝜂, 𝑥) d𝜂d𝑠

+ 𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 + 𝑝2𝜀]𝑖 (𝜖𝑖 + 𝑙𝑖)2]]
d𝑥,

(32)

where 𝑉𝑖(𝑡, 𝑥) = 𝑒𝜇𝑡|𝑒𝑖(𝑡, 𝑥)|𝑝.
By (10), Itô’s differential formula, and Dini derivation, it

can be deduced that

𝐷+E {𝑉 (𝑡)} = E{∫
Ω

𝑛∑
𝑖=1

{𝜇𝑉𝑖 (𝑡, 𝑥) + 𝛼𝑖𝑒𝜇𝛿 [𝑉𝑖 (𝑡, 𝑥) − 𝑉𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥) (1 − ̇𝛿𝑖 (𝑡))]
+ 𝛼∗𝑖 𝑒𝜇𝛿 [𝑉𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥) (1 − ̇𝛿𝑖 (𝑡)) − 𝑉𝑖 (𝑡 − 𝛿, 𝑥)]
+ 𝑒𝜇𝜏 𝑛∑

𝑗=1

𝛽𝑖𝑗 [𝑉𝑖 (𝑡, 𝑥) − 𝑉𝑖 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥) (1 − ̇𝜏𝑖𝑗 (𝑡))]

+ 𝑒𝜇𝜏 𝑛∑
𝑗=1

𝛽∗𝑖𝑗 [𝑉𝑖 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥) (1 − ̇𝜏𝑖𝑗 (𝑡)) − 𝑉𝑖 (𝑡 − 𝜏, 𝑥)]

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾𝑖𝑗 [𝑉𝑖 (𝑡, 𝑥) − 𝑉𝑖 (𝑡 − 𝜏∗𝑖𝑗 (𝑡) , 𝑥) (1 − ̇𝜏∗𝑖𝑗 (𝑡))]

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾∗𝑖𝑗 [𝑉𝑖 (𝑡 − 𝜏∗𝑖𝑗 (𝑡) , 𝑥) (1 − ̇𝜏∗𝑖𝑗 (𝑡)) − 𝑉𝑖 (𝑡 − 𝜏∗, 𝑥)]

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗 ∫0

−𝜏∗
[𝑉𝑖 (𝑡, 𝑥) − 𝑉𝑖 (𝑡 + 𝑠, 𝑥)] d𝑠 + 𝜇𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝

+ 𝑝𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1 [−𝐾𝑖𝑅𝑖 (𝑡, 𝑥) + 𝑓∗𝑖 (𝑒𝑖 (𝑡, 𝑥))]
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− 𝑝𝜀 (𝜖𝑖 + 𝑙𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑒𝜇𝑡
+ 1𝜀𝑝𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1 [𝐷𝑖Δ𝑒𝑖 (𝑡, 𝑥) − 𝑐𝑖𝑒𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)
+ 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑓∗𝑗 (𝑒𝑗 (𝑡, 𝑥))

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓∗𝑗 (𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥))
+ 𝐻𝑖𝑅𝑖 (𝑡, 𝑥) + 𝜖𝑖𝑒𝑖 (𝑡, 𝑥)]
+ 𝑝 (𝑝 − 1) 𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−22
⋅ 𝑛∑
𝑗=1

𝜎2𝑖𝑗 (𝑒𝑗 (𝑡, 𝑥) , 𝑒𝑗 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥) ,

𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥) , 𝑒𝑗 (𝑡 − 𝜏∗𝑖𝑗 (𝑡) , 𝑥))} d𝑥}

≤ E{∫
Ω

𝑛∑
𝑖=1

{𝜇𝑉𝑖 (𝑡, 𝑥) + 𝛼𝑖𝑒𝜇𝛿𝑉𝑖 (𝑡, 𝑥)
− 𝜅𝛼𝑖 󵄨󵄨󵄨󵄨1 − 𝜌󵄨󵄨󵄨󵄨 𝑒𝜇𝛿𝑉𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)
+ 𝑒𝜇𝜏 𝑛∑

𝑗=1

𝛽𝑖𝑗𝑉𝑖 (𝑡, 𝑥) − 𝑒𝜇𝜏 𝑛∑
𝑗=1

𝜅𝛽𝑖𝑗 󵄨󵄨󵄨󵄨1 − 󰜚󵄨󵄨󵄨󵄨 𝑉𝑖 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥)

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾𝑖𝑗𝑉𝑖 (𝑡, 𝑥) − 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝜅𝛾𝑖𝑗 󵄨󵄨󵄨󵄨1 − 󰜚∗󵄨󵄨󵄨󵄨 𝑉𝑖 (𝑡 − 𝜏∗𝑖𝑗 (𝑡) , 𝑥)

+ 𝜏∗𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗 𝑉𝑖 (𝑡, 𝑥) − 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗 ∫𝑡

𝑡−𝜏∗
𝑉𝑖 (𝑠, 𝑥) d𝑠

+ (𝜇 − 𝑝𝐾𝑖) 𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 + 𝑝𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1 𝐿 𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨
− 𝑝𝜀 (𝜖𝑖 + 𝑙𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 𝑒𝜇𝑡 + 1𝜀𝑝𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1 [𝐷𝑖Δ 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 + 𝑐𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨 +
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ∫
𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)
𝐿𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑠, 𝑥)󵄨󵄨󵄨󵄨󵄨 d𝑠

+ 󵄨󵄨󵄨󵄨𝐻𝑖
󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 + 𝜖𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨] + 𝑝 (𝑝 − 1) 𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−22

𝑛∑
𝑗=1

𝜂𝑖𝑗 (󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨󵄨2

+ 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏∗𝑖𝑗 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨󵄨2)} d𝑥} .
(33)
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From the boundary conditions (6) and (13) and Lemma 6, we
get

𝑝∫
Ω

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1𝐷𝑖Δ 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 d𝑥

= 𝑝(∫
𝜕Ω

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1

⋅ 𝐷𝑖

𝑚∑
𝑘=1

𝜕 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝜕𝑥𝑘 cos (𝑥𝑘, 𝑛) d𝑠

− ∫
Ω

𝑚∑
𝑘=1

𝐷𝑖

𝜕 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝜕𝑥𝑘 ⋅ 𝜕 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1𝜕𝑥𝑘 d𝑥)

= −𝑝 (𝑝 − 1)𝐷𝑖 ∫
Ω

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−2
𝑚∑
𝑘=1

𝜕 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝜕𝑥𝑘
⋅ 𝜕 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝜕𝑥𝑘 d𝑥 = −𝑝 (𝑝 − 1)
⋅ 𝐷𝑖 ∫

Ω

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−2 | ∇ 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨2 d𝑥
≤ −𝑝𝜆1𝐷𝑖 ∫

Ω

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥.

(34)

By Lemma 4, we obtain

∫𝑡

𝑡−𝜏∗
𝑉𝑖 (𝑠, 𝑥) d𝑠 ≥ 𝑒𝜇𝑡𝑒−𝜇𝜏⋆ ∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

≥ 𝑒𝜇𝑡𝑒−𝜇𝜏⋆ (∫
𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨 d𝑠)𝑝
(𝜏∗𝑖𝑗 (𝑡))𝑝/𝑞

≥ 𝑒𝜇𝑡𝑒−𝜇𝜏⋆ (𝜏∗)1−𝑝(∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨 d𝑠)
𝑝 .

(35)

It follows from (23) that

𝑝 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨
≤ (𝑝 − 1) 𝜉𝑖 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 +

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝𝜉𝑝−1𝑖

,
𝑝 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨

≤ (𝑝 − 1) 𝜉∗𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 +
󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝𝜉∗𝑝−1𝑖

,

𝑝 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨
≤ (𝑝 − 1) 𝜉∗∗𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 +

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨𝑝𝜉∗∗𝑝−1𝑖

,

𝑝 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨

≤ (𝑝 − 1) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛𝑗

+ 𝑛∑
𝑗=1

𝐿𝑗 󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨𝑝𝜛𝑝−1𝑗

,

𝑝 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨󵄨

≤ (𝑝 − 1) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛∗𝑗

+ 𝑛∑
𝑗=1

𝐿𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥)󵄨󵄨󵄨󵄨󵄨𝑝𝜛∗𝑝−1𝑗

,

𝑝 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−1
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 ∫
𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑠, 𝑥)󵄨󵄨󵄨󵄨󵄨 d𝑠

≤ (𝑝 − 1) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛∗∗𝑗

+ 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛∗∗𝑝−1𝑗

(∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑠, 𝑥)󵄨󵄨󵄨󵄨󵄨 d𝑠)
𝑝 .

(36)

It follows from (24) that

𝑝 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−2
𝑛∑
𝑗=1

𝜂𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨2

≤ (𝑝 − 2) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝
𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍𝑗 + 𝑛∑
𝑗=1

2𝜂𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡, 𝑥)󵄨󵄨󵄨󵄨󵄨𝑝𝜍(𝑝−2)/2𝑗

,

𝑝 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−2
𝑛∑
𝑗=1

𝜂𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝛿𝑖 (𝑡))󵄨󵄨󵄨󵄨󵄨2

≤ (𝑝 − 2) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝
𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍∗𝑗
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+ 𝑛∑
𝑗=1

2𝜂𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝛿𝑖 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑝𝜍∗((𝑝−2)/2)𝑗

,

𝑝 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−2
𝑛∑
𝑗=1

𝜂𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))󵄨󵄨󵄨󵄨󵄨2

≤ (𝑝 − 2) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝
𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍∗∗𝑗

+ 𝑛∑
𝑗=1

2𝜂𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑝𝜍∗∗((𝑝−2)/2)𝑗

,

𝑝 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝−2
𝑛∑
𝑗=1

𝜂𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏∗𝑖𝑗 (𝑡))󵄨󵄨󵄨󵄨󵄨2

≤ (𝑝 − 2) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝
𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍∗∗∗𝑗

+ 𝑛∑
𝑗=1

2𝜂𝑖𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏∗𝑖𝑗 (𝑡))󵄨󵄨󵄨󵄨󵄨𝑝𝜍∗∗∗((𝑝−2)/2)𝑗

.
(37)

Substituting (34)–(37) into (33), it follows from (31) and(H5) that

𝐷+E {𝑉 (𝑡)} ≤ E
{{{
∫
Ω

𝑛∑
𝑖=1

{{{
[
[
𝜇 + 𝛼𝑖𝑒𝜇𝛿 + 𝑒𝜇𝜏 𝑛∑

𝑗=1

𝛽𝑖𝑗

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾𝑖𝑗 + 𝜏∗𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗
+ 𝐿 𝑖𝜉𝑝−1𝑖

− 𝑝𝜀 𝑙𝑖 − 1𝜀𝑝𝜆1𝐷𝑖

+ 1𝜀 𝑐𝑖 (𝑝 − 1) 𝜉∗∗𝑖 + 1𝜀 (𝑝 − 1) 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛𝑗

+ 1𝜀 (𝑝 − 1) 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛∗𝑗

+ 1𝜀 (𝑝 − 1) 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗𝜛∗∗𝑗

+ 1𝜀 󵄨󵄨󵄨󵄨𝐻𝑖
󵄨󵄨󵄨󵄨 (𝑝 − 1) 𝜉∗𝑖 + 1𝜀

𝑛∑
𝑗=1

1
𝜛𝑝−1𝑖

󵄨󵄨󵄨󵄨󵄨𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿 𝑖

+ 12 (𝑝 − 1) (𝑝 − 2) 𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍𝑗

+ 12 (𝑝 − 1) (𝑝 − 2) 𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍∗𝑗

+ 12 (𝑝 − 1) (𝑝 − 2) 𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍∗∗𝑗

+ 12 (𝑝 − 1) (𝑝 − 2) 𝑛∑
𝑗=1

𝜂𝑖𝑗𝜍∗∗∗𝑗

+ (𝑝 − 1) 𝑛∑
𝑗=1

𝜂𝑗𝑖
𝜍(𝑝−2)/2𝑖

]
]
𝑉𝑖 (𝑡, 𝑥)
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+ [
[
1𝜀 1
𝜉∗∗𝑝−1𝑖

+ (𝑝 − 1) 𝑛∑
𝑗=1

𝜂𝑗𝑖
𝜍∗((𝑝−2)/2)𝑖

− 𝜅𝛼𝑖 󵄨󵄨󵄨󵄨1 − 𝜌󵄨󵄨󵄨󵄨 𝑒𝜇𝛿]]
𝑉𝑖 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥)

+ [
[
(𝑝 − 1) 𝑛∑

𝑗=1

𝜂𝑗𝑖
𝜍∗∗((𝑝−2)/2)𝑖

+ 1𝜀
𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿 𝑖𝜛∗𝑝−1𝑖

−𝑒𝜇𝜏 𝑛∑
𝑗=1

𝜅𝛽𝑖𝑗 󵄨󵄨󵄨󵄨1 − 󰜚󵄨󵄨󵄨󵄨]]
𝑉𝑖 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥)

+ [
[
(𝑝 − 1) 𝑛∑

𝑗=1

𝜂𝑗𝑖
𝜍∗∗∗((𝑝−2)/2)𝑖

− 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝜅𝛾𝑖𝑗 󵄨󵄨󵄨󵄨1 − 󰜚∗󵄨󵄨󵄨󵄨]]
𝑉𝑖 (𝑡 − 𝜏∗𝑖𝑗 (𝑡) , 𝑥)

+ [
[
1𝜀

𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿 𝑖𝜛∗∗𝑝−1𝑖

− 𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗 (𝜏∗)1−𝑝]
]

⋅ 𝑒𝜇𝑡(∫𝑡

𝑡−𝜏∗
𝑖𝑗
(𝑡)

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨 d𝑠)
𝑝

+ (1𝜀
󵄨󵄨󵄨󵄨𝐻𝑖

󵄨󵄨󵄨󵄨𝜉∗𝑝−1𝑖

+ 𝜇 − 𝑝𝐾𝑖 + 𝐿 𝑖 (𝑝 − 1) 𝜉𝑖)

𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝}}}
d𝑥}}}

= E{∫
Ω

𝑛∑
𝑖=1

{(1𝜀
󵄨󵄨󵄨󵄨𝐻𝑖

󵄨󵄨󵄨󵄨𝜉∗𝑝−1𝑖

+ 𝜇 − 𝑝𝐾𝑖 + 𝐿 𝑖 (𝑝 − 1) 𝜉𝑖)𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝} d𝑥} ≤ 0
(38)

which implies that

E {𝑉 (𝑡)} ≤ E {𝑉 (0)} . (39)

Note that

E {𝑉 (0)} ≤ E{∫
Ω

𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨𝑒𝑖 (0, 𝑥)󵄨󵄨󵄨󵄨𝑝

+ 𝛼𝑖𝑒𝜇𝛿 ∫0

−𝛿𝑖(0)
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠
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+ 𝛼∗𝑖 𝑒𝜇𝛿 ∫−𝛿𝑖(0)

−𝛿
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝑒𝜇𝜏 𝑛∑
𝑗=1

𝛽𝑖𝑗 ∫0

−𝜏𝑖𝑗(0)
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝑒𝜇𝜏 𝑛∑
𝑗=1

𝛽∗𝑖𝑗 ∫−𝜏𝑖𝑗(0)

−𝜏
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾𝑖𝑗 ∫0

−𝜏∗
𝑖𝑗
(0)

𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝛾∗𝑖𝑗 ∫−𝜏∗𝑖𝑗 (0)

−𝜏∗
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝑒𝜇𝜏∗ 𝑛∑
𝑗=1

𝜏∗𝛾∗∗𝑖𝑗 ∫0

−𝜏∗
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 󵄨󵄨󵄨󵄨𝑅𝑖 (0, 𝑥)󵄨󵄨󵄨󵄨𝑝 + 𝑝2𝜀]𝑖 (𝜖𝑖 (0, 𝑥) + 𝑙𝑖)2] d𝑥}

≤ E{∫
Ω

𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨𝑒𝑖 (0, 𝑥)󵄨󵄨󵄨󵄨𝑝

+ 𝛼𝑖𝑒𝜇𝛿 ∫0

−𝛿𝑖(0)
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝛼∗𝑖 𝑒𝜇𝛿 ∫−𝛿𝑖(0)

−𝛿
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝑒𝜇𝜏 max
𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛽𝑖𝑗}}}
𝑛∑
𝑗=1

∫0

−𝜏𝑖𝑗(0)
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝑒𝜇𝜏 max
𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛽∗𝑖𝑗}}}
𝑛∑
𝑗=1

∫−𝜏𝑖𝑗(0)

−𝜏
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝑒𝜇𝜏∗ max
𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛾𝑖𝑗}}}
𝑛∑
𝑗=1

∫0

−𝜏∗
𝑖𝑗
(0)

𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝑒𝜇𝜏∗ max
𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛾∗𝑖𝑗}}}
𝑛∑
𝑗=1

∫−𝜏∗𝑖𝑗 (0)

−𝜏∗
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 𝜏∗𝑒𝜇𝜏∗ max
𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗 }}}
𝑛∑
𝑗=1

∫0

−𝜏∗
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠

+ 󵄨󵄨󵄨󵄨𝑅𝑖 (0, 𝑥)󵄨󵄨󵄨󵄨𝑝 + 𝑝2𝜀]𝑖 (𝜖𝑖 (0, 𝑥) + 𝑙𝑖)2] 𝑑𝑥} .
(40)
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Since

󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝
= (∫

Ω

𝑛∑
𝑖=1

sup
−𝜏≤𝜃≤0

󵄨󵄨󵄨󵄨𝜓𝑧 (𝜃, 𝑥) − 𝜙𝑦𝑖 (𝜃, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥)
1/𝑝 , (41)

then

∫
Ω

𝑛∑
𝑖=1

∫0

−𝜏𝑖𝑗(0)
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠 d𝑥

≤ ∫
Ω

𝑛∑
𝑖=1

∫0

−𝜏

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠 d𝑥

≤ ∫
Ω

𝑛∑
𝑖=1

𝜏 sup
−𝜏≤𝑠≤0

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥 = 𝜏 󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝 .

(42)

Similarly,

∫
Ω

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (0, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥 ≤ 󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝 ,

∫
Ω

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑅𝑖 (0, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥 ≤ 󵄩󵄩󵄩󵄩󵄩𝜓ℎ − 𝜙𝑠󵄩󵄩󵄩󵄩󵄩𝑝𝑝 ,

∫
Ω

𝑛∑
𝑖=1

∫0

−𝜏∗
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠 d𝑥 ≤ 𝜏∗ 󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝 ,

∫
Ω

𝑛∑
𝑖=1

∫−𝛿𝑖(0)

−𝛿
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠 d𝑥 ≤ 𝛿 󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝 ,

∫
Ω

𝑛∑
𝑖=1

∫0

−𝛿𝑖(0)
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠 d𝑥 ≤ 𝛿 󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝 ,

∫
Ω

𝑛∑
𝑖=1

∫−𝛿𝑖(0)

−𝛿
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠 d𝑥 ≤ 𝛿 󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝 ,

∫
Ω

𝑛∑
𝑖=1

∫−𝜏𝑖𝑗(0)

−𝜏
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠 d𝑥 ≤ 𝜏 󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝 ,

∫
Ω

𝑛∑
𝑖=1

∫0

−𝜏∗
𝑖𝑗
(0)

𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠 d𝑥 ≤ 𝜏∗ 󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝 ,

∫
Ω

𝑛∑
𝑖=1

∫−𝜏∗𝑖𝑗 (0)

−𝜏∗
𝑒𝜇𝑠 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑠, 𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑠 d𝑥 ≤ 𝜏∗ 󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝 .

(43)

Applying (42)-(43) into (40), we have

E {𝑉 (0)} ≤ [
[
1 + 𝛼𝑖𝛿𝑒𝜇𝛿 + 𝛼∗𝑖 𝛿𝑒𝜇𝛿

+ 𝑛𝜏𝑒𝜇𝜏 max
𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛽𝑖𝑗}}}
+ 𝑛𝜏𝑒𝜇𝜏 max

𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛽∗𝑖𝑗}}}
+ 𝑛𝜏∗𝑒𝜇𝜏∗ max

𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛾𝑖𝑗}}}
+ 𝑛𝜏∗𝑒𝜇𝜏∗ max

𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛾∗𝑖𝑗}}}
+ 𝑛𝜏∗2𝑒𝜇𝜏∗ max

𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗 }}}
+ 𝑁󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝]]

⋅ E {󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝} + E {󵄩󵄩󵄩󵄩󵄩𝜓ℎ − 𝜙𝑠󵄩󵄩󵄩󵄩󵄩𝑝𝑝}
= 𝑀E {󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝} +𝑀∗E {󵄩󵄩󵄩󵄩󵄩𝜓ℎ − 𝜙𝑠󵄩󵄩󵄩󵄩󵄩𝑝𝑝} ,

(44)

where
𝑀∗ = 1,
𝑁 = ∫

Ω

𝑛∑
𝑖=1

𝑝2𝜀]𝑖 (𝜖𝑖 (0, 𝑥) + 𝑙𝑖)2 d𝑥,

𝑀 = 1 + 𝛼𝑖𝛿𝑒𝜇𝛿 + 𝛼∗𝑖 𝛿𝑒𝜇𝛿 + 𝑛𝜏𝑒𝜇𝜏 max
𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛽𝑖𝑗}}}
+ 𝑛𝜏𝑒𝜇𝜏 max

𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛽∗𝑖𝑗}}}
+ 𝑛𝜏∗𝑒𝜇𝜏∗ max

𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛾𝑖𝑗}}}
+ 𝑛𝜏∗𝑒𝜇𝜏∗ max

𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛾∗𝑖𝑗}}}
+ 𝑛𝜏∗2𝑒𝜇𝜏∗ max

𝑖=1,2,...,𝑛

{{{
𝑛∑
𝑗=1

𝛾∗∗𝑖𝑗 }}}
+ 𝑁󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝

≥ 1.

(45)

Therefore,
E {𝑉 (𝑡)} ≤ E {𝑉 (0)}

≤ 𝑀E {󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝} +𝑀∗E {󵄩󵄩󵄩󵄩󵄩𝜓ℎ − 𝜙𝑠󵄩󵄩󵄩󵄩󵄩𝑝𝑝} .
(46)
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Further, we obtain

E {𝑉 (𝑡)} ≥ E{∫
Ω

𝑛∑
𝑖=1

[𝑉𝑖 (𝑡, 𝑥) + 𝑒𝜇𝑡 󵄨󵄨󵄨󵄨𝑅𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝] d𝑥}

= 𝑒𝜇𝑡E{∫
Ω

𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨𝑧𝑖 (𝑡, 𝑥) − 𝑦𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝 + 󵄨󵄨󵄨󵄨ℎ𝑖 (𝑡, 𝑥) − 𝑠𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨𝑝] d𝑥}
= 𝑒𝜇𝑡E {󵄩󵄩󵄩󵄩𝑧 (𝑡, 𝑥) − 𝑦 (𝑡, 𝑥)󵄩󵄩󵄩󵄩𝑝} + 𝑒𝜇𝑡E {‖ℎ (𝑡, 𝑥) − 𝑠 (𝑡, 𝑥)‖𝑝} .

(47)

From (46) and (47), we have

E {󵄩󵄩󵄩󵄩𝑧 (𝑡, 𝑥) − 𝑦 (𝑡, 𝑥)󵄩󵄩󵄩󵄩𝑝} + E {‖ℎ (𝑡, 𝑥) − 𝑠 (𝑡, 𝑥)‖𝑝}
≤ 𝑀E {󵄩󵄩󵄩󵄩𝜓𝑧 − 𝜙𝑦󵄩󵄩󵄩󵄩𝑝𝑝} 𝑒−𝜇𝑡

+𝑀∗E {󵄩󵄩󵄩󵄩󵄩𝜓ℎ − 𝜙𝑠󵄩󵄩󵄩󵄩󵄩𝑝𝑝} 𝑒−𝜇𝑡.
(48)

Hence, the nonlinear couple neural networks (9) and (5) can
be exponentially synchronized under the adaptive feedback
controller (11) and (12) based on 𝑝-norm. The proof of
Theorem 8 is complete.

Remark 9. It is the first time to consider the combined effects
of time-varying leakage delays, the discrete time-varying
delay, the distributed time-varying delay, stochastic perturba-
tion, and spatial diffusion on the exponential synchronization
of competitive neural networks under an adaptive feedback
controller. The neural networks discussed in [6, 7, 31] are the
special cases of the model in this paper. From this point, our
results are more general.

Remark 10. In Theorem 8, the sufficient conditions are
derived to achieve the adaptive synchronization for the
proposed competitive neural networks. Compared with the
adaptive synchronization criteria given in [7], the conditions
obtained in Theorem 8 depend on not only the timescale 𝜀
but also the controller parameter 𝜇. It is beneficial to design
an adaptive controller to realize the adaptive synchronization
for the neural networks.Therefore, the criteria derived in this
paper have wider application.

4. Numerical Simulations

In this section, some numerical simulation examples demon-
strate the main results in Theorem 8.

In system (5), we choose 𝑛 = 2. Then system (5) takes the
form

STM: 𝜀𝜕𝑦𝑖 (𝑡, 𝑥)𝜕𝑡 = 𝐷𝑖Δ𝑦𝑖 (𝑡, 𝑥) − 𝑐𝑖𝑦𝑖 (𝑡 − 𝛿 (𝑡) , 𝑥)
+ 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡, 𝑥))

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡 − 𝜏 (𝑡) , 𝑥))

+ 𝑛∑
𝑗=1

𝑑𝑖𝑗 ∫𝑡

𝑡−𝜏∗(𝑡)
𝑓𝑗 (𝑦𝑗 (𝑠, 𝑥)) d𝑠

+ 𝐻i𝑠𝑖 (𝑡, 𝑥) ,
LTM:

𝜕𝑠𝑖 (𝑡, 𝑥)𝜕𝑡 = −𝐾𝑖𝑠𝑖 (𝑡, 𝑥) + 𝑓𝑖 (𝑦𝑖 (𝑡, 𝑥)) ,
(49)

where 𝑓𝑗(𝑢𝑗(𝑡, 𝑥)) = tanh (𝑢𝑗(𝑡, 𝑥)), 𝛿(𝑡) = 0.4 + 0.3 cos 𝑡,𝜏(𝑡) = 0.5+0.4 cos 𝑡, and 𝜏∗(𝑡) = 0.3+0.2 sin 𝑡.Theparameters
of (49) are assumed as follows: 𝜀 = 0.5, 𝐷1 = 0.025, 𝐷2 =0.025, 𝑐1 = 0.35, 𝑐2 = 0.25, 𝑎11 = 0.625, 𝑎12 = −0.3, 𝑎21 =−0.225, 𝑎22 = −0.3, 𝑏11 = −0.475, 𝑏12 = −0.425, 𝑏21 = 0.375,𝑏22 = 0.475, 𝑑11 = −0.375, 𝑑12 = −0.325, 𝑑21 = 0.6, 𝑑22 = 0.8,𝐻1 = 0.375,𝐻2 = 0.375,𝐾1 = 1,𝐾2 = 1, and 𝑥 ∈ Ω = [−5, 5].
The initial conditions of system (49) are chosen as

𝑦1 (𝑠, 𝑥) = 0.1 cos(𝑥 + 510 𝜋) ,
𝑦2 (𝑠, 𝑥) = 0.2 cos(𝑥 + 510 𝜋) ,
𝑠1 (𝑠, 𝑥) = 0.3 cos(𝑥 + 510 𝜋) ,
𝑠2 (𝑠, 𝑥) = 0.4 cos(𝑥 + 510 𝜋) ,

(50)

where (𝑠, 𝑥) ∈ [−0.9, 0] × Ω.
Numerical simulation illustrates that the reaction-

diffusion neural network (49) with boundary condition (6)
and the initial condition (50) exhibits a chaotic behavior (see
Figure 1).

The noise-perturbed response system is described by

STM: d𝑧𝑖 (𝑡, 𝑥) = 1𝜀 [[
𝐷𝑖Δ𝑧𝑖 (𝑡, 𝑥) − 𝑐𝑖𝑧𝑖 (𝑡 − 𝛿 (𝑡) , 𝑥)

+ 𝑛∑
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑧𝑗 (𝑡, 𝑥)) + 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑧𝑗 (𝑡 − 𝜏 (𝑡) , 𝑥))

+ 𝑛∑
𝑗=1

𝑑𝑖𝑗 ∫𝑡

𝑡−𝜏∗(𝑡)
𝑓𝑗 (𝑧𝑗 (𝑠, 𝑥)) d𝑠 + 𝐻𝑖ℎ𝑖 (𝑡, 𝑥) + 𝑢𝑖 (𝑡,

𝑥)]
]
d𝑡 + 𝑛∑

𝑗=1

𝜎𝑖𝑗 (𝑒𝑗 (𝑡, 𝑥) , 𝑒𝑗 (𝑡 − 𝛿𝑖 (𝑡) , 𝑥) ,

𝑒𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡) , 𝑥) , 𝑒𝑗 (𝑡 − 𝜏∗𝑖𝑗 (𝑡) , 𝑥)) d𝜔𝑗 (𝑡) ,
LTM:

𝜕ℎ𝑖 (𝑡, 𝑥)𝜕𝑡 = −𝐾𝑖ℎ𝑖 (𝑡, 𝑥) + 𝑓𝑖 (𝑧𝑖 (𝑡, 𝑥)) ,

(51)
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Figure 1: Chaotic behaviors of competitive neural networks (49).
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Figure 2: Asymptotical behaviors of the synchronization errors between systems (49) and (51).
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Figure 3: Asymptotical behaviors of the synchronization errors with differential timescale 𝜀.

where

𝜎11 = 0.1𝑒1 (𝑡, 𝑥) + 0.2𝑒1 (𝑡 − 𝜏 (𝑡) , 𝑥)
+ 0.1𝑒1 (𝑡 − 𝛿 (𝑡) , 𝑥) + 0.3𝑒1 (𝑡 − 𝜏∗ (𝑡) , 𝑥) ,

𝜎12 = 0,
𝜎21 = 0,
𝜎22 = 0.2𝑒2 (𝑡, 𝑥) + 0.1𝑒2 (𝑡 − 𝜏 (𝑡) , 𝑥)

+ 0.3𝑒2 (𝑡 − 𝛿 (𝑡) , 𝑥) + 0.1𝑒2 (𝑡 − 𝜏∗ (𝑡) , 𝑥) .

(52)

The adaptive controller is

𝑢𝑖 (𝑡, 𝑥) = 𝜖𝑖𝑒𝑖 (𝑡, 𝑥) ,

𝜕𝜖𝑖𝜕𝑡 = − 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡, 𝑥)󵄨󵄨󵄨󵄨2 𝑒0.1𝑡𝑖 .
(53)

The initial conditions for the response system (51) are
chosen as

𝑧1 (𝑠, 𝑥) = 0.1 cos(𝑥 + 510 𝜋) ,
𝑧2 (𝑠, 𝑥) = 0.2 cos(𝑥 + 510 𝜋) ,
ℎ1 (𝑠, 𝑥) = 0.3 cos(𝑥 + 510 𝜋) ,
ℎ2 (𝑠, 𝑥) = 0.4 cos(𝑥 + 510 𝜋) ,

(54)

where (𝑠, 𝑥) ∈ [−0.9, 0] × Ω.
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Figure 4: Asymptotical behaviors of the synchronization errors with differential disposable scaling constants 𝐾𝑖.

Evidently, 𝐿1 = 𝐿2 = 1, 𝜌󸀠 = 0.3 < 1, 󰜚󸀠 = 0.4 < 1,
and 󰜚∗󸀠 = 0.2 < 1. Let 𝑝 = 2, 𝜀 = 0.5, 𝜉1 = 𝜉2 = 0.1,
and 𝜉∗1 = 𝜉∗2 = 1. By simple computation, it is easy to
verify that assumptions (H1)–(H6) are satisfied. According to
Theorem 8, the drive system (49) and the response system (51)
are exponentially synchronized based on 𝑝-norm. Numerical
simulation illustrates our results (see Figure 2).

Remark 11. The conclusions given in Theorem 8 show that
the adaptive synchronization criteria for competitive neural
networks are dependent on the timescale 𝜀, the disposable
scaling constant 𝐾𝑖, and the external stimulus 𝐻𝑖. When𝜀 increases, and 𝐾𝑖 increases or 𝐻𝑖 decreases, respectively,
assumption (H6) can be satisfiedmore easily, and the adaptive

synchronization of the competitive neural networks is more
easily realized. Dynamical behaviors of the synchronization
errors between systems (49) and (51) with the differential
timescale, disposable scaling constant, and external stimulus,
respectively, are shown in Figures 3–5.

Remark 12. By (48), it is clear to see that the controller
parameter 𝜇 denotes the rate of the synchronization. That is,
the larger the controller parameter 𝜇 is, the faster systems
(49) and (51) realize synchronization. Hence, our results are
consistent with the practical situation. Dynamical behaviors
of the synchronization errors between systems (49) and
(51) with differential controller parameter 𝜇 are shown in
Figure 6.
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Figure 5: Asymptotical behaviors of the synchronization errors with differential external stimulus constants𝐻𝑖.

The parameter ]𝑖 is another controller parameter in the
feedback controller (11). By numerical simulations, we can see
that it is beneficial for competitive neural networks to realize
the synchronization by increasing controller parameter ]𝑖.
Dynamical behaviors of the synchronization errors between
systems (49) and (51) with differential controller parameter ]𝑖
are shown in Figure 7. However, we cannot prove it. It is an
interesting open problem to research.

Remark 13. In many cases, two-neuron networks show the
same behavior as large-size networks and many research
methods used in two-neuron networks can be applied to
large-size networks. Therefore, a two-neuron network can
be used as an example to improve our understanding of

our theoretical results. In addition, the parameter values are
selected randomly to ensure that neural networks (49) exhibit
a chaotic behavior.

5. Conclusion

In this paper, an adaptive feedback controller was designed to
achieve the exponential synchronization for stochastic com-
petitive neural networks with spatial diffusion, time-varying
leakage delays, and discrete and distributed time-varying
delays based on 𝑝-norm. Evidently, the model discussed in
this paper is more general than those correspondent models
when the delays are constant delays. By constructing the
Lyapunov functional and using and the stochastic analysis
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Figure 6: Asymptotical behaviors of the synchronization errors with differential controller parameter 𝜇.

theory, the novel exponential synchronization criteria depen-
dent on the timescale 𝜀, external stimulus constants 𝐻𝑖, dis-
posable scaling constants𝐾𝑖, and controller parameter 𝜇were
obtained. By theory analysis, it was shown that competitive
neural networks can achieve exponential synchronization
more easily by increasing the timescale and disposable
scaling constants or reducing disposable scaling constants,
respectively. Numerical examples and their simulations are
given to show the effectiveness of the obtained results.

Figures 8 and 9 show that it is beneficial for competitive
neural networks with reaction-diffusion terms to realize
the synchronization by increasing diffusion coefficients 𝐷𝑖

or decreasing diffusion space 𝑥, respectively. However, the
exponential synchronization criteria obtained in this paper

are independent of the diffusion coefficients and the diffusion
space. They cannot reflect the influence of the diffusion
coefficients and diffusion space on synchronization, which
limits the application scopes of the results. Therefore, we will
investigate that in our future work.

Appendix

Proof of Lemma 6. According to the eigenvalue theory of
elliptic operators, the Laplacian −Δ on Ω with the Neumann
boundary conditions is a self-adjoint operator with compact
inverse, so there exists a sequence of nonnegative eigenvalues0 = 𝜆0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ , (lim𝑖→∞𝜆𝑖 = +∞) as well
as a sequence of corresponding eigenfunctions 𝜗0(𝑥),
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Figure 7: Asymptotical behaviors of the synchronization errors with differential controller parameter ]𝑖.

𝜗1(𝑥), 𝜗2(𝑥), . . . for the Neumann boundary problem (29);
that is,

𝜆0 = 0, 𝜗0 (𝑥) = 1,
−Δ𝜗𝑚 (𝑥) = 𝜆𝑚𝜗𝑚 (𝑥) , in Ω,
𝜕𝜗𝑚 (𝑥)𝜕n = 0, on 𝜕Ω.

(A.1)

Multiply the second equation of (A.1) by 𝜗𝑝−1𝑚 (𝑥) (𝑚 =1, 2, . . .) and integrateΩ. By Green formula (27), we obtain

𝜆𝑚 ∫
Ω
𝜗𝑝𝑚 (𝑥) d𝑥 = −∫

Ω
𝜗𝑝−1𝑚 (𝑥) Δ𝜗𝑚 (𝑥) d𝑥

= −∫
𝜕Ω

𝜗𝑝−1𝑚 (𝑥) 𝜕𝜗𝑚 (𝑥)𝜕n d𝑠

+ ∫
Ω
(∇𝜗𝑝−1𝑚 (𝑥))𝑇 ∇𝜗𝑚 (𝑥) d𝑥 = ∫

Ω
(𝑝 − 1)

⋅ 𝜗𝑝−2𝑚 (𝑥) [(𝜕𝜗𝑚 (𝑥)𝜕𝑥1 )2 + (𝜕𝜗𝑚 (𝑥)𝜕𝑥2 )2 + ⋅ ⋅ ⋅

+ (𝜕𝜗𝑚 (𝑥)𝜕𝑥𝑙∗ )2] d𝑥 = (𝑝 − 1)∫
Ω
𝜗𝑝−2𝑚 (𝑥)

⋅ 󵄨󵄨󵄨󵄨∇𝜗𝑚 (𝑥)󵄨󵄨󵄨󵄨2 d𝑥.
(A.2)

It is easy to show that (A.2) is also true for𝑚 = 0.
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Figure 8: Asymptotical behaviors of the synchronization errors with differential diffusion coefficients 𝐷𝑖.

The sequence of eigenfunctions {𝜗𝑖(𝑥)}𝑖≥0 generates an
orthonormal basis of 𝐿2(Ω). Hence, for any 𝜑(𝑥) ∈ 𝐿2(Ω),
there exists a sequence of constant {𝑐𝑚}𝑚≥0 such that

𝜑 (𝑥) = ∞∑
𝑚=0

𝑐𝑚𝜗𝑚 (𝑥) . (A.3)

It follows from (A.2) and (A.3) that

∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥 ≤ ∫
Ω

∞∑
𝑚=0

󵄨󵄨󵄨󵄨𝑐𝑚𝜗𝑚 (𝑥)󵄨󵄨󵄨󵄨𝑝 d𝑥

≤ 𝑝 − 1𝜆1 ∫
Ω

∞∑
𝑚=0

󵄨󵄨󵄨󵄨𝑐𝑚𝜗𝑚 (𝑥)󵄨󵄨󵄨󵄨𝑝−2 󵄨󵄨󵄨󵄨𝑐𝑚∇𝜗𝑚 (𝑥)󵄨󵄨󵄨󵄨2 d𝑥

≤ 𝑝 − 1𝜆1 ∫
Ω

∞∑
𝑚=0

󵄨󵄨󵄨󵄨𝑐𝑚𝜗𝑚 (𝑥)󵄨󵄨󵄨󵄨𝑝−2
∞∑
𝑚=0

󵄨󵄨󵄨󵄨𝑐𝑚∇𝜗𝑚 (𝑥)󵄨󵄨󵄨󵄨2 d𝑥

= 𝑝 − 1𝜆1 ∫
Ω

󵄨󵄨󵄨󵄨𝜑 (𝑥)󵄨󵄨󵄨󵄨𝑝−2 󵄨󵄨󵄨󵄨∇𝜑 (𝑥)󵄨󵄨󵄨󵄨2 d𝑥.
(A.4)

The proof of Lemma 6 is complete.
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