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We considered the inverse coefficient problem for the geoelectric equation. For the purpose of research of the conditional stability of
the inverse problem solution, we used integral formulation of the inverse geoelectric problem. By implementing the relevant norms
and using the close system of Volterra integral equations, we managed to estimate the conditional stability of the solution of inverse
problem or rather lower changes in input data imply lower changes in the solution (of the numerical method). When determining
the additional information the device errors are possible.That is why this research is important for experimental studies with usage
of ground penetrating radars.

1. Introduction

Inverse problems for hyperbolic equations, in particular for
the acoustics and geoelectrics, were investigated by many
authors; notably, a detailed bibliography is given in the
monography of Kabanikhin [1]. We will present the main
scientific results on this problem. Blagoveshchenskii applied
Gelfand-Levitan method for proving the uniqueness of the
solution of the inverse acoustic problem [2]. Romanov proved
a comparable theorem for the following equation [3]:

𝑤
𝑡𝑡
(𝑥, 𝑡) = 𝑤

𝑥𝑥
(𝑥, 𝑡) − 𝑞 (𝑥)𝑤 (𝑥, 𝑡) , (1)

which is consolidated from the acoustic equation with well-
known transformation (see [4]):

𝑤 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) exp {−1
2

ln𝜎 (𝑥)} ,

𝑞 (𝑥) = −

1

2

[ln𝜎 (𝑥)]󸀠󸀠 + 1

4

[

𝜎
󸀠
(𝑥)

𝜎 (𝑥)

]

2

.

(2)

Romanov and Yamamoto [5] obtained the estimation
of conditional stability in 𝐿

2
for getting a multidimension

analog of the inverse problem (1).

Numerical algorithm of inverse acoustic problem solving
in the discrete case was given in work [6] for the first time.

Bamberger and his coauthors used a conjugate gradient
method to define the acoustic impedance [7, 8].

He and Kabanikhin used the optimization method to
solve the inverse problem for three-dimension acoustic equa-
tion [9].

Azamatov and Kabanikhin studied the conditional stabil-
ity of the solution to Volterra operator equation in 𝐿

2
[10].

Problems of uniqueness of the inverse problem solution
and set of numerical methods for solving the geoelectric
equation were given in the monograph of Romanov and
Kabanikhin [11].

For solving inverse acoustic problem in integral case
formulation the estimation of the conditional stability in𝐻1
was obtained in the work of Kabanikhin et al. [12].

Further, in works [13, 14] for minimizing purposes they
built and investigated a special form of the composite
functional that allowed proving the following theorems in
the space 𝐿

2
: the local correctness theorem, the correctness

theorem of the inverse problem for small amount of data, and
the correctness theorem in the envelope of the exact solution
in 𝐿
2
.
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Bukhgeim and Klibanov suggested using the method of
Carleman estimates when proving uniqueness theorems of
the coefficient inverse problems [15]. A broad overview on the
use of Carleman estimates in the theory of multidimension
coefficient inverse problems is given in the work [16].

The problem of uniqueness of inverse problem solution
for determination of the coefficients of the permittivity and
conductivity for Maxwell’s equation system is considered in
the work [17].

Approbation of the globally convergent numerical algo-
rithm with the use of experimental radar data for determina-
tion of the permittivity is given in work [18]. They presented
an analysis of convergence of the method and it has been
shown that the computed and real values of permittivity were
in enough agreement. A wide range of globally convergent
algorithms of solving a class of problems is described in work
[19].

Comparative analysis of the classical equation methods
and globally convergent numerical method of solving the
coefficient inverse problems was given in work [20]. These
comparisons were performed for both computationally sim-
ulated and experimental data.

In the work [21] continuation problem from the time-
like surface for the 2D Maxwell’s equation was considered.
The gradient method for the continuation and coefficient
inverse problem was explained. The results of computational
experiment were presented.

In this research, following the methods which were
described in the work [12], we obtained the estimation results
of the conditional stability of the geoelectric equation in𝐻1.

Herein after the second paragraph there is the conclusion
of the main equations which were derived from the system of
Maxwell’s equations [11].

In the third paragraph we had amplified the inverse prob-
lem for the geoelectric equation with data on characteristics.
It allows us to obtain a close system of integral equations.

Finally, in the fourth paragraph, the implementation of
the relevant class of input data functions and the class of
solutions of the inverse problem allowed us to estimate the
conditional stability of the inverse problem solution for the
geoelectric equation.

2. Statement of the Problems

The propagation process of electromagnetic waves in a
medium is described by Maxwell’s equations [11]:

𝜀

𝜕

𝜕𝑡

𝐸 − rot𝐻 + 𝜎𝐸 + 𝑗
cm

= 0,

𝑥
3

̸= 0, (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝑅
3
,

𝜇

𝜕

𝜕𝑡

𝐻 + rot𝐸 = 0, 𝑡 > 0.

(3)

Here 𝐸 = (𝐸
1
, 𝐸
2
, 𝐸
3
)
∗ and 𝐻 = (𝐻

1
, 𝐻
2
, 𝐻
3
)
∗ are the

electric and magnetic fields intensity vectors; 𝜀 is dielectric
permittivity of themedium; 𝜇 is magnetic permeability of the
medium; 𝜎 is conductivity of the medium; 𝑗cm is source of
external currents.

Consider geophysical model of the medium consisting of
two half spaces: 𝑅3

−
= {𝑥 ∈ 𝑅

3
, 𝑥
3
< 0}—air; 𝑅3

+
= {𝑥 ∈

𝑅
3
, 𝑥
3
> 0}—earth.

Let the external current source take the following form:

𝑗
cm

= (0, 1, 0)
∗
𝑔 (𝑥
1
) 𝛿 (𝑥
3
) 𝜃 (𝑡) , (4)

where 𝑔(𝑥
1
) is the function which describes the transversal

dimension of the source; 𝛿(𝑥
3
) is Dirac delta function; and

𝜃(𝑡) is Heaviside function.
Setting the external current in the form (4) makes it an

instantaneous inclusion current, parallel to the axis 𝑥
2
at time

scales of 10–50 ns (nanoseconds).
Using the definition of the curl we get finally from

Maxwell’s equations

𝜀

𝜕

𝜕𝑡

𝐸
1
+ 𝜎𝐸
1
=

𝜕

𝜕𝑥
2

𝐻
3
−

𝜕

𝜕𝑥
3

𝐻
2
,

𝜀

𝜕

𝜕𝑡

𝐸
2
+ 𝜎𝐸
2
= −

𝜕

𝜕𝑥
1

𝐻
3
+

𝜕

𝜕𝑥
3

𝐻
1
+ 𝛾
2
,

𝜀

𝜕

𝜕𝑡

𝐸
3
+ 𝜎𝐸
3
=

𝜕

𝜕𝑥
1

𝐻
2
−

𝜕

𝜕𝑥
2

𝐻
1
,

𝜇

𝜕

𝜕𝑡

𝐻
1
= −

𝜕

𝜕𝑥
2

𝐸
3
+

𝜕

𝜕𝑥
3

𝐸
2
,

𝜇

𝜕

𝜕𝑡

𝐻
2
= −

𝜕

𝜕𝑥
1

𝐸
3
−

𝜕

𝜕𝑥
3

𝐸
1
,

𝜇

𝜕

𝜕𝑡

𝐻
3
= −

𝜕

𝜕𝑥
1

𝐸
2
−

𝜕

𝜕𝑥
2

𝐸
1
.

(5)

Assuming that the coefficients of Maxwell’s equations do
not depend on the variable 𝑥

2
and are of the special choice of

the source in the form (4), the system will retain only three
nonzero components 𝐸

2
, 𝐻
1
, and 𝐻

3
[11]. Excluding the last

two components, the final equations are written such that

𝜀

𝜕
2

𝜕𝑡
2
𝐸
2
+ 𝜎

𝜕

𝜕𝑡

𝐸
2

=

𝜕

𝜕𝑥
1

(

1

𝜇

𝜕

𝜕𝑥
1

𝐸
2
) +

𝜕

𝜕𝑥
3

(

1

𝜇

𝜕

𝜕𝑥
3

𝐸
2
)

+ 𝑔 (𝑥
1
) 𝜂 (𝑥
3
) 𝜃
󸀠
(𝑡) , 𝑥

3
> 0, 𝑡 > 0,

(6)

𝐸
2

󵄨
󵄨
󵄨
󵄨𝑡>0

= 0, (7)

𝐸
2

󵄨
󵄨
󵄨
󵄨𝑥3=+0

= 𝜑
(1)
(𝑥
1
, 𝑡) , (8)

(

1

𝜇

𝜕

𝜕𝑥
3

𝐸
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥3=+0

=

𝜕

𝜕𝑡

𝜑
(2)
(𝑥
3
, 𝑡) . (9)

Particular attention has aggravated conditions (8) and (9).
Condition (8) is taken as additional information (the

response of the medium).
Condition (9) is unknown, but it is necessary for solving

direct and inverse problems in a half space {𝑥
3
> 0} (earth).
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In this situation we proceed as shown in [11], in the half
space {𝑥

3
≤ 0} where 𝜎 = 0 we solve the direct problem by

the known data 𝜀, 𝜇:

𝜀

𝜕
2

𝜕𝑡
2
𝐸
2
=

𝜕

𝜕𝑥
1

(

1

𝜇

𝜕

𝜕𝑥
1

𝐸
2
) +

𝜕

𝜕𝑥
3

(

1

𝜇

𝜕

𝜕𝑥
3

𝐸
2
)

+ 𝑔 (𝑥
1
) 𝜂 (𝑥
3
) 𝜃
󸀠
(𝑡) , 𝑥

3
< 0, 𝑡 > 0,

(10)

𝐸
2

󵄨
󵄨
󵄨
󵄨𝑡<0

= 0, (11)

𝐸
2

󵄨
󵄨
󵄨
󵄨𝑥3=+0

= 𝜑
(1)
(𝑥
1
, 𝑡) . (12)

In the last system we consider known additional infor-
mation (8) as a boundary condition for solving the direct
problem in the area {𝑥

3
< 0} (air). This fact enables us to

restrict the numerical solution of the inverse problem for the
minimum possible size of the area in the plane {𝑥

3
> 0}.

If the coefficients of (10) do not depend on the variable
𝑥
1
[11] then applying the Fourier transform 𝐹

𝑥1
[⋅] to (10)–

(12) and similar to (6)–(9), we write the final statement of the
problem.

In the air domain {𝑥
3

< 0} we have the following
statement of the direct problem:

𝜀𝜐
𝑡𝑡
=

1

𝜇

𝜐
𝑥3𝑥3

−

𝜆
2

𝜇

𝜐 + 𝑔
𝜆
𝜂 (𝑥
3
) 𝜃
󸀠
(𝑡) , 𝑥

3
< 0,

𝜐|
𝑡<0

= 0, 𝜐
𝑡

󵄨
󵄨
󵄨
󵄨𝑡<0

= 0,

𝜐 (0, 𝑡) = 𝑓
(1)
(𝑡) .

(13)

In the earth domain {𝑥
3
> 0} we have the following

statement of the direct problem:

𝜐
𝑡𝑡
+

𝜎

𝜀

𝜐
𝑡
=

1

𝜇𝜀

𝜐
𝑥3𝑥3

−

𝜆
2

𝜇𝜀

𝑔
𝜆
𝛿 (𝑥
3
, 𝑡) , 𝑥

3
> 0, 𝑥

3
∈ 𝑅
1
,

(14)

𝜐|
𝑡<0

= 0, 𝜐
𝑡

󵄨
󵄨
󵄨
󵄨𝑡<0

= 0, (15)

1

𝜇

𝜐
𝑥3
(0, 𝑡) = 𝑓

(2)
(𝑡) , (16)

𝜐 (0, 𝑡) = 𝑓
(1)
(𝑡) . (17)

Here 𝜆 is a Fourier parameter and 𝜐(𝑥, 𝑡) = 𝐹
𝑥1
[𝐸
2
(𝑥
1
,

0, 𝑥
3
, 𝑡)]; 𝑓

(1)
(𝑡) = 𝐹

𝑥1
[𝜑
(1)
(𝑥
1
, 𝑡)]; and 𝑓

(2)
(𝑡) = 𝐹

𝑥1
[(𝜕/

𝜕𝑡)𝜑
(2)
(𝑥
1
, 𝑡)] are Fourier images.

Direct Problem. By the known values of 𝜀, 𝜇, and 𝜎 find
𝜐(𝑥
3
, 𝑡) as the solution of the mixed problem (14)–(16).

Inverse Problem. Find 𝜎(𝑥
3
) and 𝜐(𝑥

3
, 𝑡) from (14) to (16) for

given 𝑓
(1)
(𝑡) with fixed 𝜆 = 𝜆

0
.

To study conditional stability of the inverse geoelectric
problem, it is convenient to use the integral formulation.

Now we introduce the following notations: 𝑏(𝑥
3
) =

1/𝜇𝜀(𝑥
3
) and 𝑎(𝑥

3
) = 𝜎(𝑥

3
)/𝜀(𝑥
3
) and change the variables

and functions:

𝑧 = 𝑧 (𝑥
3
) = ∫

𝑥3

0

√𝜇𝜀 (𝜉)𝑑𝜉, 𝑥
3
= 𝜔 (𝑧) ;

𝑎 (𝑧) =

𝜎 (𝜔 (𝑧))

𝜀 (𝜔 (𝑧))

, 𝑏 (𝑧) =

1

𝜇𝜀 (𝜔 (𝑧))

,

𝑢 (𝑧, 𝑡) = 𝜐 (𝜔 (𝑧) , 𝑡) , 𝑗
0
= −𝑔 (𝜆)√

𝜇

𝜀 (0)

.

(18)

Then (14)–(16) can be written in the form

𝑢
𝑡𝑡
(𝑧, 𝑡) = 𝑢

𝑧𝑧
(𝑧, 𝑡) − 𝑎 (𝑧) 𝑢

𝑡
(𝑧, 𝑡)

−

𝑏
󸀠
(𝑧)

𝑏 (𝑧)

𝑢
𝑧
(𝑧, 𝑡) − (𝜆𝑏 (𝑧))

2
𝑢 (𝑧, 𝑡) ,

(19)

𝑢|
𝑡<0

= 0, 𝑢
𝑡
|
𝑡<0

= 0, (20)

1

𝜇

𝑢
𝑧
(0, 𝑡) = 𝑓

(2)
(𝑡) , (21)

𝑢 (0, 𝑡) = 𝑓
(1)
(𝑡) . (22)

In the future, we will get (19) without the derivative 𝑢
𝑧
; for

this we assume that

𝑢 (𝑧, 𝑡) = 𝐺 (𝑧) V (𝑧, 𝑡) . (23)

Now we calculate derivatives as follows:

𝑢
𝑧
= 𝐺
󸀠V + 𝐺V

𝑧
,

𝑢
𝑧𝑧
= 𝐺
󸀠󸀠V + 2𝐺󸀠V

𝑧
+ 𝐺V
𝑧𝑧
,

𝑢
𝑡
= 𝐺V
𝑡
, 𝑢

𝑡𝑡
= 𝐺V
𝑡𝑡
.

(24)

Substituting (24) into (19), we obtain

𝐺V
𝑡𝑡
= 𝐺
󸀠󸀠V + 2𝐺󸀠V

𝑧
+ 𝐺V
𝑧𝑧
− 𝑎 (𝑧) 𝐺V

𝑡

−

𝑏
󸀠

𝑏

(𝐺
󸀠V + 𝐺V

𝑧
) − (𝜆𝑏)

2
𝐺V.

(25)

Grouped together, we obtain

V
𝑡𝑡
= V
𝑧𝑧
+ (2

𝐺
󸀠

𝐺

−

𝑏
󸀠

𝑏

) V
𝑧

− 𝑎 (𝑧) V
𝑡
+ (

𝐺
󸀠󸀠

𝐺

−

𝑏
󸀠

𝑏

𝐺
󸀠

𝐺

− (𝜆𝑏)
2
) V.

(26)

Put that

2

𝐺
󸀠

𝐺

−

𝑏
󸀠

𝑏

= 0, (27)

𝑔 (𝑧) =

𝐺
󸀠󸀠

𝐺

−

𝑏
󸀠

𝑏

𝐺
󸀠

𝐺

− (𝜆𝑏)
2
. (28)
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Finally, we have

V
𝑡𝑡
= V
𝑧𝑧
− 𝑎 (𝑧) V

𝑡
+ 𝑔 (𝑧) V,

V|
𝑡<0

= 0, V
𝑡
|
𝑡<0

= 0,

1

𝜇

V
𝑧
(0, 𝑡) = 𝑓

(2)
(𝑡) ,

V (0, 𝑡) = 𝑓
(1)
(𝑡) .

(29)

From (27) we have

𝐺
󸀠

𝐺

=

𝑏
󸀠

2𝑏

; (ln𝐺)󸀠 = (ln√𝑏)
󸀠

,

ln𝐺 = ln√𝑏 + ln 𝑆 (0) , 𝑆 (0) = 1,

𝐺 (𝑧) = √𝑏 (𝑧).

(30)

Thus, the function 𝑔(𝑧) is uniquely determined from (28)
by the formula (30).

3. Statement of the Problem with the Data on
the Characteristics

In the domain Δ(𝑙) = {(𝑧, 𝑡)|0 < |𝑧| < 𝑡 < 𝑙} we consider the
inverse problem with data on the characteristics [11]:

V
𝑡𝑡
(𝑧, 𝑡) = V

𝑧𝑧
(𝑧, 𝑡) − 𝑃V (𝑧, 𝑡) , (𝑧, 𝑡) ∈ Δ𝑙, (31)

V (𝑧, 𝑧) = 𝑆 (𝑧) , 0 ≤ 𝑧 ≤ 𝑙, (32)

V (0, 𝑡) = 𝑓 (𝑡) , 0 ≤ 𝑡 ≤ 2𝑙, (33)

V
𝑧
(0, 𝑡) = 𝜑 (𝑡) , 0 ≤ 𝑡 ≤ 2𝑙. (34)

Here

𝑃V (𝑧, 𝑡) = 𝑎 (𝑧) V
𝑡
(𝑧, 𝑡) + 𝑔 (𝑧) V (𝑧, 𝑡) ,

𝑓 (𝑡) = 𝑓
(1)
(𝑡) , 𝜑 (𝑡) = 𝜇𝑓

(2)
(𝑡) .

(35)

We deem that 𝑎(𝑧) is an unknown function and the
function 𝑔(𝑧) is to be known.

Function 𝑆(𝑧) is a solution to Volterra integral equation
of the second kind:

𝑆 (𝑧) =

1

2

𝛾
0
−

1

2

∫

𝑧

0

𝑎 (𝜉) 𝑆 (𝜉) 𝑑𝜉, 𝑧 ∈ (0, 𝑙) . (36)

Inverting the operator (𝜕2/𝜕𝑡2) − (𝜕
2
/𝜕𝑧
2
) in (31) and

taking into account (33) and (34), we obtain

V (𝑧, 𝑡) = Φ (𝑧, 𝑡) + 𝐴
𝑡,𝑧
[𝑃V] , (𝑧, 𝑡) ∈ Δ (𝑙) . (37)

Here we use the following notations:

Φ (𝑧, 𝑡) =

1

2

[𝑓 (𝑡 + 𝑧) + 𝑓 (𝑡 − 𝑧)] +

1

2

∫

𝑡+𝑧

𝑡−𝑧

𝜑 (𝜉) 𝑑𝜉,

𝐴
𝑡,𝑧
[V] =

1

2

∫

𝑧

0

∫

𝑡+𝑧−𝜉

𝑡−𝑧+𝜉

V (𝜉, 𝜏) 𝑑𝜏 𝑑𝜉.

(38)

Differentiating (37) with respect to 𝑡 we obtain

V
𝑡
(𝑧, 𝑡)

= Φ
𝑡
(𝑧, 𝑡) +

1

2

∫

𝑧

0

[𝑃V (𝜉, 𝑡 + 𝑧 − 𝜉) − 𝑃V (𝜉, 𝑡 − 𝑧 + 𝜉)] 𝑑𝜉.

(39)

Put 𝑡 = 𝑧 + 0 in (37) and use condition (32); then we have

𝑆 (𝑧) = Φ (𝑧, 𝑧 + 0) + 𝐴
𝑧+0,𝑧

[𝑃V] . (40)

Differentiating both sides of the resulting equality with
respect to 𝑧 gives

𝑆
󸀠
(𝑧) = Φ

󸀠
(𝑧, 𝑧 + 0) + ∫

𝑧

0

𝑃V (𝜉, 2𝑧 − 𝜉) 𝑑𝜉. (41)

It is not difficult to see that the function 𝑞(𝑧) = [𝑆(𝑧)]
−1

satisfies Volterra integral equation of the second kind:

𝑞 (𝑧) = 𝛾
−1
+

1

2

∫

𝑧

0

𝑎 (𝜉) 𝑞 (𝜉) 𝑑𝜉, 𝛾 =

𝛾
0

2

. (42)

Taking this into account and the relation 𝑎(𝑧) =

2𝑆
󸀠
(𝑧)/𝑆(𝑧), we get

𝑎 (𝑧) = 2 [Φ
󸀠
(𝑧, 𝑧 + 0) + ∫

𝑧

0

𝑃V (𝜉, 2𝑧 − 𝜉) 𝑑𝜉]

⋅ [𝛾
−1
+

1

2

∫

𝑧

0

𝑎 (𝜉) 𝑞 (𝜉) 𝑑𝜉] .

(43)

Thus, we obtain a closed system of integral equations (37),
(39), (42), and (43).

We write this system in vector form as follows:

Υ = 𝐹 + 𝐾 (Υ) , (44)

where

Υ (𝑧, 𝑡) = (Υ
1
, Υ
2
, Υ
3
, Υ
4
)
𝑇

,

𝐹 (𝑧, 𝑡) = (𝐹
1
, 𝐹
2
, 𝐹
3
, 𝐹
4
)
𝑇

,

𝐾 (Υ) = (𝐾
1
(Υ) , 𝐾

2
(Υ) , 𝐾

3
(Υ) , 𝐾

4
(Υ))
𝑇

,

Υ
1
(𝑧, 𝑡) = V (𝑧, 𝑡) , Υ

2
(𝑧, 𝑡) = V

𝑡
(𝑧, 𝑡) ,

Υ
3
(𝑧) = 𝑞 (𝑧) , Υ

4
(𝑧) = 𝑎 (𝑧) .

𝐹
1
(𝑧, 𝑡) = Φ (𝑧, 𝑡) , 𝐹

2
(𝑧, 𝑡) = Φ

𝑡
(𝑧, 𝑡) ,

𝐹
3
= 𝛾
0

−1
, 𝐹

4
(𝑧) = 𝜒 (𝑧) ,

(45)
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where 𝜒(𝑧) = 2𝛾−1Φ󸀠(𝑧, 𝑧 + 0),

𝐾
1
(Υ) =

1

2

∫

𝑧

0

∫

𝑡+𝑧−𝜉

𝑡−𝑧+𝜉

𝑃Υ (𝜉, 𝜏) 𝑑𝜏 𝑑𝜉, (𝑧, 𝑡) ∈ Δ (𝑙) ,

𝐾
2
(Υ) =

1

2

∫

𝑧

0

[𝑃Υ (𝜉, 𝑡 + 𝑧 − 𝜉) − 𝑃Υ (𝜉, 𝑡 − 𝑧 + 𝜉)] 𝑑𝜉,

𝐾
3
(Υ) =

1

2

∫

𝑧

0

Υ
4
(𝜉) Υ
3
(𝜉) 𝑑𝜉,

𝐾
4
(Υ) = Φ

󸀠
(𝑧, 𝑧 + 0) ∫

𝑧

0

Υ
4
(𝜉) Υ
3
(𝜉) 𝑑𝜉

+ 2∫

𝑧

0

𝑃Υ (𝜉, 2𝑧 − 𝜉) 𝑑𝜉

⋅ (𝛾
−1
+

1

2

∫

𝑧

0

Υ
4
(𝜉) Υ
3
(𝜉) 𝑑𝜉) .

(46)

Here

𝑃Υ (𝑧, 𝑡) = Υ
4
(𝑧) ⋅ Υ

2
(𝑧, 𝑡) − 𝑔 (𝑧) Υ

1
(𝑧, 𝑡) . (47)

We deem that Υ = (Υ
1
, Υ
2
, Υ
3
, Υ
4
) ∈ 𝐿
2
(𝑙), if

Υ
𝑗
(𝑧, 𝑡) ∈ 𝐿

2
(Δ (𝑙)) , 𝑗 = 1, 2;

Υ
𝑗
(𝑧) ∈ 𝐿

2
(0, 𝑙) , 𝑗 = 3, 4.

(48)

Let Υ(𝑗) = (Υ(𝑗)
1
(𝑧, 𝑡), Υ

(𝑗)

2
(𝑧, 𝑡), Υ

(𝑗)

3
(𝑧), Υ

(𝑗)

4
(𝑧))

𝑇

, 𝑗 = 1, 2.
We define the scalar product and the norm as follows:

⟨Υ
(1)
, Υ
(2)
⟩

=

2

∑

𝑘=1

∫

𝑙

0

∫

2𝑙−𝑧

𝑧

Υ
(1)

𝑘
(𝑧, 𝑡) Υ

(2)

𝑘
(𝑧, 𝑡) 𝑑𝑡 𝑑𝑧

+

4

∑

𝑘=3

∫

𝑙

0

Υ
(1)

𝑘
(𝑧) Υ
(2)

𝑘
(𝑧) 𝑑𝑧,

‖Υ‖
2
= ⟨Υ, Υ⟩ .

(49)

Inverse Problem. Find vector Υ ∈ 𝐿
2
(𝑙) from (44) for given

𝐹 ∈ 𝐿
2
(𝑙).

4. Conditional Stability

Studying 𝐻
1
, conditional stability is similar to that in [12]

where it was done for the inverse acoustic problem.
We suppose ‖𝑎‖2

𝐿2(0,𝑙)
= 𝑀
1
, ‖𝑓‖2
𝐿2(0,𝑙)

+ ‖𝑓
󸀠
‖

2

𝐿2(0,𝑙)
= 𝑀
2
,

‖𝜑‖
2

𝐿2(0,𝑙)
= 𝑀
3
, and ‖𝑔‖2

𝐿2(0,𝑙)
≤ 𝑀
4
to be known.

We define ∑(𝑙,𝑀
1
, 𝑎
∗
) as the class of possible solutions

of the inverse problem; namely, 𝑎(𝑧) ∈ ∑(𝑙,𝑀
1
, 𝑎
∗
) if 𝑎(𝑧)

satisfies the following conditions:

(1) 𝑎(𝑧) ∈ 𝐻
1
(0, 𝑙) ∩ 𝐶

1
(0, 𝑙),

(2) ‖𝑎‖
𝐻1(0,𝑙)

≤ 𝑀
1
,

(3) 0 < 𝑎
∗
≤ 𝑎(𝑧), 𝑥 ∈ (0, 𝑙).

We also define𝐹(𝑙,𝑀
2
,𝑀
3
,𝑀
4
, 𝑘
0
) as the class of possible

initial data; namely, 𝑓 ∈ 𝐹(𝑙, 𝑄, 𝑘
0
) if 𝑓 satisfies the following

conditions:

(1) 𝑓 ∈ 𝐻
1
(0, 2𝑙),

(2) ‖𝑓‖
𝐻1(0,2𝑙)

≤ 𝑀
2
,

(3) 𝑓(+0) = 𝑘
0
, ‖𝜑‖
𝐻1(0,2𝑙)

≤ 𝑀
3
.

Suppose that for 𝑓(1), 𝑓(2) ∈ 𝐹(𝑙,𝑀
2
,𝑀
3
,𝑀
4
, 𝑘
0
) there

exist 𝑎(1) and 𝑎(2) from ∑(𝑙,𝑀
1
, 𝑎
∗
) which solve the inverse

problem:

V(𝑗)
𝑡𝑡
(𝑧, 𝑡) = V(𝑗)

𝑧𝑧
(𝑧, 𝑡) − 𝑃V(𝑗) (𝑧, 𝑡) , (𝑧, 𝑡) ∈ Δ (𝑙) ,

V(𝑗) (𝑧, 𝑧) = 𝑆(𝑗) (𝑧) , 0 ≤ 𝑧 ≤ 𝑙,

V(𝑗) (0, 𝑡) = 𝑓(𝑗) (𝑡) , V
𝑧
(0, 𝑡) = 𝜑

(𝑗)
(𝑡) , 0 ≤ 𝑡 ≤ 2𝑙,

(50)

for 𝑗 = 1, 2, respectively.
Here

𝑃V(𝑗) (𝑧, 𝑡) = 𝑎(𝑗) (𝑧) V(𝑗)
𝑡
(𝑧, 𝑡) + 𝑔 (𝑧) V(𝑗) (𝑧, 𝑡) ,

𝑓
(𝑗)
(𝑡) = 𝑓

(𝑗)

(1)
(𝑡) , 𝜑

(𝑗)
(𝑡) = 𝜇𝑓

(𝑗)

(2)
(𝑡) .

(51)

We deem that the function 𝑔(𝑧) is known and 𝑎(𝑗)(𝑧) is
unknown, 𝑗 = 1, 2. We write the early resulting closed system
in the vector form as follows:

Υ
(𝑗)
= 𝐹
(𝑗)
+ 𝐾 (Υ

(𝑗)
) , 𝑗 = 1, 2, (52)

where

Υ
(𝑗)
= (Υ
(𝑗)

1
, Υ
(𝑗)

2
, Υ
(𝑗)

3
, Υ
(𝑗)

4
)

𝑇

;

Υ
(𝑗)

1
(𝑧, 𝑡) = V(𝑗) (𝑧, 𝑡) , Υ

(𝑗)

2
(𝑧, 𝑡) = V(𝑗)

𝑡
(𝑧, 𝑡) ,

(53)

Υ
(𝑗)

3
(𝑧) = 𝑞 (𝑧) , Υ

(𝑗)

4
(𝑧) = 𝑎

(𝑗)
(𝑧) ;

𝐹
(𝑗)
= (𝐹
(𝑗)

1
, 𝐹
(𝑗)

2
, 𝐹
(𝑗)

3
, 𝐹
(𝑗)

4
)

𝑇

, 𝑗 = 1, 2;

𝐹
(𝑗)

1
(𝑧, 𝑡) = Φ

(𝑗)
(𝑧, 𝑡) , 𝐹

(𝑗)

2
(𝑧, 𝑡) = Φ

(𝑗)

𝑡
(𝑧, 𝑡) ,

𝐹
3
= 𝑗
−1
, 𝐹

4
(𝑧) = 𝜒

(𝑗)
(𝑧) , 𝑗 = 1, 2;

(54)

𝐾
1
(Υ
(𝑗)
) =

1

2

∫

𝑧

0

∫

𝑡+𝑧−𝜉

𝑡−𝑧+𝜉

𝑃Υ
(𝑗)
(𝜉, 𝜏) 𝑑𝜏 𝑑𝜉, (𝑧, 𝑙) ∈ Δ (𝑙) ,
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𝐾
2
(Υ
(𝑗)
)

=

1

2

∫

𝑧

0

[𝑃Υ
(𝑗)
(𝜉, 𝑡 + 𝑧 − 𝜉) − 𝑃Υ

(𝑗)
(𝜉, 𝑡 − 𝑧 + 𝜉)] 𝑑𝜉,

𝐾
3
(Υ
(𝑗)
) =

1

2

∫

𝑧

0

Υ
(𝑗)

4
Υ
(𝑗)

3
𝑑𝜉,

𝐾
4
(Υ
(𝑗)
) = Φ

󸀠(𝑗)

(𝑧, 𝑧 + 0) ∫

𝑧

0

Υ
(𝑗)

4
(𝜉) Υ
(𝑗)

3
(𝜉) 𝑑𝜉

+ 2∫

𝑧

0

𝑃Υ
(𝑗)
(𝜉, 2𝑧 − 𝜉) 𝑑𝜉

⋅ (𝛾
−1
+

1

2

∫

𝑧

0

Υ
(𝑗)

4
(𝜉) Υ
(𝑗)

3
(𝜉) 𝑑𝜉) .

𝑙𝑎𝑏𝑒𝑙𝑒𝑞55 (55)

Here we denote 𝑃Υ(𝑗)(𝑧, 𝑡) = Υ
4
(𝑧)Υ
2
(𝑧, 𝑡) − 𝑔(𝑧)Υ

1
(𝑧, 𝑡).

Theorem 1. Suppose that, for 𝐹(𝑗) ∈ 𝐿
2
(𝑙), 𝑗 = 1, 2, there exist

Υ
(𝑗)
∈ 𝐿
2
(Δ(𝑙)) as the solution of the inverse problem as follows:

Υ
(𝑗)
(𝑧, 𝑡) = 𝐹

(𝑗)
(𝑧, 𝑡) + 𝐾 (Υ

(𝑗)
) , 𝑗 = 1, 2, (𝑧, 𝑡) ∈ Δ (𝑙) .

(56)

Then

󵄩
󵄩
󵄩
󵄩
󵄩
Υ
(1)
− Υ
(2)󵄩󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(1)
− 𝑓
(2)󵄩󵄩
󵄩
󵄩
󵄩

2

𝐻1(0,2𝑙)
, (57)

where

𝐶 = 𝐶 (𝑙,𝑀
1
,𝑀
2
,𝑀
3
,𝑀
4
, 𝑘
0
) . (58)

Proof. We introduce

Υ̃ (𝑥, 𝑡) = (Υ̃
1
(𝑧, 𝑡) , Υ̃

2
(𝑧, 𝑡) , Υ̃

3
(𝑧) , Υ̃

4
(𝑧))

= Υ
(1)
(𝑧, 𝑡) − Υ

(2)
(𝑧, 𝑡) ,

𝐹 (𝑧, 𝑡) = 𝐹
(1)
(𝑧, 𝑡) − 𝐹

(2)
(𝑧, 𝑡) .

(59)

Then from (52) it follows that

Υ̃ (𝑧, 𝑡) = 𝐹 (𝑧, 𝑡) − 𝐾 (Υ̃) , (𝑧, 𝑡) ∈ Δ (𝑙) . (60)

In the vector equation (60) we estimate each component
separately taking into account the obvious inequalities as
follows:

(𝑎 + 𝑏 + 𝑐)
2
≤ 3 (𝑎

2
+ 𝑏
2
+ 𝑐
2
) ,

(√𝑎 + √𝑏)

2

≤ 2𝑎 + 2𝑏,

(61)

for 𝑎 ≥ 0, 𝑏 ≥ 0.
We obtain the chain of the inequalities:

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
1
(𝑧, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
1
(𝑧, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
+

1

2

√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
3
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

×
[

[

√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(1)

1
(𝜉, 𝑡 + 𝑧 − 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

+√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(1)

1
(𝜉, 𝑡 − 𝑧 + 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉
]

]

+

1

2

√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(2)

3
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

×
[

[

√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
1
(𝜉, 𝑡 + 𝑧 − 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

+√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
2
(𝜉, 𝑡 − 𝑧 + 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉
]

]

.

(62)

Using the obvious inequality we get
󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
1
(𝑧, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ 3

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
1
(𝑧, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

3

2

∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
3
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

× ∫

𝑧

0

[

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(1)

1
(𝜉, 𝑡 + 𝑧 − 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(1)

1
(𝜉, 𝑡 − 𝑧 + 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

] 𝑑𝜉

+

3

2

∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(2)

3
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

× ∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
1
(𝜉, 𝑡 + 𝑧 − 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
(2)

1
(𝜉, 𝑡 − 𝑧 + 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉.

(63)

Turning to the earlier introduced norms we have
󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
1

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(Δ(𝑙,𝑧))

≤ 3

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
1

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(Δ(𝑙,𝑧))
𝑇

+

3

2

∫

𝑧

0

∫

2𝑙−𝜉

𝜉

{∫

𝜉

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
3
(𝜉
󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉
󸀠

× ∫

𝜉

0

[

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(1)

1
(𝜉
󸀠
, 𝜏 + 𝜉 − 𝜉

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨

2
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+

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(1)

1
(𝜉
󸀠
, 𝜏 − 𝜉 + 𝜉

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

] 𝑑𝜉
󸀠

+ ∫

𝜉

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
2

3
(𝜉
󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉
󸀠

× ∫

𝜉

0

[

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
1
(𝜉
󸀠
, 𝜏 + 𝜉 − 𝜉

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
(2)

1
(𝜉
󸀠
, 𝜏 − 𝜉 + 𝜉

󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

] 𝑑𝜉
󸀠
}𝑑𝜏 𝑑𝜉

≤ 3

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
1

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(Δ(𝑙,𝑧))

+ 12Υ
2

∗
∫

𝑧

0

∫

𝜉

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
3
(𝜉
󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉
󸀠
𝑑𝜉 + 12Υ

2

∗
∫

𝑧

0

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
1

󵄩
󵄩
󵄩
󵄩
󵄩𝐿2(Δ(𝑙,𝜉))

𝑑𝜉.

(64)

Here

Υ
∗
= max {󵄩󵄩󵄩󵄩

󵄩
Υ
(1)󵄩󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
󵄩
Υ
(2)󵄩󵄩
󵄩
󵄩
󵄩
} . (65)

We estimate the second component of (60):

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
2
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

1

2

∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(1)

3
(𝜉) Υ̃
2
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜉

+

1

2

∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(2)

2
(𝜉) Υ̃
3
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜉

≤

1

2

√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(1)

3
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
2
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉

+

1

2

√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ
(2)

2
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉√∫

𝑧

0

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
3
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜉.

(66)

Then we have

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
2

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(0,𝑧)
≤

1

2

Υ
2

∗
∫

𝑧

0

[

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
2

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(0,𝜉)
+

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
3

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(0,𝜉)
] 𝑑𝜉. (67)

We estimate the third component of (60) and we have

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
3

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(0,𝑙)
≤

1

4

𝑀
2
∫

𝑧

0

[

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
3

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(0,𝜉)
+𝑀
3

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
4

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(0,𝜉)
] 𝑑𝜉. (68)

Finally, for the fourth component of (60) we get the
estimate

󵄨
󵄨
󵄨
󵄨
󵄨
Υ̃
4
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
4
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
+

4

∑

𝑖=1

𝑤
𝑖
,

𝑤
1
(𝑧) = 2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑓
(1)
)

󸀠

(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
2
(Υ
(1)
) − 𝐾
2
(Υ
(2)
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑤
2
(𝑧) =

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
6
(Υ
(1)
) − 𝐾
6
(Υ
(2)
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑤
3
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
2
(Υ
(1)
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑤
2
(𝑧) ,

𝑤
4
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
4
(Υ
(2)
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
2
(Υ
(1)
) − 𝐾
2
(Υ
(2)
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑤
5
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑓
(1)
)

󸀠

− (𝑓
(2)
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝐾
2
(Υ
(2)
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝐾
6
(Υ) = ∫

𝑧

0

Υ
3
(𝜉)Φ
1
(𝜉, 2𝑧 − 𝜉) 𝑑𝜉.

(69)

Estimating each term𝑤
𝑖
(𝑧) and substituting into (69) and

using the obvious inequality

(

4

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑏
𝑘

󵄨
󵄨
󵄨
󵄨
)

2

≤ 4

4

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑏
𝑘

󵄨
󵄨
󵄨
󵄨

2

, (70)

we obtain
󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
4
(𝑧)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿2(0,𝑧)

≤ ]
0
∫

𝑧

0

[𝑓
󸀠
(2𝜉)]

2

𝑑𝜉 +

1

2

]
1

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
1

󵄩
󵄩
󵄩
󵄩
󵄩𝐿2(Δ(𝑙,𝑧))

+ ∫

𝑧

0

]
3
(𝜉)

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
2

󵄩
󵄩
󵄩
󵄩
󵄩𝐿2(0,𝜉)

𝑑𝜉

+ ∫

𝑧

0

]
3
(𝜉)

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
3

󵄩
󵄩
󵄩
󵄩
󵄩𝐿2(0,𝜉)

𝑑𝜉

+ ∫

𝑧

0

]
4
(𝜉)

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
4

󵄩
󵄩
󵄩
󵄩
󵄩𝐿2(0,𝜉)

𝑑𝜉.

(71)

Now we combine all the obtained estimates for the four
components (60) and denote, for convenience,

𝜓
1
(𝑧) =

󵄩
󵄩
󵄩
󵄩
󵄩
Υ̃
1

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿2(Δ(𝑙,𝑧))
, 𝑧 ∈ (0, 𝑙) , (72)

and then

𝜓 (𝑧) = 𝜓
1
(𝑧) + 𝜓

2
(𝑧) + 𝜓

3
(𝑧) + 𝜓

4
(𝑧) (73)

and for function 𝜓 we obtain the following estimate:

𝜓 (𝑧) ≤ 𝜂 + ∫

𝑧

0

4

∑

𝑖=1

𝛾
𝑖
(𝜉) 𝜓
𝑖
(𝜉) 𝑑𝜉, (74)

where 𝜂 = 𝜂(Υ2
∗
, ]
1
, ]
2
, ]
3
, ]
4
).

Introduce a new function:

] (𝑧) = 𝜂
∗
+ ∫

𝑧

0

4

∑

𝑖=1

𝛾
𝑖
(𝜉) 𝜓
𝑖
(𝜉) 𝑑𝜉, 𝜂 < 𝜂

∗
, (75)

where 𝜂
∗
is constant.

Then 𝜓(𝑧) ≤ ](𝑧),

]󸀠 (𝑧) =
4

∑

𝑖=1

𝛾
𝑖
(𝑧) Υ
𝑗
(𝑧) ≤ ] (𝑧)

4

∑

𝑖=1

𝛾
𝑖
(𝑧) ,

]󸀠 (𝑧)
] (𝑧)

≤

4

∑

𝑖=1

𝛾
𝑖
(𝑧) .

(76)
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Applying the Gronwall inequality we obtain

𝜓 (𝑧) ≤ ] (𝑧) ≤ ] (0) exp{∫
𝑧

0

4

∑

𝑖=1

𝛾
𝑖
(𝜉) 𝑑𝜉} ,

∫

𝑧

0

4

∑

𝑖=1

𝛾
𝑖
(𝜉) 𝑑𝜉 ≤ 25Υ

2

∗
× 𝑧 + 12Υ

2

∗

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(1)󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿2(0,2𝑙)

+ 12Υ
4

∗
+ 12Υ

2

∗
(12 + Υ

2

∗
⋅ 𝑧) .

(77)

Then from (77) we obtain
󵄩
󵄩
󵄩
󵄩
󵄩
Υ
(1)
− Υ
(2)󵄩󵄩
󵄩
󵄩
󵄩

2

≤ 𝑁̃

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
(1)
− 𝑓
(2)󵄩󵄩
󵄩
󵄩
󵄩𝐻1(0,2𝑙)

, (78)

where the constant 𝐶 > 0 is given by (58).
An explicit expression for the constant as a result of

successive computations is given by

𝐶 = [6𝑙 + 6𝑀
1
(

4

𝑘
2

0

+ Υ
4

∗
)(1 + 12Υ

2

∗
𝑙)]

×exp{Υ2
∗
[24𝑙 + 8𝑀

2
(

4

𝑘
2

0

+ Υ
4

∗
)(𝑀
3
+ 36Υ

2

∗
𝑙)

+ 6𝑀
2
Φ
2
+ 8𝑀
4
Υ
4

∗
]} .

(79)

5. Conclusions

The conditional stability of the inverse problem for the
geoelectric equation has been investigated. For studying we
consider the integral formulation of the inverse geoelectric
problem. The estimation of the conditional stability of the
inverse problem solution has been obtained or rather lower
changes in input data imply lower changes in the solution
(of the numericalmethod).When determining the additional
information the device errors are possible. That is why this
research is important for experimental studies with usage of
ground penetrating radars.The inlet data belongs to the class
𝐹(𝑙,𝑀

2
,𝑀
3
,𝑀
4
, 𝑘
0
), while the solution belongs to the class

∑(𝑙,𝑀
1
, 𝑎
∗
).
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