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Hypertension is a highly prevalent risk factor for cardiovascular disease and it can also lead to other diseases which seriously harm
the human health. Screening the risks and finding a clinical model for estimating the risk of onset, maintenance, or the prognosis
of hypertension are of great importance to the prevention or treatment of the disease, especially if the indicator can be derived from
simple health profile. In this study, we investigate a chronic disease questionnaire data set of 6563 rural citizens in East China and
find out a clinical signature that can assess the risk of hypertension easily and accurately. The signature achieves an accuracy of
about 83% on the external test dataset, with an AUC of 0.91. Our study demonstrates that a combination of simple lifestyle features
can sufficiently reflect the risk of hypertension onset. This finding provides potential guidance for disease prevention and control
as well as development of home care and home-care technologies.

1. Introduction

Hypertension, also called high blood pressure (HBP), is
a chronic medical condition which affects nearly 1 billion
people worldwide and is directly accountable for the death
of 9.4 million people per year by causing severe diseases
including coronary heart disease, heart attack, heart failure,
stroke, and kidney failure [1]. According to WHL andWHO,
the best strategy to tackle this “silent killer” is to prevent
it before it comes into being. Lifestyle factors, such as diet,
smoking, or alcohol use, are known to have important
impacts on hypertension onset. In recent years, the advent
of mobile care technology made it possible to acquire the
physiological features and monitor the life habits of a person
easily in daily environments [2–4], which paves the way
for personalized control and prevention of hypertension in
home-care situations and surges great demands for creating
models for hypertension risk estimation and management
based on personal lifestyle factors and simple health profiles.

Although medical scientists have discovered scores of
risk factors associated with the development of hypertension,
investigations on systematic risk estimation or prediction are
still lacking. One recent successful attempt of this type is the
Framingham cohort study [5], which results in a risk predic-
tion score for 1-, 2-, or 4-year hypertension onset composed
of blood-pressure history, body mass index, parental history,
and smoking habit. Despite its efficiency, the Framingham
risk score barely comprises controllable lifestyle factors and
thus provides little guidance for hypertension management.
On the other hand, some recent researches also focus on
assessing the impact of lifestyle and health profile factor
on hypertension [6–10]. The randomized controlled trial
of Whelton et al. [8] is aimed at determining the impact
of weight loss or reduced sodium intake to hypertension
treatment.The result showed that if sodium intake is reduced
and weight is lost, there will be a feasible, effective, and
safe nonpharmacologic therapy of hypertension for the old.
Forman et al. [9] focused their research on women. They
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accessed hypertension incidences associated with dietary and
lifestyle factors. And the result showed that adopting low-risk
dietary and lifestyle factors has the potential of preventing
a large proportion of new-onset hypertension occurring
among young women. Wu et al. [10] carried out a cross
sectional investigation on the prevalence of hypertension
subtypes in adults of Tongshan County in Jiangsu Province,
China, and studied the relationships between hypertension
subtypes and related risk factors, indicating that the related
risk factors have different levels of impact on the different
hypertension subtypes. Nevertheless, existing works mainly
explore associated factors without providing a complete
picture about how lifestyle plays a role in hypertension.
Although lifestyle modification pieces of advice are fre-
quently given in hypertension treatments, few studies have
ever been focusing on tracking to what extent these pieces of
advice are followed, not to mention to what extent lifestyle
affects the control or prevention of the disease [11].

In our study, we aim at creating a combined model that
reflects the disease status of an individual patient based
on lifestyle factors and simple health profile. With a large
number of lifestyle factors investigated, not only can our
model provide individual risk estimation suitable for health
monitoring, but it also indicates the current most prevalent
risk factors for a given person, thus shedding some light on
active prevention of the disease via lifestyle management.
Compared with traditional risk association studies, our
model is able to capture interactions betweenmultiple factors
and extract a minimal set of independent factors that achieve
high estimation accuracy. We find out a clinical model
that can quantitatively assert the risk of hypertension from
simple lifestyle features or health information that can be
easily acquired without the intervention of complex medical
instruments. This finding will provide advantages for the
precaution or control of hypertension with the aid of home
or mobile healthcare technologies. The model is obtained
from the investigation of a chronic disease questionnaire
data set for peasants of Pizhou City in Jiangsu Province and
is generated via feature selection and logistic regression. A
primary statistical analysis for the data set is performed in
[12]. However, in this paper we go further to create a lifestyle
related risk model using advanced methods. We evaluate the
performance of the obtained model using external test data.
Following the test protocol, the proposed model achieves
an accuracy of 83.65% with an area under ROC curve
(AUC) of 0.91, which justifies the possibility of monitoring
hypertension risks from simple lifestyle profiles.

The materials of the paper are organized as follows.
Section 2 introduces materials and describes the experiment
designs for data analysis in the paper. Section 3 gives our
experiment results. In Section 4, we present our discussion
on the last section. Finally, we conclude this paper.

2. Methods

2.1. Materials

2.1.1. Data Collection. The questionnaire is designed for risk
factors investigation of chronic disease of rural areas in

Pizhou City. The Health Bureau of Pizhou City was in charge
of this survey; it organized interviewers and coordinated the
whole process. The survey was conducted during October
2008 to January 2009. 6563 participants (3230 males and
3333 females) from 18 administrative villages in 5 towns of
PizhouCity were interviewed.The data collection procedures
were in accordance with the Declaration of Helsinki and
were approved by the ethics committee of Shenzhen Institutes
of Advanced Technology. Each participant signed and gave
informed consent of data collection prior to data acquisi-
tion.

All 112 interviewers, including rural doctors of country
clinics in the participants’ residential area and nurses or
physicians in local hospitals, were trained to take measure-
ments and record the result. At the same time they were
asked to guide and help the participants to finish the ques-
tionnaire correctly. In order to make sure of the consistency
of the measurement among different participants, the same
standards, including the accuracy of measurement and the
types of instruments, were adopted. Each interview was
carried out by a team consisting of two interviewers: one
is responsible for measuring blood pressure (BP), arterial
pulse, and fasting plasma glucose (FPG) level and the other
is responsible for assisting interviewee to fill out question-
naires when needed. 6340 questionnaires were conducted
during home visit, which account for 96.6% of all. The
remaining 223 were finished in public places including clinic
or hospital. After the participant had been resting in a
seated position for 5 minutes, three measurements of systolic
blood pressure (SBP) and diastolic blood pressure (DBP)
were taken with at least 2-minute intervals on the arm with
digital blood pressure monitor, which can give out SBP, DBP,
and arterial pulse, simultaneously. Blood glucose tester was
employed to measure participants’ FPG in 12 hours after
dinner.

In the questionnaire, information about chronic diseases
(high blood pressure, coronary heart disease, stroke, diabetes,
andmalignant tumors)was enquired and included a total of 11
sections (personal information, living condition, health care,
chronic history, familial chronic history, smoking, drink,
alcohol use, eating habits, daily living and physical exercise,
woman menstruation, and birth history) comprising alto-
gether 221 factors. Factors associated with personal identity
are excluded from the study. Also, to prevent information
leaks introduced by concurrent symptoms, we excluded other
chronic diseases and personal and family medical history
from the study. Finally, we filtered out factors with over
90% of missing values. After filtering, 76 factors are kept as
variables in the consequent study.

2.1.2. Data Extraction. The data collected include three mea-
surements on SBP and DBP, respectively. In order to assure
the accuracy of the labeling, we extract only patient data
with clear and consistent clinical outcomes. According to
the guideline standard [13], HBP patients are identified on
the basis that three measured values of SBP are higher than
140mmHg and threemeasured values of DBP are higher than
90mmHg, or those taking antihypertensive drugs. For sam-
pleswith age younger than 18, we refer to standards developed
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by Mi et al. [14]. At the same time, nonhypertension data
was extracted on the basis that three measured values of SBP
are less than 120mmHg and three measured values of DBP
are less than 80mmHg. In this way, 1785 records, including
352 hypertension and 1433 nonhypertension records, are
extracted. We randomly sampled half of the records (176
hypertension and 716 healthy) to form a training dataset and
use the rest as the test dataset.

The remaining 4778 samples are usually called borderline
HBP in academy. In our study, with the exception of the
selected 1785 records above, the borderlineHBP samples were
used to validate our final model. We divided these samples
into four groups. First, we picked out samples exhibiting
normal blood pressure at least one measurement as so-
called white-coat HBP. And 2668 samples belong to this
group. Next, the remaining 2110 samples were divided into
three groups according to the severity of suffering from
HBP. We named three groups HBP1, HBP2, and HBP3,
respectively. If for all three measurements of one sample in
eachmeasurement its SBP is higher than 140mmHgorDBP is
higher than 90mmHg, this sample should be put into HBP3.
There are 324 samples in HBP3. Then, we classify all samples
whose SBP is higher than 140mmHg and DBP is higher than
90mmHg one or two times into HBP2. And 127 samples
fall into this group. Finally, the remaining 1659 samples are
included in group HBP1.

2.2. Experiment Designs and Protocols. The data analysis
procedure is depicted in Figure 1. The whole scheme begins
with data extraction and ends with the result of ROC curve,
AUC for evaluation, and a list of clinical signatures.The entire
procedure is implemented in Matlab.

Because the measurement of fasting plasma glucose
(FPG) is invasive, which is not desired in our purpose, we
carry out the data analysis procedure twice, one with FPG
included and one without, and compare the performance of
the derived model in both situations.

2.2.1. Preprocessing. Real world data are generally incomplete
and inconsistent dirty data. Data preprocessing can improve
data quality and reduce processing time.

(1) Normalization.Normalizationmay improve the efficiency
of data analysis algorithms and balance the effect of each
factor in case of linear analysis. In our study, we apply
the 𝑧-score normalization for all fields. This scheme can be
expected to performwell if prior knowledge about the average
score and the score variations of the matcher is available
[15].

In 𝑧-score normalization, the values for an attribute𝐴 are
normalized based on the mean and standard deviation of 𝐴.
A value V of 𝐴 is normalized to V by computing

V =
V − 𝐴
𝜎
𝐴

, (1)

where 𝐴 and 𝜎
𝐴
are the arithmetic mean and the standard

deviation, respectively, of attribute 𝐴.

(2) Missing Value Imputation. Questionnaire data usually
comprises missing values in some fields due to various
artificial malfunctions, and these missing values fit the
assumption of “missing at random” in statistical concept.
We use two different policies of missing value imputation,
one filling with average value and one with default value,
depending on the characteristics of each field and the design
of the questionnaire. For example, we take the average value
of height as imputed value, but for drinking white liquor,
we use the default value 0. The reason is that according
to the culture context not filling the field “years of drink-
ing” usually means that the investigated person is not a
liquor-drinker rather than that he is not willing to say
it.

2.2.2. L1-Regularized Logistic Regression with Sample Balanc-
ing. Logistic regression is a multivariable method that was
devised for dichotomous outcomes. It is particularly appro-
priate for models involving disease state (diseased/healthy)
and decision making (yes/no) and therefore is widely used in
studies in the health sciences [16].

In logistic regression model, the probability of an out-
come is related to a series of potential predictor variables by
an equation of the form 𝑏 and w = (𝑤
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where 𝑝 is the probability of the outcome of interest, 𝑏
is an intercept term, (𝑤
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associated with each variable, (𝑥
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the potential predictor variables, and 𝑖 is a unique subscript
denoting each variable [17, 18]. Here 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑖
represent

the factors in a patient profile. In the resulting model,
the coefficients of the predictor variables are interpreted as
signifying the relative contribution of their respective vari-
ables toward the predicted probability of a positive outcome
[16].

Classical logistic regressionmodel is known to be vulner-
able to multiple numerical issues including collinearity or ill-
conditioned data. Regularization is a standard technique to
tackle these problems. On the other hand, for medical data,
especially questionnaire data, most of the factors investigated
are not necessarily connected with the target disease. The
existence of many irrelevant factors increases the difficulty
of solving the regression model and often leads to bad
performance. Feature selection is required as a preprocess
step in analyzing these types of data.

In our paper, we address both problems using the tech-
nique of L1-regularized logistic regression. Logistic regression
with L1 regularization or so-called sparse logistic regression
[19, 20], where the weight vector of the classifier has a small
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Figure 1: Data analysis flow for our experiments. Data set is evenly divided into training and test set.

number of nonzero values, has been shown to have attractive
properties such as feature selection and robustness to noise
and proposed as a promising method for feature selection in
classification problems. Several specialized solution methods
have been proposed for L1-regularized logistic regression
problems (LRPs) [21]. We used L1-regularized logistic regres-
sion as a tool of building discriminativemodels.Theoretically,
it is proved that L1-regularized learning has a low sample
complexity, which enables it to learn a correct model with
relatively limited number of instances andminimizes the risk
of false discovery. We also verified the obtained model using
the permutation test, which confirmed that the risk of false
discovery is very low and the derived estimation model is
reliable.

Taking into account that the number of healthy samples
in our investigation is a few times more than the HBP ones,

we use the following formulation of L1-regularized logistic
regression:

min
w,𝑏

1

∑𝛼
𝑖

𝑛

∑

𝑖=1

𝛼
𝑖
log (1 + exp (−𝑦

𝑖
(w𝑇x
𝑖
+ 𝑏))) + 𝜆‖w‖

1
, (4)

𝛼
𝑖
=

{
{
{

{
{
{

{

𝑚
−

𝑚
+
+ 𝑚
−
, when 𝑖 is a negative sample,

𝑚
+

𝑚
+
+ 𝑚
−
, when 𝑖 is a positive sample.

(5)

Here 𝛼
𝑖
is a sample weight that balances the impact of healthy

and patient samples and 𝑚+ and 𝑚− are the number of posi-
tive and negative samples, respectively. 𝜆 is a regularization
parameter tuned with cross validation described before in
this section, w = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑖
) is the prediction weight
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showing the prediction strength and whether a factor is a
predisposing or suppression one (positive for predisposing
factors and negative for suppression factors), and 𝑏 is the
decision threshold. Given a new patient 𝑥, the prediction
score w𝑇x indicates the risk of suffering from hypertension.
A higher score represents a higher trend of suffering from
hypertension. The threshold 𝑏 gives approximately the bor-
derline between the scores of normal and hypertension pro-
files. Equation (4) can be solved using the method described
in [22].

2.2.3. Tenfold Cross Validation. Model building algorithms
usually involve the selection of a few parameters. In L1-
regularized logistic regression, the regression parameter 𝜆
needs to be predetermined before training the final model.
Cross validation is a standard procedure in data mining and
machine learning fields that determines the optimal value
of the parameters without human intervention. By ruling
out the bias of artificial selection, the reproducibility and
generality of the results can be assured. Cross validation
allows estimation of the prediction error of a model by
cyclically leaving out a portion of the data as an independent
validation set [23] and the rest as the training set. In each
validation step, a model is trained with the training set alone
and the performance is tested on the validation set. After the
entire data set is tested, the overall performance on all cycles
can be regarded as a fair estimation about the quality of the
achieved model when applying to novel data sets.

Kohavi’s results indicate that tenfold cross validation is
the best method for model selection, even if the computation
power allows using more fold [24]. With tenfold cross
validation, the data are divided into 10 equal parts; the model
is developed on 9/10 of the data (i.e., the training sets) and
then evaluated on the remaining 1/10 of the data (i.e., the
independent test set). This is repeated for each possible 9/10
and 1/10 of the data and the resulting ten prediction errors are
averaged.

In this paper, the studied dataset is highly imbalanced for
healthy versus HBP samples, which will lead to disturbing
in random sampling and degrade the performance of cross
validation. To overcome this effect, we fix the proportion
of hypertension to nonhypertension cases during sampling.
We divide hypertension and nonhypertension case into 10
equal parts, respectively. Then one part is picked out from
hypertension and nonhypertension case, respectively. These
two parts are merged into one part. By this way, we can
get 10 parts with the same proportion of hypertension to
nonhypertension case.

The receiver operating characteristics (ROC) curve [25]
is used to measure the performance of the created model in
both the model selection and the external test. A ROC curve
is a plot of sensitivity (true positive rate, TPR) on the 𝑦-axis
against 1-specificity (false positive rate, FPR) on the 𝑥-axis for
varying values of the threshold (cutoff) value. Sensitivity and
specificity [26] are the basic measures of the accuracy of a
diagnostic test, which describe the abilities of a test to enable
one to correctly diagnose disease when disease is actually
present and to correctly rule out disease when it is truly

absent. The accuracy of a test is measured by comparing the
results of the test to the true disease status of the patient. The
45∘ diagonal line connecting (0, 0) to (1, 1) is the ROC curve
corresponding to random chance. The ROC curve for the
gold standard [27] is the line connecting (0, 0) to (0, 1) and (0,
1) to (1, 1).The area under curve (AUC) [28–30] is a summary
measure that essentially averages diagnostic accuracy across
the spectrum of test values, which is defined as

AUC =
𝑛

∑

𝑖=2

AUC
𝑖
=

𝑛

∑

𝑖=2

(FPR
𝑖
− FPR

𝑖−1
) × TPR

𝑖
. (6)

An ideal prediction model would have an AUC of 1,
whereas a random guess would have an AUC of 0.5.TheAUC
criterion has been widely adopted in CVD risk prediction
[31, 32].

2.2.4. Permutation Test. Permutation test is a standard sta-
tistical method that asserts the risk of false discovery of
an analysis method. In the case of small data set, it can
be frequently observed that a prediction model performs
accurately on the training data set but poorly on novel
data, because the employed analysis method is too powerful
in fitting the training data and overexplores some random
confounding factors that are of no interest to investigators.
Permutation tests are especially useful and relevant for
multivariate analysis, where distributional assumptions are
even more difficult to fulfill [33].

The idea of permutation test is to keep all experiment
protocols and analysis methods fixed except that the sample
labels are all randomly permutated and to compare the results
obtained by the asserted analysis method using real and
permutated labels.The𝑝-value, also called the false discovery
rate (FDR), is defined as the probability that the prediction
quality (AUC value in this case) of a random test is equal to or
greater than the onewith true labels. A lower𝑝-value suggests
that the predictionmodel obtained using real labels has more
probability to be a correct model, rather than conduct to false
discoveries.

3. Results

In our model, field HBP acts as target variable and the rest
are predictor variables. According to formula (2), we can
calculate the probability 𝑝, indicating the probability that
people (case) suffer from hypertension, for every case in test
sets. If for one case 𝑝 is greater than 0.5, this shows that
this case has higher chance developing hypertension and we
have reason to believe that this is a hypertension case. By
comparing the HBP fields of every case in test sets with their
corresponding 𝑝 value calculated, we validate the fitness of
our model.

Note that the estimation score, pred = w𝑇x+𝑏, is equal to
the value ln[𝑝/(1−𝑝)] and grows monotonously with 𝑝, with
an attracting character that pred = 0when𝑝 = 0.5. Hence, we
can use pred as a simple indicator for hypertension. Given a
patient profile 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑖
, we calculate the estimation score

pred = w𝑇x + 𝑏 to estimate the hypertension status of the
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Table 1: Confusion matrix for the prediction results with (a) and
without (b) FPG.

(a) The overall accuracy is 83.65%

Actual value
Positive Negative

Prediction value
Positive 146 116
Negative 30 601
Accuracy 82.95% 83.82%

(b) The overall accuracy is 82.87%

Actual value
Positive Negative

Prediction value
Positive 114 121
Negative 32 596
Accuracy 81.82% 83.12%

given patient and measure the performance of the obtained
model on the test set. We used both the AUC criteria and the
confusion matrix to measure the performance. In computing
the estimation accuracy, we used a threshold pred = 0 to
determine the clinical outcome of the models. Samples with
pred > 0 are assigned hypertension estimations, and others
are assigned nonhypertension estimations, which are then
comparedwith the true status. To plot the ROC curve, we sort
the estimation scores on all instances from largest to smallest,
forming a series of threshold values. At each instance value
a measuring pair (1-specificity, sensitivity) is calculated and
plotted on the curve.

We build two different models with and without FPG,
respectively. The evaluated ROC curves on the independent
test set for the two models are depicted in Figure 2. The AUC
is 0.91789 for the model with FPG and 0.91072 without FPG.
Their corresponding standard errors (SE) are 0.014805 and
0.015371, respectively. We see that both models accurately
infer the hypertension status of the patients from their health
profiles. The box plots of the estimation scores on the test
samples in both cases are given in Figure 3. Table 1 presents
the confusion matrices in values of sensitivity and specificity
for both models, respectively. For the data with FPG, the
overall test accuracy of the model is 83.65% while for the one
without FPG the accuracy is 82.87%.

To performpermutation test, we generated 1000 indepen-
dently permutated datasets and carried out tests on them.
Additionally, we also repeat the tests on real data by randomly
repartitioning the training and test sets. For consideration
of the invasiveness of FPG, we adopt the model without
FPG in this test. The comparison of the AUC scores between
permutated and real data is shown in Figure 4. It turned
out that the performances on the randomly labeled data
sets were obviously inferior to those on the true data set.
We can claim that, at the nominal level 𝛼 = 0.01, the
obtained signature is statistically significant and is not a false
discovery. On randomly labeled data, the average AUC for

1000 permutation tests is 0.499 (which is 0.5 in ideal case) and
the best score is 0.57, while, on real data, the average AUC for
1000 estimation tests is 0.908, with the minimal score of 0.88.
This confirms that the model building protocol suggested in
this paper is not biased or overfit to the data and the obtained
results are highly reliable.

Although FPG is a very important and useful indicator
of hypertension, the above result shows that an alternative
indicator can be constructed with no adoption of FPG
measurement and without significant loss of accuracy. This
finding suggests that a surrogate model can be used to assess
the risk of hypertension without collecting all important
factors that affect the disease, which is quite helpful for our
idea of constructing a clinical signature from very simple
health profiles that are suitable for home-care or mobile-care
technologies.

In order to study the contribution of each factor to
the clinical model and reduce accidental error, we repeat
the experiment protocol on 100 randomly partitioned train-
ing/test sets and calculate all coefficients (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑖
)

associated with each field. These coefficients w are extracted
from the original results. In order to make a fair comparison
of different factors in each model, for each run, we normalize
the coefficients through dividing them to the sum of absolute
value of all coefficients. Then, we calculate the mean value
of the coefficients for each factor in 100 runs and use
it as the estimation strength of the factor. We only keep
factors with absolute average weights greater than 0.01. The
average normalized coefficients of the selected factors and
their distribution ranges are given in Table 2. Factors that
show a positive correlation with the onset of hypertension
are marked in bold and negative ones are marked in italic.
With L1 regularization, only a near-minimal set of factors
is selected among lots of informative variables (𝑝 < 0.01),
which reduces the risk of false discoveries. On the other
hand, L1 logistic regression explores the interaction between
variables and includes some useful factors which seem to be
noninformative when assessed individually (𝑝 > 0.05).These
can be hardly achieved using traditional forward or backward
selection methods.

In our experiments, borderline HBP samples are used
to verify the effectiveness of our model. According to our
grouping method, we can sort these groups by the risk of
suffering from HBP. The risk order from low to high is
white-coat HBP, HBP1, HBP2, and HBP3. We calculate the
estimation score of different groups, including healthy and
HBP samples in test dataset, through our final model. For
the same consideration of permutation test, we also adopt
the model without FPG. Box plot for all six group samples
is shown in Figure 5. From the distribution of the estimation
score, we can conclude that our model can accurately predict
the risk of hypertension for different populations.The healthy
is of the lowest risk and HBP is of the highest.

As is consistent with previous researches [7–10], age,
arterial pulse, FPG, body mass index, sleep quality, intake of
salt, oil, liquor, and pickles are the prevailing factors that affect
the onset of hypertension. In the absence of FPG information,
several diet-related factors (e.g., amount, cost of food intake,
and type of meat intake) take up the role and yield almost
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Table 2: Factors that affect HBP and their weights.

Factor name Normalized weight Original value
With FPG Without FPG Imputed values Avg Std Max Min Units

Arterial pulse 0.116 0.118 74.79 74.79 6.48 119 56 Beats/min
Age 0.115 0.108 38 38 15.62 68 14 Year
FPG 0.069 M 4.73 4.73 0.9 15.2 2.1 mmol/L
Freq. eating pickles 0.062 0.061 1/m [1/m or less, 2∼3/m, 1∼2/w, 3∼6/w, >=7/w]∗

BMI 0.058 0.058 22.56 22.56 2.83 39.05 14.7 kg/m2

Height −0.057 −0.061 163.21 163.21 7.83 184 120 cm
Waistline 0.057 0.057 77.99 77.99 8.89 111 51 cm
Hip circum. 0.057 0.045 88.75 88.75 10.56 137 62 cm
Salt intake 0.028 0.026 0.56 0.56 0.28 3.5 0.15 500 g/m
Years of drinking 0.028 0.025 0 2.56 7.72 51 0 Year
Intake of animal oil −0.026 −0.033 0.14 0.14 0.39 4 0 500 g/m
Sleep quality −0.023 −0.023 Ordinary [bad, ordinary, good]
Female menstruation regularity −0.02 −0.023 1 — — — — Boolean
Divorced 0.019 0.022 0 — — — — Boolean
Intake of plant oil 0.018 0.022 3.09 3.09 1.28 15 0.15 500 g/m
Work-time physical activity −0.016 −0.025 Median [rare, light, median, heavy, extremely heavy]
Drinking white liquor 0.015 0.015 0 0.97 2.56 43 0 Times/w
Drinking tea 0.015 0.014 Occasional [none, occasional, often]
Times of bearing 0.015 0.016 0 1 1.38 10 0 Times
Family food expenditure per month 0.014 0.024 861.04 861.04 694.95 6000 50 RMB
Meat intake type 0 0.01 no meat [no meat, lean, half fat and half lean, fat]
Staple food intake 0 0.013 13.67 13.67 4.39 30 4 50 g/d
Times of abortion 0 0.011 0 0.04 0.28 5 0 Times
Weights are the mean value of 100 prediction tests.
For quantization values, for example, sleep quality, its corresponding original values are enumerated in original value column.
∗/m means ∼per month and /w, /d means ∼per week, ∼per day, respectively.
Unit Boolean means that this attribute value is of Boolean type, value 1 refers to true and value 0 refers to false.
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Figure 2: ROC curve of validation result on test set with and without FPG. AUC with FPG is 0.91789 and its standard error is 0.01481. AUC
without FPG is 0.91072 and its standard error is 0.01537.
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Figure 3: Box plots of the distribution of estimation scores for the healthy and HBP groups. (a) Model with FPG and (b) model without FPG.
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Figure 4: Results of permutation tests and randomization tests. We
see that the AUC values achieved on real data clearly outperform
those on permutated data, which suggests that the models have a
good performance. The deviation of the AUC values on real data is
small, which suggests that the performance of the proposed method
is quite stable against random variations.

equally good prediction; this illustrates how a surrogate
signature can work in risk screening without deep knowledge
about the mechanism of the disease. The model indicates
that intake of animal oil in a small amount helps reduce the
risk of hypertension. This should be interpreted under the
background that the vast majority of oil consumption for the
investigated group of people is formed up by plant oils. From
the model we also see that divorced people are more likely
to develop hypertension compared with single or married
people; and women bearing children many times are also
associated with higher risks. Both phenomena can attribute
to the tensions in daily life.

In the model built without FPG information, lifestyle
factors possess 32% of the prediction weights, which is quite a
significant composition even if we neglect the indirect impact
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Figure 5: Box plots of the distribution of estimation scores for
samples of different HBP status. The model without FPG is used.
(A) Healthy, (B) suspected white-coat HBP, (C) borderline 1, (D)
borderline 2, (E) quasi-HBP, and (F) HBP.

of lifestyles through health profiles. Since the extracted fac-
tors in the model are mostly long-term stable and directly or
indirectly controllable, it is promising that they do comprise
relevant features that can be used as preceding warning
signals for active prevention of hypertension. Our future
study will focus on exploring more accurate, predictive,
and administrable factors and reach a lifestyle evaluation
metric that monitors and alerts healthy people from risks of
hypertension.

4. Discussion

Hypertension is known to be a hybridized disease caused
by various genetic mutations, congenital defects, or acquired
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metabolic or cardiovascular disorders. Despite these hetero-
geneities, in this study we show that a surrogate signature
does exist to reflect the risk of hypertension for a normal
individual, and the signature can be formed up by quite
simple health profile and lifestyle features. Unlike previous
association study approaches, our method directly presents
a risk estimation result to each individual patient. This is
very beneficial in providing a guidance indicator for disease
prevention and surveillance.

It should be emphasized that, as a surrogate signature
obtained by cross sectional study, the features used in the
model are not necessarily the direct cause of hypertension.
Nevertheless, most of the features extracted in this paper are
directly or indirectly controllable, which serve as ideal targets
for early intervention of cardiovascular diseases. Our study
also shows that living style plays an active role in protecting
cardiovascular health. This replicates the common idea that
modification of lifestyle helps to prevent hypertension. More
clinical experiments and investigations, especially longitudi-
nal studies with follow-up responses, should be carried out
to further verify the underlying mechanism about how the
change of lifestyle can influence the risk prognosis.

Lifestyle pattern is a combination of complex behaviour
associated with multiple historical, geological, economic,
cultural, and ethical influences. It is still unclear whether the
clinical model proposed in this study reflects the pervasive
effects of lifestyle to hypertension or merely depicts the
local regularity in a group of people sharing common major
lifestyles but with some variations. Comparative studies
should be carried out to testify the replicability of the
derived model in people with different geological or ethical
backgrounds. With more data collected, the clinical model
can be better optimized and becomemore pervasive.Thiswill
be one of our future directions.

5. Conclusions

Hypertension is considered a major threat to human health
by causing severe circulation or metabolic diseases. Lifestyle
modification has long been considered a promising manner
for disease control and prevention. A comprehensive model
about how lifestyle factors are associated with the total
risk of hypertension is a mandatory demand for effective
health management, which is not yet addressed by existing
studies. In this paper, we demonstrated that a combination
of controllable lifestyle factors and simple health profile
can accurately reflect the hypertension status of a person.
This enables a manner of controlling and preventing the
onset of the disease by actively monitoring lifestyle factors
using mobile-care technologies, assessing the overall risk,
and identifying the prevailing hazard factors, which will be
a useful step towards efficient hypertension prevention.

Home-care and mobile-care devices are becoming more
and more popular in social life, providing more convenient
and real-time monitoring of individual health. Meanwhile,
due to the restriction of cost and portability, these devices
are not expected to be either complex or expensive, which
restricts their abilities of disease diagnosis. Our investigation

suggests that the organization of simple, noninvasive health
monitoring can lead to accurate precaution of important
diseases, which provides support forwider adoption of home-
care or mobile-care in promoting public health. Specifically,
home-care electronic devices can be equipped to collect basic
physiological parameters of individuals and monitor the diet
patterns, exercise frequencies, and other habits of a family
periodically, with low cost and in a noninvasive manner. A
risk score can be then evaluated using the derived model
and an alert can be delivered if an increasing trend of risk
towards hypertension is observed for an individual. By this
means, active prevention and monitoring of HBP by lifestyle
modification can be achieved.
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