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The coexisting oscillations are observedwith amemcapacitor-based circuit that consists of two linear inductors, two linear resistors,
and an active nonlinear charge-controlled memcapacitor. We analyze the dynamics of this circuit and find that it owns an infinite
number of equilibrium points and coexisting attractors, which means extreme multistability arises. Furthermore, we also show the
stability of the infinite many equilibria and analyze the coexistence of fix point, limit cycle, and chaotic attractor in detail. Finally,
an experimental result of the proposed oscillator via an analog electronic circuit is given.

1. Introduction

Memristor is known as the fourth basic circuit element that
was firstly postulated by Chua in 1971 [1] and has attracted
worldwide immense attention from both theory and applica-
tions even since a solid-state device called the memristor was
fabricated by the HP Lab in 2008 [2]. Then, Di Ventra et al.
extend the notion of memristor to memcapacitor and mem-
inductor [3], whose properties depend on the state and his-
tory of them in circuit. These nanoscale elements, that store
information without need for an internal power supply, can
be used for nonvolatile memories, nonlinear circuits, neural
networks, and so on.

In the field of nonlinear dynamics, memristors can be
as fundamental elements for the designs of new nonlinear
circuits substituting other nonlinear devices, whereupon
many memristor-based chaotic oscillators were presented
by using HP memristor and the other memristor models
of piecewise linear, quadric, and cubic 𝜑-𝑞 (flux-charge)
functions. Itoh and Chua firstly derived several nonlinear
oscillators based on Chua’s oscillators by replacing Chua’s
diodes with piecewise linear models of memristor [4]. The
authors in [5] designed a periodically forced memristive
Chua’s circuit using the flux-controlled memductance model

𝑊(𝜑) = −𝑎 + 𝑏|𝜑(𝑡)|. HP memristor model is a first model
of actual memristive device, which was implemented by
a memristor emulator in [6]. The paper [7] introduced a
complete mathematical model for the HP memristor which
takes into consideration all boundary situations providing the
interrelation betweenmemristance charge and flux. Based on
HP memristor and other memristor models, some chaotic
oscillators were presented [8–10]. Recently, a newmemristor-
based chaotic systemwas designed based onHPmemristor in
[11] and was realized using FPGA (Field Programmable Gate
Array) technology. A novel digital-analog hybrid chaotic
system with generalized memristor was constructed for the
production of random number [12]. However, the mem-
capacitor and meminductor have received a little attention
since the actual solid-state devices of them have not been
successfully achieved. Because of their potential application
values, memcapacitor and meminductor have still attracted
more and more attentions.

The first meminductor emulator was designed in [13]
whose inductance can be varied by an external current
source without employing any memristive system. In [14], a
flux-controlled memristive emulator using light-dependent
resistor (LDR) was proposed and themutator for transferring
memristor into a flux-controlled meminductor is described.
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Figure 1: Memcapacitor-based circuit.

Amathematicalmodel of a flux-controlledmeminductor and
its equivalent circuitmodel for exploring the properties of the
meminductor in a nonlinear circuit were presented in [15].

It would be worthwhile to prospectively study effec-
tive memcapacitor models and its applications. So several
memcapacitor models, including piecewise linear, quadric
and cubic function models, memristor-based memcapacitor
models, and memcapacitor emulators, were proposed in [16–
21], and a mathematical memcapacitor model and a corre-
sponding circuit model are established in [22]. Some special
phenomena such as hidden attractors, coexistence attractors,
and extreme multistability were found in memcapacitor-
based chaotic oscillators [23, 24] and memristor-based
chaotic oscillators [25–27]. In fact, multistability and coex-
isting attractors have caught the attention of researcher in
general chaotic systems [28–30].

This paper introduces a new chaotic oscillator based on
a charge-controlled memcapacitor model and its dynamical
behaviors are analyzed.Themost important properties of the
memcapacitor-based circuit are that it possesses an infinite
number of equilibrium points and coexisting attractors and
displays the coexisting attractors and stability of the infinite
many equilibria, called extreme multistability. The rest of
this paper is organized as follows. In Section 2, the chaotic
oscillator is described and the typical chaotic attractors are
given. In Section 3, the dissipativity and equilibrium stability
of the system are studied. In Section 4, coexisting attractors
with different initial 𝑥(0) and 𝑢(0) are described. In Section 5,
an analog circuit is designed to realize the memcapacitor-
based oscillator. Finally, some conclusions of this paper are
given in Section 6.

2. Memcapacitor-Based Chaotic
Oscillator Circuit

The chaotic oscillator circuit based on a charge-controlled
memcapacitor is shown in Figure 1, which contains two linear
inductors, 𝐿1 and 𝐿2, two linear resistors, 𝑅1 and 𝑅2, and an
active memcapacitor.The active memcapacitor is an active 2-
terminal circuit consisting of a linear active resistor−𝑅0 and a
nonlinearmemcapacitor in series, in which the active resistor

Table 1: Parameters of system (3).

Parameter Value
𝑎 = 𝛼/𝐿1 5.8
𝑏 = 𝛽/𝐿1 1.5
𝑐 = (𝑅0 − 𝑅1)/𝐿1 2.6
𝑑 = 𝑅0/𝐿1 0.1
𝑒 = (𝑅0 − 𝑅2)/𝐿2 −3.4
𝑓 = 𝑅0/𝐿2 0.2
𝑚 = 𝛽/𝐿2 6.8
𝑛 = 𝛼/𝐿2 2.8

−𝑅0 provides energy for the circuit. Hence, the series circuit,
that is, the active 2-terminal circuit as a whole, exhibits an
active feature, so called the active memcapacitor.

The circuit dynamics can be described by

𝐿1 𝑑𝑖1𝑑𝑡 = (𝑖1 + 𝑖2) 𝑅0 − V𝑚 − 𝑖1𝑅1,

𝐿2 𝑑𝑖2𝑑𝑡 = (𝑖1 + 𝑖2) 𝑅0 − V𝑚 − 𝑖2𝑅2,
𝑑𝑞𝑚
𝑑𝑡 = 𝑖1 + 𝑖2,

(1)

where 𝑞𝑚 and V𝑚 are the charge through the memcapacitor
and the voltage across the memcapacitor, respectively. The
relationship between the charge 𝑞𝑚 and voltage V𝑚 of the
memcapacitor is defined as [19]

V𝑚 = (𝛼 + 𝛽𝜎2
𝑚
) 𝑞𝑚, (2)

where 𝛼 + 𝛽𝜎2
𝑚
is the inverse memcapacitance and 𝜎𝑚 is the

time integral of 𝑞𝑚; namely, 𝜎 = ∫𝑡
𝑡0
𝑞(𝜏)𝑑𝜏.

Equation (2) has a new variable 𝜎𝑚, so we should add an
equation of 𝜎𝑚 in (1). If we define 𝑥 = 𝑖1, 𝑦 = 𝑖2, 𝑧 = 𝑞𝑚,𝑢 = 𝜎𝑚, 𝑎 = 𝛼/𝐿1, 𝑏 = 𝛽/𝐿1, 𝑐 = (𝑅0 − 𝑅1)/𝐿1, 𝑑 = 𝑅0/𝐿1,𝑒 = (𝑅0 − 𝑅2)/𝐿2, 𝑓 = 𝑅0/𝐿2, 𝑚 = 𝛽/𝐿2, and 𝑛 = 𝛼/𝐿2, (1)
becomes

𝑑𝑥
𝑑𝑡 = 𝑐𝑥 + 𝑑𝑦 − 𝑎𝑧 − 𝑏𝑧𝑢2,
𝑑𝑦
𝑑𝑡 = 𝑓𝑥 + 𝑒𝑦 − 𝑛𝑧 − 𝑚𝑧𝑢2,
𝑑𝑧
𝑑𝑡 = 𝑥 + 𝑦,
𝑑𝑢
𝑑𝑡 = 𝑧.

(3)

Typical chaotic attractors obtained by simulating (3) are
shown in Figure 2 in terms of the parameters listed in Table 1,
with the initial condition (0.01, 0.01, 0.01, 0.01).

The corresponding Lyapunov exponents are calculated
as LE1 = 0.3787, LE2 = 0.0092, LE3 = −0.0094, and LE4 =−0.9786. The Poincare mapping on 𝑧 = 0 and the time-
domain waveforms of system (3) are described in Figure 3.
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Figure 2: Chaotic attractors obtained from (3). (a) 𝑥-𝑦 plane. (b) 𝑥-𝑧 plane. (c) 𝑦-𝑧 plane. (d) 𝑦-𝑢 plane.
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Figure 3: Poincare mapping and time-domain waveforms. (a) Poincare mapping. (b) Time-domain waveforms.
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Obviously, time-domain waveforms are nonperiodic con-
tinuous chaotic sequences, and the curve of Poincare map
is a continuous curve, and the time-domain waveform is
not periodic, which indicate that these attractors are chaotic
attractors.

3. Dynamical Characteristic Analysis

3.1. Dissipativity and Stability of Equilibrium Set. Dissipative
systems will shrink to a phase space of a limited area, called
the attractor. The dissipativity of the system is described as

∇𝑉 = 𝜕𝑥̇
𝜕𝑥 + 𝜕𝑦̇

𝜕𝑦 + 𝜕𝑧̇
𝜕𝑧 + 𝜕𝑢̇

𝜕𝑢 = 𝑐 + 𝑒. (4)

When the parameters are set as 𝑐 = 2.6 and 𝑒 = −3.4, the
exponential constraint rate satisfies

∇𝑉 = −0.8 < 0. (5)

It means that the volume of phase space will be contracted to
zero and all trajectories of the system are confined to a subset
of zero volume.

The equilibrium points of system (3) can be calculated as

𝑠1 = {(𝑥, 𝑦, 𝑧, 𝑢) | 𝑧 = 0, 𝑥 = 𝑘1, 𝑦 = −𝑘1, 𝑢 = 𝑘2} ,
𝑐 = 𝑑, 𝑓 = 𝑒,

𝑠2 = {(𝑥, 𝑦, 𝑧, 𝑢) | 𝑥 = 𝑦 = 𝑧 = 0, 𝑢 = 𝑘3} ,
𝑐 ̸= 𝑑, 𝑓 ̸= 𝑒,

(6)

where 𝑘1, 𝑘2, and 𝑘3 are arbitrary constants. Obviously, the
system has two equilibrium sets, and every set has an infinite
number of equilibria.

If the parameters are 𝑐 = 𝑑, 𝑓 = 𝑒 or 𝑐 ̸= 𝑑, 𝑓 ̸= 𝑒, the
Jacobian matrix of the circuit at equilibrium sets 𝑆1 and 𝑆2 is
given by

𝐽1,2 =
[[[[[[
[

𝑐 𝑑 −𝑎 − 𝑏𝑘2
2,3

0
𝑓 𝑒 −𝑛 − 𝑚𝑘2

2,3
0

1 1 0 0
0 0 1 0

]]]]]]
]

, (7)

where 𝑘2 and 𝑘3 have the same effect on the system, so they
can be replaced by 𝑘. The characteristic equation is written as

𝜆4 − (𝑐 + 𝑒) 𝜆3 + (𝑎 + 𝑏𝑘2 + 𝑛 + 𝑚𝑘2 + 𝑐𝑒 − 𝑓𝑑) 𝜆2

+ (𝑎𝑓 + 𝑏𝑘2𝑓 + 𝑑𝑛 + 𝑑𝑚𝑘2 − 𝑎𝑒 − 𝑏𝑘2𝑒 − 𝑛𝑐
− 𝑐𝑚𝑘2) 𝜆 = 0.

(8)

According to the Routh–Hurwitz criterion, the necessary
and sufficient condition for stability of the system is that all
the principal minors are greater than zero; that is,

Δ 1 = 𝑎1 > 0,

Δ 2 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑎1 𝑎0
𝑎3 𝑎2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 0,

Δ 3 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎1 𝑎0 0
𝑎3 𝑎2 𝑎1
0 𝑎4 𝑎3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 0,

Δ 4 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎1 𝑎0 0 0
𝑎3 𝑎2 𝑎1 𝑎0
0 𝑎4 𝑎3 𝑎2
0 0 0 𝑎4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 0,

(9)

where

𝑎0 = 1,
𝑎1 = − (𝑐 + 𝑒) ,
𝑎2 = 𝑎 + 𝑏𝑘2 + 𝑛 + 𝑚𝑘2 + 𝑐𝑒 − 𝑓𝑑,
𝑎3 = 𝑎𝑓 + 𝑏𝑘2𝑓 + 𝑑𝑛 + 𝑑𝑚𝑘2 − 𝑎𝑒 − 𝑏𝑘2𝑒 − 𝑛𝑐

− 𝑐𝑚𝑘2,
𝑎4 = 0,

(10)

whereas it is unstable and has the possibility of generating
chaos under the proper parameters. If we fix 𝑎 = 5.8, 𝑏 = 1.5,
𝑐 = 2.6, 𝑑 = 0.1, 𝑒 = −3.4, 𝑓 = 0.2, 𝑚 = 6.8, and 𝑛 = 2.8,
the stability of equilibrium sets 𝑆1 and 𝑆2 depends on the
constant 𝑘. Figure 4 shows the change rule of Δ 1, Δ 2, Δ 3, andΔ 4 with the constant 𝑘. Here, Δ 1 is slightly greater than zero
and Δ 4 is equal to zero, so the black curve overlaps so much
with the green curve in Figure 4. Note that the stability of an
infinite number of equilibria is called extreme multistability.
The following analysis will show that the stability of the all
equilibrium points depends on the parameter 𝑘, resulting in
chaos when 𝑘 ∈ [−1.5, 1.5].
3.2. Coexisting Oscillations. In this section, we show that the
dynamics of the system depend on not only its parameters
but also its initial conditions, which leads to a special charac-
teristic, called the coexisting oscillation in this paper. In the
coexisting oscillation, many coexisting attractors appear with
different initial conditions, such as coexistence of limit circle
or fixed point and chaotic attractor, coexistence of chaotic and
hyperchaotic attractors, and coexistence of two limits or two
fixed points.

Multistability is a common phenomenon in many non-
linear systems, which corresponds to the coexistence of more
than one stable attractor for the same set of systemparameters
[31]. If infinitely many attractors coexist for the same set
of system parameters, the phenomenon is called extreme
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Figure 4: Curves of Δ 1, Δ 2, Δ 3, and Δ 4 with 𝑘.

multistability [32], showing that various coexisting attractors
have essentially extreme multistability.

3.2.1. Coexisting Attractors with Initial Variable 𝑥(0). If we
fix the parameters as Table 1 and vary initial value 𝑥(0) in
the initial conditions (𝑥0, 0.01, 0.01, 0.01), the bifurcation
diagram and corresponding Lyapunov exponent spectrum
with respect to 𝑥(0) can be obtained as shown in Figure 5.
System (3), with the increase of initial state 𝑥(0) in Figure 5,
undergoes a complex bifurcation from chaos to period, or
from period to chaos, implying the coexistence of periodic
and chaotic attractors.

When 𝑥(0) is varied, many coexisting attractors appear,
as shown in Figure 6, in which every subdiagram represents
a pair of coexisting attractors; the blue attractor and the
red attractor start from different initial values of 𝑥(0). The
blue attractors start from 𝑥(0) ∈ (−0.85, 0) and the red
attractors start from 𝑥(0) ∈ (0, 0.84). From Figure 6, we can
see that there exist different coexistence attractors, including
coexistence of a pair of chaotic attractors, coexistence of a pair
of quasiperiodic limit cycles, and coexistence of a pair of limit
cycles. Various coexisting attractors and their corresponding
initial values are listed in Table 2.

3.2.2. Coexisting Attractors with Initial Variable 𝑢(0). Similar
to the abovementioned, the bifurcation diagrams and Lya-
punov exponent spectrums with respect to the initial value
𝑢(0) are described in Figure 7, inwhichwe also fix parameters
as Table 1 and vary parameter 𝑢(0) in the initial condition:
(0.01, 0.01, 0.01, 𝑢0). Figures 7(a) and 7(b) indicate that the
systemundergoes a period-doubling bifurcation in the region
𝑢(0) ∈ [−1, −0.65] and then enters chaos in the region
𝑢(0) ∈ [−0.65, −0.59]. With the further increase of 𝑢(0),
Figures 7(c) and 7(d) show that this system possesses the
symmetric dynamics characteristic with respect to 𝑢(0) = 1.05
at the region 𝑢(0) ∈ [0.6, 1.5].

Coexisting attractors with respect to initial value 𝑢(0) are
shown in Figure 8, and the corresponding regimes and initial
conditions for all attractors are listed in Table 3. Note that
Figure 8(a) shows the coexistence of the three attractors, that
is, fixed point, two different limited circles.

Note that the phenomenon of coexisting oscillation is
different with the initial value sensitivity of usual chaotic
systems. For the usual chaotic system, trajectories starting
from different initial values evolve along with the time
and eventually converge to the same chaotic attractor. For
the proposed oscillator, however, trajectories starting from
different initial values can converge eventually to different
attractors, including chaotic attractors, periodic attractors, or
fixed points. Hence, it seems that trajectories in the coexisting
attractors are more sensitive to initial values not only for
chaotic orbits but also for periodic orbits.

4. Dimension Reduction Analysis

In order to solve the 3D equations (1), we must add an equa-
tion of 𝜎𝑚 which is an internal variable of the memcapacitor
and obtain the 4D equations (3). However, this makes it
difficult to solve the 4D equations. In general, if there is one
memory element increased into a circuit, there will be two
state equations added to the system equations, in which one
is the equation corresponding to a circuit state variable and
the other corresponds to the internal variable for thememory
element.

In order to reduce the complexity of solving (3), we
integrate directly (1) on both sides and then the 3D equations
can be obtained:

𝐿1 𝑑𝑞1𝑑𝑡 = (𝑞1 + 𝑞2) 𝑅0 − 𝜑𝑚 − 𝑞1𝑅1,

𝐿2 𝑑𝑞2𝑑𝑡 = (𝑞1 + 𝑞2) 𝑅0 − 𝜑𝑚 − 𝑞2𝑅2,
𝑑𝜎𝑚
𝑑𝑡 = 𝑞1 + 𝑞2 + 𝑞0,

(11)

where 𝑞0 is the initial charge of the memcapacitor and 𝑞1,𝑞2, 𝜑𝑚, and 𝜎𝑚 are the time integrals of 𝑖1, 𝑖2, V𝑚, and 𝑞𝑚,
respectively.

For convenience, let 𝑥 = 𝑞1, 𝑦 = 𝑞2, 𝑧 = 𝜎𝑚, 𝑎 = 𝑎/𝐿1,𝑏 = 𝛽/𝐿1, 𝑐 = (𝑅0 − 𝑅1)/𝐿1, 𝑑 = 𝑅0/𝐿1, 𝑒 = (𝑅0 − 𝑅2)/𝐿2,𝑓 = 𝑅0/𝐿2, 𝑚 = 𝛽/𝐿2, 𝑛 = 𝛼/𝐿2, and 𝑞0 = 0; (11) can be
transformed as follows:

𝑑𝑥
𝑑𝑡 = 𝑐𝑥 + 𝑑𝑦 − 𝑎𝑧 − 𝑏𝑧3,
𝑑𝑦
𝑑𝑡 = 𝑓𝑥 + 𝑒𝑦 − 𝑛𝑧 − 𝑚𝑧3,
𝑑𝑧
𝑑𝑡 = 𝑥 + 𝑦.

(12)

We now present the attracting basins shown in Figure 9 in
the 𝑥(0)-𝑦(0) plane and the 𝑥(0)-𝑧(0) plane for observing the
dynamics of thememcapacitor-based circuit. Here, we fix 𝑎 =
6.6, 𝑏 = 1, 𝑐 = 2.5, 𝑑 = 0.25, 𝑒 = −3.41, 𝑓 = 0.25, 𝑚 = 5.2,
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Figure 5: Bifurcation diagram and Lyapunov exponent spectrum of coexisting oscillation with respect to initial value 𝑥(0). (a) Bifurcation
diagram. (b) Lyapunov exponent spectrum.

Table 2: Coexisting attractors for various conditions (𝑥(0), 0.01, 0.01, 0).
Regimes 𝑥(0) Diagrams

A symmetric pair of chaotic attractors −0.800 Figure 6(a), blue
0.800 Figure 6(a), red

A symmetric pair of quasiperiodic limit cycles −0.779 Figure 6(b), blue
0.764 Figure 6(b), red

A symmetric pair of limit cycles −0.490 Figure 6(c), blue
0.470 Figure 6(c), red

A symmetric pair of chaotic attractors −0.268 Figure 6(d), blue
0.252 Figure 6(d), red

A symmetric pair of chaotic attractors −0.250 Figure 6(e), blue
0.190 Figure 6(e), red

and 𝑛 = 2. And the initial conditions are (𝑥(0), 𝑦(0), 0.01) and
(𝑥(0), 0.01, 𝑧(0)) for Figures 9(a) and 9(b), respectively. Each
attracting basin is divided into blue region and red region,
corresponding to two types of coexisting attractors, which are
shown in Figure 10.

The initial charge 𝑞0 of the memcapacitor plays an
important role in the circuit. The bifurcation diagram and
corresponding Lyapunov exponent spectrum with respect to
𝑞0 are presented in Figure 11 with the initial condition (0.01,
0.01, 0.01) and the parameters 𝑎 = 6.6, 𝑏 = 1, 𝑐 = 2.5,𝑑 = 0.25,
𝑒 = −3.41, 𝑓 = 0.25,𝑚 = 5.2, and 𝑛 = 2.

Figure 11(a) shows a complex bifurcation process, which
has typical period 3 window, and also possesses novel period
1 and period 2 windows. Furthermore, there exist period-
doubling and inverse period-doubling bifurcations in both
sides of the period 2 window. Figures 12(a)–12(d) give the
typical attractors in the 𝑦-𝑧 plane with 𝑞0 = 0.01, 𝑞0 = 0.05,
𝑞0 = 0.11, and 𝑞0 = 0.29.

5. Analog Circuit Experiment

An experimental circuit is designed to realize the
memcapacitor-based chaotic oscillator. The designed
circuit for realizing (12) is shown in Figure 13, and its
corresponding state equations are written as

𝑑𝑥
𝑑𝜏 = − 1

𝑅1𝐶1 (−𝑥) −
1

𝑅2𝐶1 (−𝑦) −
1

𝑅3𝐶1 𝑧

− 1
100𝑅4𝐶1 𝑧

3,
𝑑𝑦
𝑑𝜏 = − 1

𝑅5𝐶2 (−𝑥) −
1

𝑅6𝐶2𝑦 − 1
𝑅7𝐶2 𝑧 −

1
100𝑅8𝐶2 𝑧

3,
𝑑𝑧
𝑑𝜏 = − 1

𝑅9𝐶3 (−𝑥) −
1

𝑅10𝐶3 (−𝑦) .

(13)
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Figure 6: Coexisting attractors on 𝑥-𝑦 plane. (a) Coexistence of a symmetric pair of chaotic attractors with 𝑥(0) = −0.800 and 𝑥(0) = 0.800.
(b) Coexistence of a symmetric pair of quasiperiodic limit cycles with 𝑥(0) = −0.779 and 𝑥(0) = 0.764. (c) Coexistence of a symmetric
pair of limit cycles with 𝑥(0) = −0.490 and 𝑥(0) = 0.470. (d) Coexistence of a symmetric pair of chaotic attractors with 𝑥(0) = −0.268 and
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Figure 7: Bifurcation and Lyapunov exponents of coexisting oscillation with respect to initial 𝑢(0). ((a) and (b)) Bifurcation diagrams. ((c)
and (d)) Corresponding Lyapunov exponent spectrum.

Table 3: Coexisting attractors for initial condition (0.01, 0.01, 0.01, 𝑢(0)).
Regimes 𝑢(0) Diagrams
Point attractor −0.865 and 0.865 Figure 8(a), black

A symmetric pair of limit cycles −0.740 Figure 8(a), blue
0.760 Figure 8(a), red

A symmetric pair of quasiperiodic limit cycles −0.650 Figure 8(b), blue
0.667 Figure 8(b), red

A symmetric pair of chaotic attractors −0.635 Figure 8(c), blue
0.650 Figure 8(c), red

A symmetric pair of chaotic attractors −0.610 Figure 8(d), blue
0.630 Figure 8(d), red
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Figure 8: Coexisting attractors in the 𝑥-𝑦 plane with respect to 𝑢(0). (a) Coexistence of a point attractor and a symmetric pair of limit cycles
with 𝑢(0) = −0.865 (black), 𝑢(0) = −0.740 (blue), and 𝑢(0) = 0.760 (red), respectively. (b) Coexistence of a symmetric pair of quasiperiodic
limit cycles with 𝑢(0) = −0.650 (blue) and 𝑢(0) = 0.667 (red). (c) Coexistence of a symmetric pair of chaotic attractors with 𝑢(0) = −0.635
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cycles, and (c) 𝑦-𝑧 plane.

Circuit parameters can be obtained as 𝑅1 = 40 kΩ, 𝑅2 =400 kΩ, 𝑅3 = 15 kΩ, 𝑅4 = 1 kΩ, 𝑅5 = 400 kΩ, 𝑅6 ≈ 30 kΩ,
𝑅7 = 50 kΩ, 𝑅8 ≈ 180Ω, and 𝑅9 = 𝑅10 = 100 kΩ, when we
set𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 10 nF, and 𝑅11 = 𝑅12 = 𝑅13 = 𝑅14 =100 kΩ. In this circuit, the operational amplifier and the
analog multiplier are selected as LF347N and AD633, respec-
tively. The voltage references are ±VCC = ±15 V. The experi-
mental chaotic attractors observed via the digital oscilloscope
(DSO3102A) are shown in Figure 14.

Note that the circuit shown in Figure 13 and used in
the experiment is designed based on (12), which is a set of
dimension reduction (three-dimensional) equations which is
obtained fromfive-dimensional equation (3). Comparedwith
othermemcapacitor-based chaotic oscillators, the advantages
of this experiment are that the experimental circuit is simple
and the attractors or time-domain waveforms with respect to
charge (𝑞1 and 𝑞2) through the inductor (𝐿1 and 𝐿2) can be
observed directly from the experimental oscilloscope.

6. Conclusion

In this paper, a new chaotic oscillator based on charge-
controlled memcapacitor is designed. The dynamical char-
acteristics with respect to the variations of initial conditions
are investigated, and then the complex dynamic character-
istics, including equilibrium set or an infinite number of
equilibrium points, extreme multistability of the equilibrium
set, and coexisting attractors, are found. Finally, chaotic
attractors are captured experimentally by the analog circuit
of implementing this oscillator. The most prominent feature
of this system is the coexisting oscillation and coexisting
attractors. It is concluded that one coexisting oscillation sys-
tem can be as multi-random signal seeds to design different
chaotic pseudorandom number generators, which can be
used in secret communications, information encryptions,
and various pseudorandom number generation.
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Figure 11: Bifurcation Lyapunov exponents with respect to 𝑞0. (a) Bifurcation diagram. (b) Lyapunov exponent spectrum.
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