
Research Article
Minimizing the Number of Tardy Jobs on a Single Machine with
an Availability Constraint

Ehsan Molaee1 and Ghasem Moslehi2

1 Industrial Management Group, Binaloud Institute of Higher Education, Mashhad 9351991949, Iran
2Department of Industrial Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran

Correspondence should be addressed to Ehsan Molaee; e.molaee@yahoo.com

Received 10 May 2014; Accepted 19 August 2014; Published 1 September 2014

Academic Editor: Purushothaman Damodaran

Copyright © 2014 E. Molaee and G. Moslehi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Most scheduling problems are based on the assumption that machines work continuously during the planning horizon. This
assumption is not true in many production environments because the machine may not be available during one or more periods
such as during breakdowns or maintenance operations. In this paper, the problem of the single machine scheduling with one
unavailability period and nonresumable jobs with the aim ofminimizing the number of tardy jobs is studied. A number of theorems
are proved and a heuristic procedure is developed to solve the problem. A branch-and-bound approach is also presented which
includes upper and lower bounds and efficient dominance rules. Computational results for 2680 problem instances show that the
branch-and-bound approach is capable of solving 98.7% of the instances optimally, bearing witness to the efficiency of the proposed
procedure. Our results also indicate that the proposed approaches are more efficient when compared to other methods.

1. Introduction

Most scheduling problems take the fact that the machine
works continuously during the planning horizon for granted.
This assumption may be unrealistic in many production
environments as the machine becomes unavailable during
breakdowns or maintenance operations.

Thenumber of tardy jobs is one of the important objective
functions in scheduling problems. This target has wide
applications in many production and service environments
and reflects factors of external cost based on due dates
such as customer satisfaction. The number of tardy jobs
can represent orders of customers that are not satisfied. In
this paper, the single machine scheduling problem with a
known unavailability period and nonresumable jobs with
the objective of minimizing the number of tardy jobs is
considered. According to Pinedo [1] separation, this problem
is denoted by 1, ℎ

1
|| ∑𝑈

𝑖
.

So far, a few researchers have studied single machine
problems with availability constraints. In these problems,
there are three general states for jobs including resumable,
nonresumable, and semiresumable states. According to the

resumable scenario, job preemption is allowed. This means
that if a job cannot be finished before a nonavailability period
of the machine, its processing can be resumed when the
machine is available again. According to the nonresumable
scenario, preemption is undesirable and the whole processing
of the job should be repeated if it cannot be finished before the
unavailability period. In the semiresumable state, part of the
processing should be repeated if it cannot be finished before
the nonavailability interval.

Lee [2] showed that the SPT rule, the EDD rule, and the
Moore and Hodgson algorithm [3] minimize the targets of
sumof completion times,maximum lateness, and the number
of tardy jobs, respectively, in the single machine problem
with a fixed nonavailability interval and resumable jobs. He
also proved that the problem 1, ℎ

1
|pmtn| ∑𝑛

𝑖=1
𝑤
𝑖
𝐶
𝑖
is NP-

hard even if 𝑤
𝑖
= 𝑝
𝑖
for all 𝑖. In addition, he showed that the

problem 1, ℎ
1
||𝐿max is NP-hard, too.

Adiri et al. [4] and Lee and Liman [5] proved that the
problem 1, ℎ

1
|| ∑
𝑛

𝑖=1
𝐶
𝑖
is NP-hard. Lee and Liman [5] showed

that the worst case boundary of the SPT rule for this problem
was 9/7. Sadfi et al. [6] provided a heuristic algorithm called
MSPT (modified SPT) to solve the problem and proved that

Hindawi Publishing Corporation
Journal of Industrial Engineering
Volume 2014, Article ID 568317, 13 pages
http://dx.doi.org/10.1155/2014/568317

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192782945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Journal of Industrial Engineering

this heuristic had a tight worst case boundary of 20/17. Breit
[7] presented a parametric heuristic procedure with the time
complexity 𝑂(𝑛 log 𝑛) for this problem and showed that the
minimized calculated worst case boundary for this algorithm
was 1.07.

Kacem and Chu [8] developed a set of lower bounds
for the problem 1, ℎ

1
|| ∑
𝑛

𝑖=1
𝑤
𝑖
𝐶
𝑖
and compared them ana-

lytically. They also proposed three heuristic algorithms 𝐻
1

with the time complexity 𝑂(𝑛 log 𝑛), 𝐻
2
with 𝑂(𝑛

3
), and

𝐻
3
with 𝑂(𝑛

2
). They finally presented a branch-and-bound

algorithm to solve the problem in which the best solution
of the heuristics 𝐻

1
, 𝐻
2
, and 𝐻

3
is used as the upper

bound. Kacem [9] showed that heuristic 𝐻
3
proposed in

[8] had a tight worst case boundary of 2. Kacem et al. [10]
formulated a mixed integer programming (MIP) model for
the problem 1, ℎ

1
|| ∑
𝑛

𝑖=1
𝑤
𝑖
𝐶
𝑖
. Then, they proposed some new

lower bounds including analytic comparisons of them. Next,
they presented a branch-and-bound algorithm based on
these lower bounds and proposed a dynamic programming
procedure to solve the problem optimally. Finally, via compu-
tational results, they analyzed the performances of the three
exact methods of MIP model, branch-and-bound approach,
and the dynamic programming provided in their paper.

Liao and Chen [11] proposed a heuristic algorithm with
the time complexity 𝑂(𝑛

2
∑
𝑛

𝑖=1
𝑝
𝑖
), for the single machine

problem with periodic maintenance operations and nonre-
sumable jobs with the target of maximum tardiness. Then,
they presented a branch-and-bound algorithm to achieve
optimal schedules and utilized it to evaluate their heuristic.

Ji et al. [12] studied the problem of minimizing makespan
on a single machine with periodic maintenance and non-
resumable jobs. They showed that the worst case boundary
of LPT rule for this problem was 2 and that it was tight.
Additionally, they showed that there was no approximation
algorithm with polynomial time and worst case performance
less than 2 unless 𝑃 = 𝑁𝑃.

Chen [13] studied the problem of minimizing total flow
time and maximum tardiness subject to periodic main-
tenance and nonresumable jobs. He provided a heuristic
procedure with the time complexity 𝑂(𝑛

2
∑
𝑛

𝑖=1
𝑝
𝑖
) to find

efficient schedules of the linear target function 𝛼𝐹(𝑆) + (1 −

𝛼)𝑇max(𝑆), where 𝐹(𝑆) and 𝑇max(𝑆) represent total flow time
and maximum tardiness of schedule 𝑆, respectively, and 0 ≤

𝛼 ≤ 1 is the weighting factor. He also showed that the worst
case boundary of this heuristic according to values 𝛼 = 0 and
𝛼 = 1 was between 1 and 3/2. He then developed a branch-
and-bound algorithm to achieve optimal schedules and uti-
lized it to examine schedules obtained through his heuristic.

Adiri et al. [14] assumed that the unavailable period is
unknown but with a probabilistic distribution. They distin-
guished two cases of a breakdown, that is, the resumable
and nonresumable cases. By applying the EDD and MSPT
rules for two cases, respectively, the criterion of number
of tardy jobs can be minimized. Chen [15] considered the
problem of minimizing the number of tardy jobs subject to
periodic maintenance and nonresumable jobs. He presented
a heuristic algorithm with the time complexity𝑂(𝑛

2
∑
𝑛

𝑖=1
𝑝
𝑖
).

He then proposed a branch-and-bound approach to find

optimal schedules and applied it for evaluating schedules
obtained from his heuristic.

In the literature, the single machine scheduling with
the target of minimizing the number of tardy jobs with an
availability constraint has not been reported, specially by an
efficient heuristic and a binary branch and bound in solving
procedure, to the best of our knowledge. Therefore, in this
paper, minimizing the number of tardy jobs in the single
machine scheduling problem with a fixed nonavailability
period, that is, problem 1, ℎ

1
|| ∑𝑈

𝑖
, is studied. It is assumed

that there is one unavailability interval with known beginning
and finishing times, and all the jobs are nonresumable.

The rest of this paper is organized as follows. In Section 2,
a definition of the problem is presented along with the nota-
tions and assumptions used. In Section 3, some theorems are
proved to facilitate the solution of the problem. In Section 4,
a heuristic procedure is developed for the problem. A branch-
and-bound (BB) approach is proposed in Section 5 that
aims at the optimal solution of the problem. Computational
results for evaluating the heuristic and the BB algorithm
are presented in Section 6. Also in this section, numerical
results are used tomake comparisons between the procedures
proposed in this paper and the algorithms of Chen [15]
for the special case of problems in which problems with
periodic maintenance are transferred to problems with one
nonavailability interval.

2. Problem Definition

The problem 1, ℎ
1
|| ∑𝑈

𝑖
consists of scheduling 𝑛 jobs in the

set 𝐼 = {𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
} on a single machine. The target is

defined as minimizing the number of tardy jobs. Each job
has a known processing time and a due date. All jobs are
nonresumable and available at time zero. The machine is not
available during the time interval of 𝑇

1
to 𝑇
2
and cannot

process any job in this period. Outside this interval, the
machine can process only one job at a time. The following
notations are used for the problem:

𝑛: number of jobs;
𝐼: the set of jobs to be scheduled, 𝐼 = {𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
};

𝑝
𝑖
: processing time of job 𝐽

𝑖
, 𝑖 = 1, 2, . . . , 𝑛;

𝑑
𝑖
: due date of job 𝐽

𝑖
, 𝑖 = 1, 2, . . . , 𝑛;

𝑇
1
: beginning time of the nonavailability interval;

𝑇
2
: finishing time of the nonavailability interval;

𝐶
𝑖
: completion time of job 𝐽

𝑖
, 𝑖 = 1, 2, . . . , 𝑛;

𝑁
𝑇
: number of tardy jobs in the complete schedule.

It is assumed that data are integers. If all the jobs can be
processed before the nonavailability interval, the problemwill
be changed to the single machine scheduling problem with-
out any availability constraint whose optimal solution will
be obtained by applying the Moore and Hodgson algorithm
in a polynomial time. Therefore, this paper considers only
problems in which not all the jobs can be inserted before
the nonavailability period. In other words, the inequality
∑
𝑛

𝑖=1
𝑝
𝑖
> 𝑇
1
always holds.

Journal of Industrial Engineering 3

3. Theorems of the Problem

The problem 1, ℎ
1
|| ∑𝑈

𝑖
was studied by Lee [2]. He proved

that the problem is NP-hard. He also showed that for the
resumable case of the problem, that is, 1, ℎ

1
|pmtn| ∑𝑈

𝑖
,

the Moore and Hodgson algorithm can be applied to solve
the problem optimally. For this case, the length of the
maintenance period, 𝑇

2
− 𝑇
1
, is added to completion times

of those jobs that are finished after 𝑇
2
.

Lee [2] also showed that if the Moore and Hodgson
algorithm was used for solving the problem 1, ℎ

1
|| ∑𝑈

𝑖
, the

inequality 𝑃(𝑁𝑅) ≤ 𝑃
∗
(𝑁𝑅) + 1 would always be true, in

which 𝑃(𝑁𝑅) denotes the number of tardy jobs obtained by
the Moore and Hodgson algorithm and 𝑃

∗
(𝑁𝑅) denotes the

optimal number of tardy jobs.
The steps in the Moore and Hodgson algorithm are as

follows:

Step 1. Put the jobs in the EDD order and index them in the
same order.

Step 2. Calculate the tardiness of jobs. Notice that in the
completion time of the jobswhich are after the nonavailability
period, the length of the time interval𝑇

2
−𝑇
1
should be added.

If there is no tardy job in the sequence obtained, this sequence
would be optimal, stop. Otherwise, go to Step 3.

Step 3. Suppose that 𝐽
𝛼
is the first tardy job in the sequence

and select the job 𝐽
𝛽
as follows:

𝑝
𝛽
= max

𝑖=1,2,...,𝛼
{𝑝
𝑖
} . (1)

This job is removed from the sequence and is processed after
all the nontardy jobs. Go to Step 2.

It is necessary to note that Lee [2] did not propose any
procedure to solve the problem optimally. From the above
considerations, we can conclude the following corollary.

Corollary 1. In view of the fact that the solution obtained
from the Moore and Hodgson algorithm has at most one unit
difference from the optimal solution, the value of𝑃(𝑁𝑅)−1 can
be considered as a lower bound for the problem 1, ℎ

1
|| ∑𝑈

𝑖
.

According to Corollary 1, although the difference
between Moore and Hodgson algorithm and optimal
solution is at most one, in many practical cases, such as
airline scheduling or hospital services scheduling, this
difference is very important and it is so critical to recognize
the optimal solution.

In the rest of this section, a number of theorems are
proposed to solve the problem 1, ℎ

1
|| ∑𝑈

𝑖
.

Theorem 2. In the problem 1, ℎ
1
|| ∑𝑈

𝑖
, there is an optimal

schedule in which jobs after and before the nonavailability
interval are sequenced by the Moore and Hodgson algorithm.

Proof. Each sequence in the solution of the problem
1, ℎ
1
|| ∑𝑈

𝑖
can be divided into two sets 𝜎

1
and 𝜎

2
, such

that all the jobs in set 𝜎
1
are completed before 𝑇

1
and all

the jobs in set 𝜎
2
are completed after 𝑇

2
. It is clear that the

optimal solution of set 𝜎
1
is achieved based on theMoore and

Hodgson algorithm.
On the other hand, it can be assumed that the ready

times for all the jobs in 𝜎
2
are equal to 𝑇

2
, which entails that

determining the optimal job sequence in this set is similar to
minimizing the number of tardy jobs in a singlemachinewith
ready times equal to 𝑇

2
for all jobs. Therefore, the number of

tardy jobs in 𝜎
2
can be minimized by applying theMoore and

Hodgson algorithm.

Corollary 3. According to Theorem 2, the dominant set of
sequences for the problem 1, ℎ

1
|| ∑𝑈

𝑖
contains the ones in

which each partial sequence before and after the nonavailability
period is arranged by the Moore and Hodgson algorithm.
Therefore, to devise a solution procedure for the problem, it
suffices to develop algorithms that provide sequences with this
property.

Theorem 4. In the problem 1, ℎ
1
|| ∑𝑈

𝑖
, if there is a job 𝐽

𝑖
such

that 𝑑
𝑖
≥ ∑
𝑛

𝑖=1
𝑝
𝑖
+ (𝑇
2
− 𝑇
1
) + max

1≤𝑖≤𝑛
{𝑝
𝑖
} − 1, this job is

always placed at the last position of the schedule.

Proof. Clearly, in the problem 1, ℎ
1
|| ∑𝑈

𝑖
, the total comple-

tion time of all jobs is not less than ∑
𝑛

𝑖=1
𝑝
𝑖
+ (𝑇
2
− 𝑇
1
). But

perhaps due to the nonresumption assumption, there is some
idle insert for the machine. Surely, the value of this idle insert
is not greater than the maximum processing time of jobs
minus one. So, completion times of jobs would not be greater
than ∑

𝑛

𝑖=1
𝑝
𝑖
+ (𝑇
2
− 𝑇
1
) + max

1≤𝑖≤𝑛
{𝑝
𝑖
} − 1. Therefore, if the

due date of a job is not less than this value, this job will not
be a tardy one in any position of the schedule. Thus, placing
this job at the last position of the schedule will not increase
the number of tardy jobs.

Corollary 5 (Dominance Rule 1). At the beginning of each
solution algorithm, Theorem 4 can be used as the dominance
rule. Each time a job is placed at the last position of the schedule
due to this rule, the solution space will be decreased by one unit.

Theorem 6. If the Moore and Hodgson algorithm is applied
to the problem 1, ℎ

1
|| ∑𝑈

𝑖
and if there is at least one tardy job

before the unavailability period in the schedule obtained, this
schedule is optimal.

Proof. Figure 1(a) shows the schedule obtained from
the Moore and Hodgson algorithm for the problem
1, ℎ
1
|pmtn| ∑𝑈

𝑖
. In this Figure, 𝑆

1
is the set of nontardy

jobs before the unavailability period, 𝐽
𝑖
is the tardy job

before the unavailability period, 𝐽
𝑘
is the preempted tardy

job, and 𝑆
2
is the set of other tardy jobs. We know that this

schedule is optimal for the problem 1, ℎ
1
|pmtn| ∑𝑈

𝑖
[2]. If

we apply the Moore and Hodgson algorithm for the problem
1, ℎ
1
|| ∑𝑈

𝑖
, a schedule illustrated in Figure 1(b) will be

obtained. Clearly, the sequence of jobs in this case is similar
to that in Figure 1(a) except for job 𝐽

𝑘
which could not be

finished before 𝑇
1
and has to start at time 𝑇

2
. According to

Figures 1(a) and 1(b), the number of tardy jobs will be the
same in both problems 1, ℎ

1
|| ∑𝑈

𝑖
and 1, ℎ

1
|pmtn| ∑𝑈

𝑖
. On

the other hand, the optimal number of tardy jobs in problem

4 Journal of Industrial Engineering

Ji JkS1

T1
T2

Jk S2

(a)

Ji JkS1

T1 T2

S2

(b)

Figure 1: (a) Solution obtained from the Moore and Hodgson algorithm for 1, ℎ
1
|pmtn| ∑𝑈

𝑖
. (b) Solution obtained from the Moore and

Hodgson algorithm for 1, ℎ
1
|| ∑𝑈

𝑖
.

1, ℎ
1
|pmtn| ∑𝑈

𝑖
is always equal or less than the optimal

number of tardy jobs in problem 1, ℎ
1
|| ∑𝑈

𝑖
. This is because,

in the optimal schedule of the problem 1, ℎ
1
|| ∑𝑈

𝑖
, if all

the jobs after the nonavailability interval were shifted to the
left so that the idle time before the unavailability period is
filled, a feasible solution for the problem 1, ℎ

1
|pmtn| ∑𝑈

𝑖

would be obtained in which the number of tardy jobs would
not be more than the optimal number of tardy jobs in
problem 1, ℎ

1
|| ∑𝑈

𝑖
. Thus, the schedule shown in Figure 1(b)

illustrates the optimal number of tardy jobs for the problem
1, ℎ
1
|| ∑𝑈

𝑖
.

Corollary 7. According to Theorem 6, before applying any
algorithm, the Moore and Hodgson algorithm can be used and
its sequence can be achieved. If there is at least one tardy job
before 𝑇

1
in this sequence, then this sequence is optimal. So,

this approach may yield the optimal solution and there will be
no need to apply any other algorithms to solve the problem.

Corollary 8. If the condition of Theorem 6 is not true for a
problem, it means there is no tardy job before 𝑇

1
in the optimal

schedule, so that, without losing optimality, the jobs before 𝑇
1

can be scheduled according to the EDD order. In other words,
without satisfying the condition ofTheorem 6, the dominant set
would be scheduled in which the jobs before 𝑇

1
are not tardy

and are arranged in the EDD order.

4. Heuristic H

In this section, a heuristic procedure is developed to solve
the problem 1, ℎ

1
|| ∑𝑈

𝑖
. In this heuristic, 𝛿

ℎ
and 𝑁

𝑇
(ℎ) are

defined as the sequence obtained by heuristicH and the target
value of this sequence, respectively. The steps in heuristic H
are as follows.

Step 0. Begin.
Set 𝑘 = 𝑛, 𝐼 = {𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
} and 𝐿 = 𝐼.

Step 1. Calculate the value of this term:

sum =

𝑛

∑

𝑖=1

𝑝
𝑖
+ (𝑇
2
− 𝑇
1
) + max
1≤𝑖≤𝑛

{𝑝
𝑖
} − 1. (2)

Step 2. Check Dominance Rule 1.
If there is job 𝐽

𝑖
such that 𝑑

𝑖
≥ sum, then go to Step 3.

Otherwise, go to Step 4.

Step 3. Put job 𝐽
𝑖
in position 𝑘.

Set 𝐿 = 𝐿 − {𝐽
𝑖
}, sum = sum − 𝑝

𝑖
, and 𝑘 = 𝑘 − 1; if 𝑘 = 0

stop. Otherwise, return to Step 2.

Step 4. Put the jobs in set 𝐿 in the order of the Moore
and Hodgson algorithm. Designate the achieved schedule as
𝛿moore and the target value obtained through this sequence as
𝑁
𝑇
(moore).
If 𝑁
𝑇
(moore) = 0, the obtained schedule is optimal. Set

𝛿
ℎ
= 𝛿moore and 𝑁

𝑇
(ℎ) = 𝑁

𝑇
(moore); stop.

Step 5. Check Corollary 7.
If there is any tardy job before 𝑇

1
in the schedule 𝛿moore,

this schedule is optimal. Set 𝛿
ℎ

= 𝛿moore and 𝑁
𝑇
(ℎ) =

𝑁
𝑇
(moore); stop.

Step 6. Designate the set of jobs before 𝑇
1
as 𝐼󸀠 and the set of

jobs after 𝑇
2
as 𝐼󸀠󸀠.

Set 𝑘󸀠 = |𝐼
󸀠
|, 𝑘󸀠󸀠 = |𝐼

󸀠󸀠
|. Job 𝐼

󸀠

𝑖
, 𝑖 = 1, 2, . . . , 𝑘

󸀠, is defined
as the 𝑖th job in set 𝐼󸀠 and job 𝐼

󸀠󸀠

𝑗
, 𝑗 = 1, 2, . . . , 𝑘

󸀠󸀠, is defined
as the 𝑗th job in set 𝐼󸀠󸀠. Put 𝑖 = 1 and 𝑗 = 1.

Step 7. Job 𝐼
󸀠

𝑖
is the candidate for exchanging with job 𝐼

󸀠󸀠

𝑗
. If

by eliminating job 𝐼
󸀠

𝑖
from the set 𝐼󸀠, the possibility exists for

job 𝐼
󸀠󸀠

𝑗
to be assigned before the nonavailability period, and

the schedule 𝛿
󸀠 is obtained by exchanging these two jobs in

the schedule 𝛿moore. Otherwise, go to Step 11.

Step 8. In the schedule 𝛿
󸀠, put the jobs before the nonavail-

ability interval in the EDD order and arrange the set of jobs
after the nonavailability interval based on the Moore and
Hodgson algorithm.

Step 9. Check Corollary 8.
If there is at least one tardy job before the nonavailability

interval, then this schedule will not be in the set of dominant
solutions and will not be accepted; go to Step 11.

Step 10. Calculate the target value of schedule 𝛿
󸀠 and desig-

nate it as 𝑁
𝑇
(𝛿
󸀠
).

If 𝑁
𝑇
(𝛿
󸀠
) < 𝑁

𝑇
(moore), then schedule 𝛿

󸀠 is optimal. Set
𝛿
ℎ
= 𝛿
󸀠 and 𝑁

𝑇
(ℎ) = 𝑁

𝑇
(𝛿
󸀠
); stop.

Step 11. If 𝑗 ̸= 𝑘
󸀠󸀠, set 𝑗 = 𝑗 + 1 and go to Step 7.

Step 12. If 𝑖 = 𝑘
󸀠, set 𝛿

ℎ
= 𝛿moore and 𝑁

𝑇
(ℎ) = 𝑁

𝑇
(moore);

stop. Otherwise, set 𝑖 = 𝑖 + 1 and go to Step 7.

In summary, through Steps 1–3, the Dominance Rule 1
condition is checked for each job; by applying this rule for
the jobs with this condition, the solution space is reduced. In
Step 4, a feasible schedule is obtained by applying the Moore
andHodgson algorithm. In Step 5, the optimality condition of
Corollary 7 is checked. If this condition is true, the schedule

Journal of Industrial Engineering 5

Table 1: The data for Example 9.

𝐽
𝑖

𝐽
1

𝐽
2

𝐽
3

𝐽
4

𝐽
5

𝐽
6

𝐽
7

𝑝
𝑖

4 10 5 9 2 6 4
𝑑
𝑖

52 26 48 24 25 26 23

Table 2: Applying Dominance Rule 1 for Example 9.

𝐽
𝑖

𝐽
2

𝐽
4

𝐽
5

𝐽
6

𝐽
7

𝐽
1

𝐽
3

𝑝
𝑖

10 9 2 6 4 4 5
𝑑
𝑖

26 24 25 26 23 52 48

Table 3: The initial schedule for Example 9.

𝐽
𝑖

𝐽
7

𝐽
5

𝐽
2

𝐽
6

𝐽
4

𝑝
𝑖

4 2 10 6 9
𝐶
𝑖

4 6 23 29 38
𝑑
𝑖

23 25 26 26 24

Table 4: The second schedule for Example 9.

𝐽
𝑖

𝐽
5

𝐽
6

𝐽
7

𝐽
2

𝐽
4

𝑝
𝑖

2 6 4 10 9
𝐶
𝑖

2 8 17 27 36
𝑑
𝑖

25 26 23 26 24

Table 5: The final schedule for Example 9.

𝐽
𝑖

𝐽
7

𝐽
6

𝐽
2

𝐽
5

𝐽
4

𝑝
𝑖

4 6 10 2 9
𝐶
𝑖

4 10 23 25 34
𝑑
𝑖

23 26 26 25 24

obtained will be optimal and the solution procedure will be
stopped. If not, we try to improve the solution of Moore
andHodgson algorithm by a procedure of pairwise exchange.
Since, according toCorollary 1, the solution obtained through
the Moore and Hodgson algorithm has at most one tardy
job in difference with the optimal solution, gaining the
first improvement in this heuristic, therefore, and means
achieving the optimal solution.

Example 9. As an illustration of the heuristic H, consider a
single machine scheduling problem with seven jobs, as given
in Table 1, where 𝑇

1
= 10 and 𝑇

2
= 13.

Applying Steps 1–3, the jobs 𝐽
1
and 𝐽
3
are removed and

placed at the end of schedule, as given in Table 2. In Step
4, the schedule 𝛿moore, as shown in Table 3, is obtained, in
which 𝑁

𝑇
(Moore) = 2. Since the condition in Step 5 is not

true for the achieved solution, according to Step 7, in the
schedule 𝛿moore, the job 𝐽

7
is exchanged with the job 𝐽

6
and

the schedule 𝛿
󸀠, corresponding to Table 4, with 𝑁

𝑇
(𝛿
󸀠
) = 2,

is achieved. Because the inequality 𝑁
𝑇
(𝛿
󸀠
) < 𝑁

𝑇
(moore) is

not satisfied, the exchanging process is continued. Finally, by
exchanging the jobs 𝐽

5
and 𝐽
6
in 𝛿moore, the schedule 𝛿

󸀠, as
shown in Table 5, is obtained, in which𝑁

𝑇
(𝛿
󸀠
) = 1, and since

𝑁
𝑇
(𝛿
󸀠
) < 𝑁

𝑇
(moore), we can conclude that the schedule

𝜎before-EDD 𝜎after-EDD 𝜎after-tardy

T1 T2

𝛿

Figure 2: The partial schedule 𝜎.

(𝐽
7
− 𝐽
6
− 𝐽
2
− 𝐽
5
− 𝐽
4
− 𝐽
1
− 𝐽
3
) is optimal and, therefore,

the solving procedure is stopped.

5. Branch-and-Bound Approach

According to the results stated above, a binary branch-and-
bound (BB) is developed in this paper to solve problem
1, ℎ
1
|| ∑𝑈

𝑖
. According to this algorithm, the basis of branch-

ing is assigning a job before or after the nonavailability
interval. After any branching, the sets of jobs before and
after the unavailability period are arranged based on the
Moore and Hodgson algorithm. The search strategy in this
procedure is backtracking. The following notations are used
in the BB approach:

𝜎: a partial sequence consisting of the set of scheduled
jobs;
𝜎
󸀠: the set of unscheduled jobs which is complemen-

tary to 𝜎;
𝜎before-EDD: the set of jobs assigned before the unavail-
ability period from time zero;
𝜎after-EDD: the set of nontardy jobs assigned after the
unavailability period from time 𝑇

2
;

𝜎after-tardy: the set of tardy jobs assigned after the
unavailability interval and after the set 𝜎after-EDD;
𝐶(𝜎before-EDD): completion time of the set𝜎before-EDD or
the completion time of the last job scheduled before
the unavailability interval;
𝐶(𝜎after-tardy): completion time of the set 𝜎after-tardy or
the completion time of the last job scheduled after the
unavailability period;
𝛿: idle time immediately before 𝑇

1
.

Assume that indices of the jobs are based on the EDD
order and that this order determines the jobs’ priority for
entering into the tree.The partial schedule 𝜎 consists of three
sets as 𝜎before-EDD, 𝜎after-EDD, and 𝜎after-tardy. This schedule is
shown in Figure 2. Jobs in the set 𝜎before-EDD are scheduled
based on the EDD order before the nonavailability period
from time zero. Jobs in the set 𝜎after-EDD are scheduled
immediately after the nonavailability period, that is, at time
𝑇
2
, in the EDD order. Finally, jobs in the set 𝜎after-tardy are

placed immediately after the set 𝜎after-EDD, that is, at the end
of the schedule, in an optional order.

In the proposed BB, each time a job is added to a set
of assigned jobs, two branches will be made. One of them
refers to assigning the job before the nonavailability interval
while the other refers to assigning it after the nonavailability
interval.

6 Journal of Industrial Engineering

If a job is assigned before the unavailability period, it
will be added to the end of the set 𝜎before-EDD, but if it is
assigned after the unavailability period, it will be assigned at
the end of the jobs in the set 𝜎after-EDD. If it becomes a tardy
job, by adding it in the set 𝜎after-EDD, the job with maximum
processing time will be selected between this job and other
jobs of the set 𝜎after-EDD and removed from the set 𝜎after-EDD to
be added to the jobs in the set 𝜎after-tardy. Also, the value of the
target functionwill be increased by one unit. In the rest of this
section, the lower and upper bounds and some dominance
rules will be presented for the BB procedure.

5.1. Upper Bound. In the proposedBB, heuristicH is executed
first. According to the optimality conditions in heuristic H, if
we recognize that the sequence obtained from this algorithm
is optimal, then it will be considered as the optimal solution
of the problem and the solution procedure will be stopped.
Otherwise, the main algorithm of BB will be performed. In
this case, the solution obtained through heuristic H will be
considered as the upper bound of the problem.

5.2. Lower Bound. Asmentioned earlier, if heuristicH cannot
improve the solution obtained from the Moore and Hodgson
algorithm, its value will be considered as an upper bound. In
this state, and according to Corollary 1, by subtracting one
tardy job from the upper bound, we can use it as a lower
bound for problem 1, ℎ

1
|| ∑𝑈

𝑖
. To obtain a lower bound for

the partial sequence 𝜎, the following theorem is used.

Theorem 10. In the problem 1, ℎ
1
|| ∑𝑈

𝑖
, for a partial sequence

𝜎, a lower bound is obtained from the following expression:

𝐿𝐵 (𝜎) = 𝑁
𝑇
(𝜎) + 𝑁

𝑇
(𝜎
󸀠
) (3)

in which 𝑁
𝑇
(𝜎) is the number of tardy jobs in the schedule

𝜎 and 𝑁
𝑇
(𝜎
󸀠
) is the number of tardy jobs in the set 𝜎

󸀠,
while the jobs in the set 𝜎

󸀠 are scheduled immediately after
𝐶(𝜎before-EDD) by the Moore and Hodgson algorithm assuming
that resumption is allowed.

Proof. Clearly, in the partial schedule 𝜎, the value 𝑁
𝑇
(𝜎) is

always fixed and independent of scheduling the jobs in the
set 𝜎󸀠. Also, we know that the starting time of jobs in the set
𝜎
󸀠 is not earlier than 𝐶(𝜎before-EDD). Now, if we ignore jobs

after the unavailability period and schedule jobs in the set
𝜎
󸀠 at time 𝐶(𝜎before-EDD) while assuming that resumption is

allowed to obtain𝑁
𝑇
(𝜎
󸀠
), the number of tardy jobs will in no

way be smaller than 𝑁
𝑇
(𝜎
󸀠
) no matter how the schedule 𝜎 is

completed. So, the lower bound of the schedule 𝜎 is obtained
from the sum of values 𝑁

𝑇
(𝜎) and 𝑁

𝑇
(𝜎
󸀠
).

5.3. Dominance Rules. The following dominance rules are
utilized in formulating our BB procedure.

Lemma 11 (Dominance Rule 2). In the BB tree, if a job
assigned before the nonavailability period is tardy, this node
will be fathomed and the search process will continue fromother
nodes and branches.

Proof. According to Corollary 8, if there is no tardy job in
problem 1, ℎ

1
|| ∑𝑈

𝑖
before the unavailability period in the

solution obtained from the Moore and Hodgson algorithm,
there will neither be any tardy jobs before 𝑇

1
in the optimal

solution.

Lemma 12 (Dominance Rule 3). In the BB tree, if a job is
decided to be assigned before the unavailability period, but
there is no possibility for such assignment, this node will then
be fathomed.

Proof. In fact, by assigning this job before the unavailability
interval, an unfeasible solutionwill be obtained and there will
be no need for continuing the search process from this node.

Lemma 13 (Dominance Rule 4). If the inequality condition
𝑇
1
− 𝐶(𝜎before-EDD) < min

𝐽𝑖∈𝜎
󸀠{𝑝
𝑖
} holds in the partial schedule

𝜎, all the jobs in set 𝜎󸀠 will be assigned after the nonavailability
interval.

Proof. Regarding the available time before 𝑇
1
, that is, 𝑇

1
−

𝐶(𝜎before-EDD), it is clear that even the job with the smallest
processing time cannot be inserted before the nonavailability
period. So, all the jobs in this set will be added to the set
𝜎after-EDD and the Moore and Hodgson algorithm will be
executed for this set.

6. Computational Results

In this section, a set of instances will be analyzed in order
to evaluate the performance of heuristic H and the BB
approach. These instances are generated and solved on a
PIV PC with 3.4GB CPU and 1GB RAM in the Windows
XP environment. In the rest of this section, the instance
generation method and the analysis of the results will be
presented. Then, comparisons will be made between the
results obtained through these algorithms and those from
Chen’s [15] algorithms.

6.1. Data Generation. Processing times for problem instances
are randomly generated using the discrete uniform distribu-
tion in the range [1, 10]. According to [11, 13, 15], due dates are
randomly generated from the discrete uniformdistribution in
the range [(1−𝐶−𝑄/2)∑

𝑛

𝑘=1
𝑝
[𝑘]

, (1−𝐶+𝑄/2)∑
𝑛

𝑘=1
𝑝
[𝑘]

], in
which𝑄 represents the range of due date factor and𝐶 denotes
the tardiness factor. Either of the two values 0.2 and 0.6 is
assumed for the two parameters𝐶 and𝑄. According to [8, 10],
to evaluate the impact of start times of the non-availability
period on the performance of algorithms, the values 𝑇

1
and

𝑇
2
are generated from the following data sets.

Data set 1: 𝑇
1
= 1/4∑

𝑖
𝑝
𝑖
and 𝑇

2
= 𝑇
1
+ 1/𝑛∑

𝑖
𝑝
𝑖
.

Data set 2: 𝑇
1
= 1/2∑

𝑖
𝑝
𝑖
and 𝑇

2
= 𝑇
1
+ 1/𝑛∑

𝑖
𝑝
𝑖
.

Data set 3: 𝑇
1
= 3/4∑

𝑖
𝑝
𝑖
and 𝑇

2
= 𝑇
1
+ 1/𝑛∑

𝑖
𝑝
𝑖
.

For the number of jobs, 𝑛, the values are taken from 10
to 10000. For each possible combination of 𝑇

1
, 𝐶, 𝑄, and 𝑛,

20 instances are randomly generated (𝑛𝑝 = 20). So, for all

Journal of Industrial Engineering 7

possible combinations of the start time of the unavailability
period, tardiness factor, and due date factor 12 (2 × 2 × 3)
series are generated with a total number of 2680 instances.

6.2. Numerical Results. Heuristic H and the BB procedure
are coded in C++ programming language to solve the
problem instances. For solving each problem through the BB
approach, the time constraint of 4000 seconds is considered
such that if the problem cannot be solved optimally within
this time limit, the BB approach will be stopped for it.

Numerical results for 12 series are shown in Table 6, the
symbol “>0” in the table reveals the 0.00 seconds computa-
tional time. In this table, the column “Number of optimal
instances BB” shows the number of instances for each 𝑛 that
are optimally solved by the BB approach. As shown here,
except for the series 𝑆

11
, 𝑆
13
, and 𝑆

21
, optimal solutions are

achieved for all instances in the others.
The column “Number of optimal instances H” shows the

number of instances in which the solution obtained from
algorithm H is optimal. The results indicate that optimal
solutions are obtained for all instances by heuristic H in the
series 𝑆

23
, 𝑆
33
, and 𝑆

34
and that this heuristic yields very good

results in other series.
The column “Comp. time of BB” represents the min-

imum, average, and maximum times required to solve
instances by the BB approach. It should be mentioned that
because heuristic H is applied as an upper bound in the BB
approach, its computation time is included in that of the
BB approach. Additionally, because the computation time of
heuristic H was 0.00 second to two decimals accuracy for
all instances, the time required for applying the heuristic
algorithm is not shown separately in this table.

Comparison of solution times for all instances reveals that
the greatest computation times belong to the series 𝑆

11
, 𝑆
21
,

and 𝑆
13

while the smallest ones belong to the series 𝑆
32
, 𝑆
33
,

and 𝑆
34
.

From these observations, it can be inferred that the most
difficult instances belong to the series 𝑆

11
and 𝑆

21
. Instances

in these series have greater average times and fewer optimal
solutions than the other series. The reason for this may
be that the range for producing due dates in these series
are smaller considering the values 𝐶 = 0.2 and 𝑄 =

0.2 and that there would be accordingly more equal due
dates for different jobs. On the other hand, because 𝑇

1
is

smaller,most jobs have tardiness due to their assignment after
the nonavailability period. These will cause the Moore and
Hodgson algorithm to be applied more for scheduling the
jobs after the unavailability period.

Following the series 𝑆
11

and 𝑆
21
, the most difficult

instances belong to the series 𝑆
13
. Considering the values

𝐶 = 0.6 and 𝑄 = 0.2, the reason for this is that,
in this series, firstly, the range of due dates is small; sec-
ondly, jobs have smaller due dates; and, finally, 𝑇

1
has its

smallest value. In the instances of this series, therefore,
most of the jobs are scheduled after the nonavailability
period and, so, they are tardy ones. Hence, in this series
the Moore and Hodgson algorithm is applied more fre-
quently.

Columns related to “Number of optimal states in H”
demonstrate the amount of instances in which the solution
obtained by heuristic H is identified as optimal, and the solu-
tion procedure is, therefore, stopped.The column “Number of
optimality states in H for D

1
” shows the number of instances

in which the condition ofDominance Rule 1 is true for all jobs
and, therefore, the optimal schedule is achieved by applying
this rule and the solution process is stopped.The comparison
of these columns reveals that this rule works rather properly
in the instances with 𝑛 ≥ 40 in the series 𝑆

12
, 𝑆
22
, and 𝑆

32
such

that by applying this rule optimal solutions are obtained.This
observation can be justified as follows: based on the values
𝐶 = 0.2 and 𝑄 = 0.6, first of all, due dates are more scattered
in these series and, secondly, the upper bound of the due date
range is increased so that with the increasing the number of
jobs, more jobs will satisfy the condition of Dominance Rule
1.

The column “Number of optimality states in H for C
4
”

shows the number of instances inwhich the solution obtained
through the Moore and Hodgson algorithm satisfies the
optimality condition of the Moore and Hodgson algorithm
in Corollary 7. In these instances, it is recognized that the
solution obtained from the Moore and Hodgson algorithm
is optimal, and the solution procedure is, therefore, stopped.
These columns show that in the series 𝑆

33
and 𝑆

34
, the

condition in Corollary 7 is true for all instances. This is
because the dispersion of due dates in these series is high and
the lower bound of the due date range is decreased. Also, 𝑇

1

is as high as possible in these series. In the series 𝑆
32
and 𝑆
23
,

Corollary 7 has a quite proper application.
The column “Number of optimality states inH for others”

shows the number of instances in which other conditions of
optimality H are satisfied and thus the solution procedure is
stopped.

In some series, all instances with problem sizes specified
by the symbol “∗” reach optimal solutions by heuristic H
before entering the BB tree; hence, the main BB algorithm is
not executed for them.

Columns “Ave. Percent fathomed nodes” show the aver-
age number of nodes fathomed because of the dominance
rules and the lower bound. In these columns, the terms D

2
,

D
3
, D
4
, and LB refer to the Dominance Rules 2, 3, and 4,

and the lower bound, respectively. Dominance Rule 2 works
properly in the series 𝑆

11
and 𝑆

12
. This rule also has rather

proper application in the series 𝑆
13
. The reason may be that,

in these series, the value of𝑇
1
is as low as possible and that, in

the BB tree, there is a higher probability for the occurrence of
states in which a tardy job is placed before the nonavailability
interval.

The lower bound, LB(𝜎), in all the series applied quite
satisfactorily. In many instances, the very high efficiency of
the lower bound left fewer opportunities for the dominance
rules to apply.

Comparisons were made between the proposed algo-
rithms and Chen’s [15] procedures to demonstrate the effi-
ciency of our proposed algorithms. In the single machine
problem, with periodic maintenance and nonresumable jobs,
if the time between two consecutive maintenance periods
is considered to be 3/4∑

𝑖
𝑝
𝑖
and the time length of each

8 Journal of Industrial Engineering

Table 6: Results of 12 series, 𝑛𝑝 = 20.

Series Number of
jobs1

Number of optimal instances Comp. time of BB (s) Number of optimal states in H Ave. percent fathomed nodes

BB H Min Ave. Max D1 C4 Others D2 D3 D4 LB
𝑆
11

𝑇
1
=

1/4∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝

𝐶 = 0.2

𝑄 = 0.2

10 20 20 >0 0 0 2 1.09 >0 14.23 41.84
20 20 20 0.01 0 0 9 0.35 >0 6.12 35.29
30 20 20 5.57 0 0 2 >0 >0 7.04 44.98
40 20 20 736.26 0 0 6 1.47 >0 4.83 37.41
50 11 11 >0 0 0 4 >0 >0 >0 63.64

𝑆
12

𝑇
1
=

1/4∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.2

𝑄 = 0.6

10 20 19 >0 >0 >0 0 0 0 10.20 >0 9.92 61.45
20 20 20 >0 >0 0.02 0 0 12 25.21 >0 11.32 24.82
30 20 19 >0 0.28 5.52 4 0 14 17.58 >0 1.18 57.42
∗40 20 20 >0 >0 >0 15 0 5 — — — —
∗50 20 20 >0 >0 >0 19 0 1 — — — —
∗70 20 20 >0 >0 0.02 19 0 1 — — — —
∗100 20 20 >0 >0 >0 20 0 0 — — — —
∗300 20 20 >0 >0 >0 20 0 0 — — — —
∗500 20 20 >0 >0 >0 20 0 0 — — — —
∗700 20 20 >0 >0 0.02 20 0 0 — — — —
∗1000 20 20 >0 >0 0.03 20 0 0 — — — —
∗3000 20 20 >0 0.01 0.06 20 0 0 — — — —
∗5000 20 20 >0 0.01 0.06 20 0 0 — — — —
∗7000 20 20 >0 0.01 0.02 20 0 0 — — — —
∗10000 20 20 >0 >0 0.02 20 0 0 — — — —

𝑆
13

𝑇
1
=

1/4∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.6

𝑄 = 0.2

10 20 19 >0 0 0 3 1.64 >0 1.57 67.69
20 20 20 >0 0 0 4 >0 >0 >0 80.00
30 20 20 0.18 0 0 4 >0 >0 1.16 76.61
40 20 20 100.23 0 0 7 1.35 >0 3.16 38.99
50 12 12 160.56 0 0 5 >0 >0 0.41 51.81

𝑆
14

𝑇
1
=

1/4∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.6

𝑄 = 0.6

10 20 20 >0 >0 >0 0 0 1 1.07 7.92 3.05 72.85
20 20 19 >0 >0 >0 0 0 5 >0 2.50 0.24 68.69
30 20 20 >0 >0 0.02 0 0 2 >0 >0 >0 90.00
40 20 20 >0 >0 0.02 0 0 8 >0 >0 >0 60.00
50 20 20 >0 0.01 0.02 0 0 6 >0 >0 >0 70.00
70 20 20 0.02 0.03 0.05 0 0 6 >0 >0 >0 70.00
100 20 20 0.03 0.10 0.16 0 0 3 >0 >0 >0 85.00
300 20 20 0.09 5.71 8.23 0 0 6 >0 >0 >0 70.00
500 20 20 29.92 49.08 79.83 0 0 4 >0 >0 >0 80.00
700 20 20 130.91 198.40 301.61 0 0 6 >0 >0 >0 70.00
1000 20 20 503.92 692.73 1178.98 0 0 2 >0 >0 >0 90.00

𝑆
21

𝑇
1
=

1/2∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.2

𝑄 = 0.2

10 20 20 >0 >0 0.02 0 0 2 3.96 >0 2.29 74.30
20 20 20 >0 0.02 0.11 0 0 5 5.82 >0 7.93 50.63
30 20 20 >0 10.48 47.77 0 0 5 9.06 >0 8.49 43.20
40 10 9 >0 624.11 3815.59 0 0 2 8.59 >0 2.23 54.43
50 12 12 >0 >0 0.02 0 0 6 >0 >0 >0 50.00

Journal of Industrial Engineering 9

Table 6: Continued.

Series Number of
jobs1

Number of optimal instances Comp. time of BB (s) Number of optimal states in H Ave. percent fathomed nodes

BB H Min Ave. Max D1 C4 Others D2 D3 D4 LB

𝑆
22

𝑇
1
=

1/2∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.2

𝑄 = 0.6

10 20 19 >0 >0 >0 0 0 1 1.98 >0 2.81 82.47
20 20 18 >0 >0 0.02 0 0 8 2.60 >0 1.04 50.00
30 20 20 >0 0.02 0.47 2 0 16 13.31 >0 2.64 6.17
40 20 13 >0 >0 >0 14 0 5 >0 >0 >0 5.00
∗50 20 20 >0 >0 >0 17 0 3 — — — —
∗70 20 20 >0 >0 >0 20 0 0 — — — —
∗100 20 20 >0 >0 >0 20 0 0 — — — —
∗300 20 20 >0 >0 >0 20 0 0 — — — —
∗500 20 20 >0 >0 >0 20 0 0 — — — —
∗700 20 20 >0 >0 >0 20 0 0 — — — —
∗1000 20 20 >0 >0 >0 20 0 0 — — — —
∗3000 20 20 >0 >0 0.02 20 0 0 — — — —
∗5000 20 20 >0 >0 0.02 20 0 0 — — — —
∗7000 20 20 >0 >0 0.02 20 0 0 — — — —
∗10000 20 20 >0 0.01 0.02 20 0 0 — — — —

𝑆
23

𝑇
1
=

1/2∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.6

𝑄 = 0.2

10 20 20 >0 >0 >0 0 2 0 >0 >0 >0 90.00
20 20 20 >0 >0 >0 0 8 0 >0 >0 >0 60.00
30 20 20 >0 >0 >0 0 7 0 >0 >0 >0 65.00
40 20 20 >0 >0 0.02 0 7 0 >0 >0 >0 65.00
50 20 20 >0 >0 0.02 0 6 0 >0 >0 >0 70.00
70 20 20 >0 0.01 0.06 0 7 0 >0 >0 >0 65.00
100 20 20 >0 0.05 0.13 0 4 0 >0 >0 >0 80.00
300 20 20 >0 2.54 6.67 0 6 0 >0 >0 >0 70.00
500 20 20 >0 15.26 55.81 0 9 0 >0 >0 >0 55.00
700 20 20 >0 96.49 197.95 0 5 0 >0 >0 >0 75.00
1000 20 20 0.02 135.76 742.70 0 11 0 >0 >0 >0 45.00

𝑆
24

𝑇
1
=

1/2∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.6

𝑄 = 0.6

10 20 20 >0 >0 >0 0 0 0 >0 5.99 1.17 87.05
20 20 18 >0 >0 >0 0 0 2 >0 0.29 0.90 83.31
30 20 18 >0 >0 0.02 0 0 2 >0 0.96 1.60 73.71
40 20 20 >0 >0 0.02 0 0 2 >0 >0 >0 90.00
50 20 19 >0 0.01 0.06 0 0 3 >0 0.11 0.36 78.18
70 20 20 >0 0.01 0.03 0 0 3 >0 >0 >0 85.00
100 20 20 0.03 0.06 0.13 0 0 3 >0 >0 >0 85.00
300 20 20 0.02 3.75 7.00 0 0 7 >0 >0 >0 65.00
500 20 20 >0 26.79 55.25 0 0 6 >0 >0 >0 70.00
700 20 20 60.48 124.32 212.69 0 0 5 >0 >0 >0 75.00
1000 20 20 0.94 514.41 871.05 0 0 6 >0 >0 >0 70.00

10 Journal of Industrial Engineering

Table 6: Continued.

Series Number of
jobs1

Number of optimal instances Comp. time of BB (s) Number of optimal states in H Ave. percent fathomed nodes

BB H Min Ave. Max D1 C4 Others D2 D3 D4 LB

𝑆
31

𝑇
1
=

3/4∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.2

𝑄 = 0.2

10 20 20 >0 >0 >0 0 0 0 >0 >0 >0 100.00
20 20 17 >0 >0 >0 0 0 3 0.87 >0 3.21 70.62
30 20 19 >0 >0 >0 0 0 4 1.36 >0 0.07 76.25
40 20 20 >0 >0 >0 0 0 9 >0 >0 >0 55.00
50 20 20 >0 >0 0.02 0 0 6 >0 >0 >0 70.00
70 20 20 >0 0.01 0.03 0 0 5 >0 >0 >0 75.00
100 20 20 >0 0.02 0.05 0 0 6 >0 >0 >0 70.00
300 20 20 0.02 1.26 2.81 0 0 10 >0 >0 >0 50.00
500 20 20 0.02 7.04 16.78 0 0 10 >0 >0 >0 50.00
700 20 20 7.41 37.80 72.25 0 0 6 >0 >0 >0 70.00
1000 20 20 0.02 149.77 290.13 0 0 6 >0 >0 >0 70.00

𝑆
32

𝑇
1
=

3/4∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.2

𝑄 = 0.6

10 20 19 >0 >0 >0 0 0 2 0.99 >0 1.03 90.50
20 20 18 >0 >0 >0 0 7 4 3.06 >0 0.95 79.33
30 20 19 >0 >0 >0 3 14 2 10.20 >0 8.16 16.33
40 20 19 >0 >0 >0 11 7 1 >0 >0 >0 100.00
∗50 20 20 >0 >0 >0 18 2 0 — — — —
∗70 20 20 >0 >0 >0 20 0 0 — — — —
∗100 20 20 >0 >0 >0 20 0 0 — — — —
∗300 20 20 >0 >0 >0 20 0 0 — — — —
∗500 20 20 >0 >0 >0 20 0 0 — — — —
∗700 20 20 >0 >0 >0 20 0 0 — — — —
∗1000 20 20 >0 >0 >0 20 0 0 — — — —
∗3000 20 20 >0 >0 0.02 20 0 0 — — — —
∗5000 20 20 >0 >0 0.02 20 0 0 — — — —
∗7000 20 20 >0 >0 0.02 20 0 0 — — — —
∗10000 20 20 >0 0.01 0.02 20 0 0 — — — —

𝑆
33

𝑇
1
=

3/4∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.6

𝑄 = 0.2

∗10 20 20 >0 >0 0.02 0 20 0 — — — —
∗20 20 20 >0 >0 >0 0 20 0 — — — —
∗30 20 20 >0 >0 >0 0 20 0 — — — —
∗40 20 20 >0 >0 >0 0 20 0 — — — —
∗50 20 20 >0 >0 >0 0 20 0 — — — —
∗70 20 20 >0 >0 >0 0 20 0 — — — —
∗100 20 20 >0 >0 0.02 0 20 0 — — — —
∗300 20 20 >0 >0 >0 0 20 0 — — — —
∗500 20 20 >0 >0 0.02 0 20 0 — — — —
∗700 20 20 >0 >0 0.02 0 20 0 — — — —
∗1000 20 20 0.02 0.02 0.03 0 20 0 — — — —
∗3000 20 20 0.14 0.16 0.22 0 20 0 — — — —
∗5000 20 20 0.44 0.45 0.50 0 20 0 — — — —
∗7000 20 20 0.86 0.88 0.92 0 20 0 — — — —
∗10000 20 20 1.78 1.84 2.03 0 20 0 — — — —

Journal of Industrial Engineering 11

Table 6: Continued.

Series Number of
jobs1

Number of optimal instances Comp. time of BB (s) Number of optimal states in H Ave. percent fathomed nodes

BB H Min Ave. Max D1 C4 Others D2 D3 D4 LB

𝑆
34

𝑇
1
=

3/4∑𝑝𝑖

𝑇
2
= 𝑇
1
+

1/𝑛∑𝑝𝑖

𝐶 = 0.6

𝑄 = 0.6

10 20 20 >0 >0 >0 0 15 0 >0 >0 >0 25.00
20 20 20 >0 >0 >0 0 18 0 >0 >0 >0 10.00
∗30 20 20 >0 >0 >0 0 20 0 — — — —
∗40 20 20 >0 >0 >0 0 20 0 — — — —
∗50 20 20 >0 >0 >0 0 20 0 — — — —
∗70 20 20 >0 >0 >0 0 20 0 — — — —
∗100 20 20 >0 >0 >0 0 20 0 — — — —
∗300 20 20 >0 >0 0.02 0 20 0 — — — —
∗500 20 20 >0 >0 0.02 0 20 0 — — — —
∗700 20 20 >0 >0 0.02 0 20 0 — — — —
∗1000 20 20 >0 >0 0.02 0 20 0 — — — —
∗3000 20 20 0.11 >0 0.16 0 20 0 — — — —
∗5000 20 20 0.34 >0 0.38 0 20 0 — — — —
∗7000 20 20 0.70 >0 0.72 0 20 0 — — — —
∗10000 20 20 1.45 0.01 1.50 0 20 0 — — — —

1Not reported instances could not be solved by BB approach in 4000 seconds.

maintenance period is taken to be 1/𝑛∑
𝑖
𝑝
𝑖
, this problemwill

be transferred to single machine problem with a nonavail-
ability interval, with 𝑇

1
= 3/4∑

𝑖
𝑝
𝑖
and 𝑇

2
= 𝑇
1
+ 1/𝑛∑

𝑖
𝑝
𝑖
.

So, instances of the series 𝑆
31
, 𝑆
32
, 𝑆
33
, and 𝑆

34
will be solved

via Chen’s [15] algorithms with the time constraint of 4000
seconds. Table 7 shows the results obtained from problem
instances solved by Chen’s [15] algorithms. The components
in this table are the same as those in Table 6.

It is clear from this table that, for instances with job sizes
of 20, 30, 40, and 50 in the series 𝑆

31
, the BB algorithm

proposed in [15] was not able to solve all the problems
optimally, while the BB algorithm proposed in this paper was
capable of optimally solving all the instances with identical
sizes.

In the series 𝑆
32
, Chen’s [15] BB algorithm failed to

optimally solve all the instances with job sizes of 20, 30, and
40. For instances, with 𝑛 ≥ 70, based on the assumption that
the condition of Dominance Rule 1 holds true for all jobs
in most instances, instances were solved more desirably by
our proposed algorithm. For the series 𝑆

33
and 𝑆

34
our BB

algorithm was clearly more efficient.
Comparison of Tables 6 and 7 reveals that heuristic H had

a higher efficiency than the heuristic proposed by Chen [15].
It should be mentioned that, for the problems with

multiple unavailability periods, most of the dominance rules
proposed in [15] apply properly to eliminate nodes. For this
reason, all the instances in this paper in all series by up to
a job size of 32 are solved optimally. In problems with a
single unavailability period, however, these rules find fewer
applications.

7. Conclusion

In this paper, the problem of single machine scheduling with
one nonavailability period and the target of minimizing the
number of tardy jobs was investigated. In this problem, the
starting and finishing times of the nonavailability period are
assumed to be given. It is further assumed that all the jobs are
nonresumable and are available at time zero.

A number of theorems were proved for this problem,
from which a heuristic and a branch-and-bound algorithm
with bounds and some dominance rules were proposed.
These procedures were tested on 12 series of problem
instances. Computational results showed that, in most series,
the branch-and-bound approach was capable of solving the
problems up to a size of 1000 jobs. It was also observed
that the dominance rules and the bounds of the proposed
BB algorithm had satisfactory efficiency to eliminate nodes.
Based on these results, it can be found that the heuristic H
has a high efficiency to solve the problem. This efficiency is
because of two reasons; firstly, this algorithm has achieved
nearly optimal solutions in small-scale problems and has a
little difference with BB approach in obtained results. Sec-
ondly, the algorithm has a very low response time to produce
good solutions. The results of evaluating the efficiency of
the proposed approach as compared with other procedures
confirm the greater success of our proposed procedure.

For future study, it is suggested that other techniques of
solving the problemoptimally such as dynamic programming
be investigated. Additionally, solving the problem in more
general cases can be considered.

12 Journal of Industrial Engineering

Table 7: Results of instances solved by Chen [15], 𝑛𝑝 = 20.

Series Number of jobs Number of optimal instances Comp. time of BB (s)
BB H Min Ave. Max

𝑆
31

10 20 20 >0 >0 >0
20 15 14 >0 17.34 260.13
30 15 15 >0 >0 >0
40 9 9 >0 >0 >0
50 13 13 >0 >0 0.03

𝑆
32

10 20 15 >0 0.02 0.38
20 19 13 >0 166.10 1950.53
30 17 17 >0 >0 >0
40 17 17 >0 >0 >0
50 20 20 >0 >0 >0
70 20 20 >0 >0 >0
100 20 20 >0 >0 >0
300 20 20 >0 >0 0.02
500 20 20 >0 >0 0.02
700 20 20 >0 >0 0.02
1000 20 20 >0 0.01 0.02
3000 20 20 0.06 0.07 0.11
5000 20 20 0.17 0.18 0.19
7000 20 20 0.36 0.36 0.38
10000 20 20 0.73 0.75 0.83

𝑆
33

10 20 20 >0 >0 >0
20 20 20 >0 >0 0.02
30 20 20 >0 >0 0.02
40 20 20 >0 >0 0.02
50 20 20 >0 >0 0.02
70 20 20 >0 0.01 0.02
100 20 20 0.02 0.02 0.03
300 20 20 0.38 0.40 0.45
500 20 20 1.80 1.93 2.33
700 20 20 4.78 5.05 5.61
1000 20 20 14.03 14.57 15.47
3000 20 20 388.59 399.03 409.45
5000 20 20 1858.27 1892.57 1915.16
7000 0 — — — —

𝑆
34

10 20 20 >0 >0 0.05
20 20 20 >0 >0 0.02
30 20 20 >0 >0 >0
40 20 20 >0 >0 >0
50 20 20 >0 >0 0.02
70 20 20 >0 >0 0.02
100 20 20 >0 0.01 0.02
300 20 20 0.28 0.31 0.34
500 20 20 1.31 1.41 1.52
700 20 20 3.69 3.85 4.45
1000 20 20 10.80 11.25 11.88
3000 20 20 303.16 309.80 319.99
5000 20 20 1435.11 1481.24 1618.86
7000 0 — — — —

Journal of Industrial Engineering 13

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Pren-
tice Hall, New Jersey, NJ, USA, 2002.

[2] C.-Y. Lee, “Machine scheduling with an availability constraint,”
Journal of Global Optimization, vol. 9, no. 3-4, pp. 395–416, 1996.

[3] J. B. Sidney, “An extension of Moore’s due date algorithm,” in
Symposium on the Theory of Scheduling and Its Applications, S.
E. Elmaghrebi, Ed., LectureNotes in Economics andMathemat-
ical Systems, pp. 393–398, Springer, New York, NY, USA, 1973.

[4] I. Adiri, J. Bruno, E. Frostig, and A. H. G. Rinnooy Kan, “Single
machine flow-time scheduling with a single breakdown,” Acta
Informatica, vol. 26, no. 7, pp. 679–696, 1989.

[5] C. Y. Lee and S.D. Liman, “Singlemachine flow-time scheduling
with scheduled maintenance,” Acta Informatica, vol. 29, no. 4,
pp. 375–382, 1992.

[6] C. Sadfi, B. Penz, C. Rapine, J. Blazewicz, and P. Formanowicz,
“An improved approximation algorithm for the single machine
total completion time scheduling problem with availability
constraints,” European Journal of Operational Research, vol. 161,
no. 1, pp. 3–10, 2005.

[7] J. Breit, “Improved approximation for non-preemptive single
machine flow-time scheduling with an availability constraint,”
European Journal of Operational Research, vol. 183, no. 2, pp.
516–524, 2007.

[8] I. Kacem and C. Chu, “Efficient branch-and-bound algorithm
for minimizing the weighted sum of completion times on a
single machine with one availability constraint,” International
Journal of Production Economics, vol. 112, no. 1, pp. 138–150,
2008.

[9] I. Kacem, “Approximation algorithm for the weighted flow-time
minimization on a single machine with a fixed non-availability
interval,” Computers & Industrial Engineering, vol. 54, no. 3, pp.
401–410, 2008.

[10] I. Kacem, C. Chu, and A. Souissi, “Single-machine scheduling
with an availability constraint to minimize the weighted sum of
the completion times,” Computers & Operations Research, vol.
35, no. 3, pp. 827–844, 2008.

[11] C. J. Liao and W. J. Chen, “Single-machine scheduling with
periodic maintenance and nonresumable jobs,” Computers and
Operations Research, vol. 30, no. 9, pp. 1335–1347, 2003.

[12] M. Ji, Y. He, and T. C. E. Cheng, “Single-machine scheduling
with periodic maintenance to minimize makespan,” Computers
and Operations Research, vol. 34, no. 6, pp. 1764–1770, 2007.

[13] W.-J. Chen, “An efficient algorithm for scheduling jobs on a
machine with periodic maintenance,” International Journal of
AdvancedManufacturing Technology, vol. 34, no. 11-12, pp. 1173–
1182, 2007.

[14] I. Adiri, E. Frostig, and A. H. G. Rinnooy Kan, “Scheduling on
a single machine with a single breakdown to minimize stochas-
tically the number of tardy jobs,” Naval Research Logistics, vol.
38, no. 2, pp. 261–271, 1991.

[15] W.-J. Chen, “Minimizing number of tardy jobs on a single
machine subject to periodic maintenance,” Omega, vol. 37, no.
3, pp. 591–599, 2009.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

