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Diffusion magnetic resonance imaging (dMRI) is the only technique to probe in vivo and noninvasively the fiber structure of
human brain white matter. Detecting the crossing of neuronal fibers remains an exciting challenge with an important impact
in tractography. In this work, we tackle this challenging problem and propose an original and efficient technique to extract all
crossing fibers from diffusion signals. To this end, we start by estimating, from the dMRI signal, the so-called Cartesian tensor
fiber orientation distribution (CT-FOD) function, whose maxima correspond exactly to the orientations of the fibers. The fourth
order symmetric positive definite tensor that represents the CT-FOD is then analytically decomposed via the application of a new
theoretical approach and this decomposition is used to accurately extract all the fibers orientations. Our proposed high order tensor
decomposition based approach is minimal and allows recovering the whole crossing fibers without any a priori information on the
total number of fibers. Various experiments performed on noisy synthetic data, on phantom diffusion, data and on human brain
data validate our approach and clearly demonstrate that it is efficient, robust to noise and performs favorably in terms of angular
resolution and accuracy when compared to some classical and state-of-the-art approaches.

1. Introduction

The diffusion magnetic resonance imaging or dMRI [1] is
a magnetic resonance imaging (MRI) modality which is
particularly suited to study and characterize the white matter
neuronal architecture of the brain in vivo and noninvasively.
The diffusion tensor model (DTI) introduced by Basser et
al. in 1994 [2] was the first technique used for the fiber
bundles reconstruction. However, due to the assumption of
single fiber bundle per voxel, this technique is ineffective in
regions where the fiber bundles intersect. Therefore, the fiber
bundles reconstructed by tractography algorithms based on
DTI are unreliable. To overcome the limitations of the DTI
model, new high angular resolution techniques (HARDI)
have been proposed, such as the diffusion spectrum imaging
(DSI), the Q-ball imaging (QBI) [3, 4], or the symmetric
high order tensors (SHOT) [5]. These techniques allow
estimating the diffusion orientation distribution function
(ODF)whosemaxima are alignedwith the orientations of the

underlying fibers. The DSI technique provides the real ODF
by measuring the diffusion signal on a whole 3D Cartesian
grid in the q-space. However, this method is impractical in
clinical studies because it requires an important acquisition
time due to the huge number of samples and it requires too a
very high gradient magnitude. The QBI model approximates
the diffusion ODF function directly from the raw HARDI
diffusion signal acquired from a spherical sampling of the
diffusion space [3, 4]. Although the QBI-ODF contains the
angular information by having its maxima aligned on the
orientations of the underlying fibers, it has a low angular res-
olution by failing to reconstruct correctly the fibers crossing
with angles less than 63∘ [3, 6]. A sharper function called fiber
ODF or FOD function can be calculated from the ODF by
using the spherical deconvolution techniques [7]. The FOD
function has also its maxima aligned on the underlying fiber
orientations; the FOD allows a gain in the angular resolution
up to 15∘. Traditionally the ODF and FOD functions are
described in spherical harmonics (SH) basis; the angular
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resolution of these functions directly depends on the order
of the SH basis: an acute angular resolution requires a high
order of the SH basis. However, in case of higher orders, these
ODF and FOD functions are prone to negative lobes due
to noise. The high order symmetric tensors or equivalently
the homogeneous polynomials have been proposed to model
and reconstruct the FOD function [8] called CT-FOD for
Cartesian tensor-FOD, whose maxima correspond exactly
to the orientations of the underlying fibers. By imposing
efficiently the positivity constraint, the CT-FOD function
appears as an alternative to the FOD described in the
SH basis. Furthermore, thanks to its polynomial form, the
maxima of the CT-FOD function can be easily located.
Therefore, in our work we start by estimating the CT-FOD
function to reconstruct the symmetric high order tensor
from the diffusion weighted-MRI (DW-MRI) data. Due to
the importance of tractography and its increasing interest in
clinical practice, it is important to accurately extract the fiber
orientations to perform a reliable and accurate tractography.
An efficient and accurate approach to perform this crucial
and necessary preprocessing step is to extract the fibers
orientations as the CT-FOD maxima. Different methods for
extractingmaximaof high order tensors exist in the literature;
in [9], Bloy and Verma proposed to determine the fiber
directions using the concept of Z-eigenvalues introduced
by Qi in 2005 [10]. This maxima localization method, the
so-called traditional method, suffers from a low angular
resolution and does not allow recovering crossing fibers at
angles below 60

∘ [11]. The high order tensor decomposi-
tion in rank-1 tensor has been proposed to the maxima
extraction issue in [12], and the low-rank decomposition
approximation method known as CANDCOMP/PARAFAC
(CP) [13] was used. It was proved in previous works [11,
12] that the tensor decomposition approaches recover the
crossing fibers with a better angular resolution than the
traditional methods of maxima localization. However, the
CP-decomposition approximation requires predefining the
tensor rank, that is, knowing the number of fibers in a voxel,
which is impossible apriority. Furthermore, PARAFAC uses
the alternating least squares (ALS) algorithm, which is a
nonlinear optimization algorithm whose convergence is not
guaranteed and depends on the initialization. In this paper,
we propose to find the orientations of the fiber bundles
from diffusion signals using an analytical decomposition of
symmetric high order tensor; for lightness and clarity of
the paper we will use the abbreviation Adecomp-SHOT for
analytical decomposition of symmetric high order tensor.
This Adecomp-SHOT method was initially proposed by
Brachat et al. in 2010 [14] but remains in the theoretical field.
However, the Adecomp-SHOT seems a priori interesting for
the fiber orientations issue because, unlike the suboptimal
CP-decomposition approximation, theAdecomp-SHOT is an
analytical one and not restricted to subgeneric ranks. Thus,
rather than CP-decomposition, Adecomp-SHOT would pro-
vide a minimal decomposition; this aspect is particularly
interesting in the fiber orientations search since it would
give the whole underlying fiber orientations without any
apriority. Therefore, in the following we propose an original
and efficient Adecomp-SHOT based approach to extract the

fiber orientations from diffusion weighted-MRI data and
we prove through many validations tests the effectiveness
of the proposed method. The Adecom-SHOT is based on
the SHOT; therefore we propose to use the CT-FOD for
reconstructing the SHOT from the DW-MRI signal, since
the CT-FOD constitutes the state-of-the-art. We begin this
paper by presenting first the CT-FOD algorithm, before
explaining the CP-decomposition and providing a detailed
version of the Adecomp-SHOT algorithm; in this section we
will also present the results of the intrinsic study done on
both of Adecomp-SHOT algorithm and CP-decomposition.
Then we describe our Adecomp-SHOT based approach to
the fiber orientations search. Finally, we finish by presenting
our validations and results on synthetic, phantom, and in vivo
human brain data and our conclusions.

2. Materials and Methods

2.1. Symmetric Fourth Order Tensor Coefficients from the
Diffusion Data. The diffusion signal 𝑆 = (𝑔

𝑖
, 𝑏
𝑖
) corre-

sponding to the acquisition parameters, 𝑔
𝑖
, 𝑏
𝑖
, is given by

the convolution of the CT-FOD function 𝐹, modeled by a
Cartesian and positive definite symmetric high order tensor
of 3 dimensions, with a Watson functionΩ [7, 8]:

𝑆 (𝑔, 𝑏) = Ω (𝑔, 𝑏) ⊗ 𝐹 (𝑔, 𝑏) (1)
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−𝑏𝑖𝐷(𝑔
𝑇

𝑖
V)2 , with 𝐷 being the diffusivity

coefficient calculated from a 2nd order tensor, that we
estimate from a single fiber response having a high fractional
anisotropy (FA > 0.8); 𝑔

𝑖
is the gradient of magnetic fields, 𝑏

𝑖

stands for the weights b-values, and V represents a set of unit
vectors sampling the diffusion space. Algorithm 1 describes
the estimation of unique coefficients of the symmetric tensor
FOD from the diffusion data.

In the following we are interested to decompose symmet-
ric fourth order tensors of dimension 3 (𝑑 = 4 and 𝑛 = 3).

2.2. Symmetric Tensor Decomposition. Symmetric high order
tensors appear mostly as multivariate functions (more than
two variables), and high order tensors decomposition allows
deducing the geometric and invariance properties of a
tensor. Therefore, the tensor decomposition raises interest
in many practical domains, first in chemometrics [13] and
psychometrics fields and then in electrical engineering and
electronics [16], in particular for the antenna array processing
[17], or else in telecommunication field [18]. Also, tensor
decomposition appears very useful in data analysis and in
the arithmetic complexity area [19]. Recently the interest in
tensor decompositions has expanded to the neurosciences
field; we cite among several applications the use of the
symmetric tensor decomposition to the problemof extracting
the fiber orientations of the white matter in dMRI. However,
to date, in dMRI the decomposition problem is still solved
with a low-rank approximation method known as CAND-
COMP/PARAFAC (CP).
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Data: Diffusion signal 𝑆(𝑔, 𝑏); acquisition parameters
(𝑔, 𝑏); vectors V sampling the unit sphere.
Result: The unique coefficients of the symmetric
positive definite tensor CT-FOD.
(1) Modeling the FOD function by symmetric
cartesian tensor of order 𝑑 and dimension 3.

𝐹 (𝑔) = ∑

𝑎+𝑏+𝑐=𝑑

𝐶
𝑎,𝑏,𝑐
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with 𝐶
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the coefficients of the tensor, and
[𝑔
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, 𝑔
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, 𝑔
3

] the components of the gradient
vector 𝑔.

To impose the positivity constraint, the homogeneous
polynomial 𝐹(𝑔) of order 𝑑 in 3 variables, is
re-parameterized by a sum of squares of polynomials
of order 𝑑/2 according to the Ternary quartics
theorem [8], we notice that in our work 𝑑 = 4:

𝐹(𝑔) =
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vectors
containing the coefficients of the 𝑑th order rank-1
polynomials constructed from the𝑀 unit vectors
V sampling the unit sphere.

(2) By substituting 𝐹(𝑔) given by (ii) in
(2), the signal 𝑆 can be approximated by
𝑆 as following:
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tensor V
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] sampling the unit sphere, and
contains the coefficients of these symmetric fourth
order tensors. The unknowns are then the weights
𝑙
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are simply obtained by minimizing
the following functional equation E:
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with 𝑙
𝑗

∈ 𝑅
+, and 𝑆 normalized.

To ensure the positivity of the 𝑙
𝑗

values,
the problem (iv) is solved using the efficient
constrained optimization algorithm Non Negative
Least Squares (NNLS) [8, 15].

(3) The𝑁 coefficients 𝐶
𝑎,𝑏,𝑐

of the FOD tensor are
then estimated simply by multiplying the matrix 𝐶,
of size𝑁 ×𝑀 containing the monomials of the rank-1
symmetric fourth order tensor formed from vectors
𝑐
𝑗

, by the resultant vector 𝑙 of length𝑀.

Algorithm 1

In the following two subsections, we first start by describ-
ing the classical CANDECOMP/PARAFAC (CP) method to
decompose symmetric high order tensors and then present
in detail the Adecomp-SHOT approach we propose to ana-
lytically decompose a symmetric tensor of any order and any
dimension in a minimal sum of rank-1 terms.

2.2.1. Numerical Method: CP Low-Rank Approximation. The
tensor decomposition problem consists in writing a given

tensor, in sum of outer product of vectors, that is, rank-
1 tensor, and that with a minimal number of terms, the
number of terms corresponding to the minimal tensor rank.
Considering a symmetric tensor 𝑇 of order 𝑑 and dimension
𝑛, the minimal decomposition of this tensor should be in the
following form:

𝑇 =

𝑅

∑

𝑟=1

𝑉
1

𝑟

∘ 𝑉
2

𝑟

∘ ⋅ ⋅ ⋅ ∘ 𝑉
𝑑

𝑟

(3)
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with𝑅: the rank of𝑇, “∘”: the outer product, and𝑉
𝑟
: the rank-1

tensors (vectors).
However, determining the rank of high order tensors

(order > 2) is a hard mathematical and NP-complet prob-
lem. Therefore, a low-rank numerical approximation of the
decomposition (4) has been proposed in [13], where the
authors approximate the tensor by another tensor whose
rank is inferior to the minimal or generic tensor rank; this
numerical decomposition method is known as CANDE-
COMP/PARAFAC (CP):
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𝑟
‖ = 1 and 𝜆

𝑟
: the weights of the rank-1 tensors V

𝑟
.

𝑘 < 𝑅 is the subgeneric rank of the tensor 𝑇, for
symmetric tensors V1

𝑟

= V2
𝑟

= ⋅ ⋅ ⋅ = V𝑑
𝑟

. Thus, the CP-
decomposition of the tensor 𝑇 of order 𝑑 and of an unknown
minimal rank 𝑅 is done by a nonlinear minimization in
�̂� of (5) for a given subgeneric rank 𝑘; the nonlinear
minimization problem is solved using the alternating least
squares algorithm (ALS):

min
̂
𝑇


�̂� − 𝑇


. (5)

Inverse Problem. To evaluate the intrinsic behavior of the CP
method, we have simulated an inverse problem by generating
fourth order symmetric tensors of rank-2 according to (3).
These tensors are constructed from two crossing vectors with
variable angles from 90

∘ to 0∘ and weighted by the same
weight 𝜆 = 0.5. The purpose is the evaluation of both the
ability of the method to render the correct solutions and the
angular resolution in such ideal case where data perfectly
satisfy the decomposition model.

The results of the intrinsic study are illustrated in Figure 1;
Figure 1(a) represents the mean error between the simulated
vectors or rank-1 tensors and the CP-decomposition solu-
tions, and Figure 1(b) gives the rank-1 tensors weights found
by the CP-decomposition, according to the separation angles.

From Figure 1(a) we notice that although the tensors to
decompose are constructed as to satisfy the decomposition
model described in (3), the CP-decomposition begins to give
an incorrect decomposition when the solutions are separated
with small angles (< 30∘); thus, Figure 1(b) shows that only
one vector of the two simulated is detected with the weights
𝜆
1
= 1 and 𝜆

2
= 0 for crossing angles inferior to 10∘. We

conclude that the accuracy and the angular resolution of the
CP-decomposition are intrinsically limited. Furthermore, the
CP-decomposition has another important limit which is the
requirement to predefine the rank of the decomposition.

The use of the CP-decomposition algorithm in dMRI to
detect the fiber orientations was proposed in 2011 by Jiao
et al. [12]. The authors considered an approximation of the
decomposition with a low-rank value (rank = 2) in order
to extract two crossing fiber orientations. The extracted fiber
orientations correspond to the rank-1 vectors obtained from
the decomposition. Although tensors decomposition is more
efficient in terms of angular resolution and accuracy than

the traditional maxima localization methods [11, 12], the CP-
decomposition could not guarantee the recovering of the
whole underlying fiber orientations since theminimal rank of
the tensor is not a priori known. Moreover, the convergence
of the ALS algorithm is not guaranteed and depends on the
initialization.

In 2010, Brachat et al. proposed [14] to solve the symmet-
ric high order tensor decomposition problem analytically;
in the remainder of the paper we denote this method:
Adecomp-SHOT. Rather than the CP numerical approach,
the Adecomp-SHOTmethod gives aminimal decomposition
without any apriority. However, to date the Adecomp-SHOT
remains theoretical and not yet expanded to the practical
issues or evaluated on physical phenomenons. Due to its abil-
ity to render a minimal decomposition, we naturally expect
that the Adecomp-SHOT applied to the fiber orientations
search in dMRI would be more interesting than the CP low-
rank approximation method.

2.2.2. Analytical Method: Adecomp-SHOT. The Adecomp-
SHOT method initially proposed by the authors Brachat et
al. [14] is a generalization of the Sylvesters theorem [14],
initially introduced for binary cases and extended to larger
dimensions. Thus, the Adecomp-SHOT algorithm is able
to decompose a symmetric tensor of any order and any
dimension, in a minimal sum of rank-1 terms.

Consider a symmetric tensor of order 𝑑 and dimension 𝑛
given in the following polynomial form:

𝑓 (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
)

= ∑
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1
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(6)

with 𝑓(𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑑
a homogenous polynomial of

order 𝑑 in 𝑛 variables, and 𝐶
𝑗0 ,𝑗1,...,𝑗𝑛

the coefficients of the
homogenous polynomial 𝑓.

An affine decomposition of 𝑓 consists in writing 𝑓 as a
sum of 𝑑th powers of rank-1 linear forms [14] as follows:

𝑓 (𝑋) = ∑

𝑖=1

𝜆
𝑖
𝐾
𝑖
(𝑋)
𝑑

,
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(𝑋)
𝑑
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𝐾
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𝑑
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+ 𝜆
𝑟
𝐾
𝑟
(𝑋)
𝑑

(7)

with 𝜆
𝑖
representing scalars weights, 𝐾

𝑖
(𝑋) rank-1 lin-

ear forms in 𝑋 = [𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
] with the coefficients

(𝑘
𝑖,0
, 𝑘
𝑖,1
, . . . , 𝑘

𝑖,𝑛
), and 𝑟 the minimal rank of 𝑓, that is, of the

tensor.
𝐾
𝑖
(𝑋) is a rank-1 linear form of 𝑛 dimensions [14]:

𝐾
𝑖
(𝑋) = 𝑘

𝑖,0
⋅ 𝑥
0
+ 𝑘
𝑖,1
⋅ 𝑥
1
+ ⋅ ⋅ ⋅ + 𝑘

𝑖,𝑛
⋅ 𝑥
𝑛

(8)

with 𝑘
𝑖,0

̸= 0 for 1 ≤ 𝑖 ≤ 𝑟.
An affine decomposition of𝑓 exists, if and only if an affine

decomposition of 𝑓∗ exists; thus, the decomposition of 𝑓 is
equivalent to decomposing 𝑓∗; with 𝑓∗ being the linear form
associated with 𝑓 in the dual space 𝑅∗

𝑑

, the coefficients 𝐶∗
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Figure 1: Rank-2 symmetric fourth order. (a) The mean error. (b) The weights 𝜆 of the rank-1 tensors. Horizontal axes (a-b): the separation
angles from 90

∘ to 0∘.

of 𝑓∗ are then calculated from the coefficients 𝐶 of 𝑓 [14] as
follows:

𝐶
∗

𝑗0 ,𝑗1,...,𝑗𝑛

=
𝑗
0
!𝑗
1
! . . . 𝑗
𝑛
!

𝑑!
× 𝐶
𝑗0 ,𝑗1,...,𝑗𝑛

. (9)

𝑓
∗ is obtained by unhomogenizing 𝑓∗ according to the

variable 𝑥
0
; this is done by dividing each monomial of the

homogenous polynomial 𝑓∗ by an appropriate power of 𝑥
0
.

Thus, 𝑓∗ is a nonhomogenous polynomial of degree 𝑑.
The necessary and sufficient existence conditions of the

decomposition are based on the rank conditions of the
Hankel matrix and the commutation properties. The Hankel
matrix is a𝑁 ×𝑁matrix with

𝑁 =
(𝑛 + (𝑑 − 1))!

𝑑! (𝑛 − 1)!
. (10)

𝑁 corresponds to the number of unique coefficients of a 𝑑-
order symmetric tensor of 𝑛 dimensions. The elements of
the Hankel matrix are computed from the coefficients 𝐶∗ of
𝑓
∗; we note that the elements corresponding to monomials

with total degree higher than the polynomial degree 𝑑 are
unknown.Weprovide an appendix (Appendix section)where
we give an example of a step by step decomposition of a 3
dimensional 4th order tensor of rank-4, illustrating how the
Adecomp-SHOT algorithm works and particularly we show
in Step 2 of the Appendix section how the Hankel matrix is
constructed from a homogenous polynomial.

To obtain the points 𝑘
𝑖
of (8), we calculate from the

Hankel matrix the multiplication matrix 𝑀
𝑖
as described

in Step 5 of Algorithm 2, with 𝑖 = 1, . . . , 𝑟, for a given
rank 𝑟; then we resolve the generalized eigenvalue problem
and we deduce the weights 𝜆

𝑖
by simply resolving a linear

system. The readers can refer to the example given in the
Appendix section for much more details. The critical part
of Algorithm 2 is the step of extending the Hankel matrix,
Step 6 of Algorithm 2, to verify the stability of the rank

in case of higher ranks. Indeed, when the Hankel matrix
is not totally defined, the extension requires finding the
unknown parameters ℎ of the Hankel matrix satisfying the
commutation properties of the multiplication matrix 𝑀

𝑙
⋅

𝑀
𝑚
− 𝑀
𝑚
⋅ 𝑀
𝑙
= 0 with 𝑙, 𝑚 = 1, . . . , 𝑛; this leads to solving

a nonlinear equations system.Therefore, for higher ranks the
uniqueness of the decomposition is not guaranteed.

Inverse Problem. Once again, we have simulated an inverse
problem, this time for the Adecomp-SHOT algorithm; thus,
rank-2 fourth order tensors were constructed from a sum of
two rank-1 linear forms of order four, as described in (7).
We have simulated the same configuration as in Section 2.2.1
by constructing the fourth order tensors from two crossing
rank-1 linear forms at varying angles from 90

∘ to 0∘ and
weighted by the same weight 𝜆 = 0.5. Our results of the
intrinsic study of the analytical decomposition method are
thus given in Figure 2.

Contrarily to the CP-decomposition, the analytical
approach clearly renders the correct decomposition whatever
the separation angles. As shown in Figure 2(a) the obtained
mean error is zero, and the two rank-1 tensors are recovered
with the correct weights 𝜆

1
= 𝜆
2
= 0.5 as represented

in Figure 2(b). Furthermore, the analytical decomposition is
minimal; that is, the rank of the tensor is automatically found
without any assumption such that it is required for the CP-
decomposition. To confirm the ability of the method to give
always a minimal decomposition regardless of the rank of
the tensor, further tests on higher rank tensor have been
conducted; Figure 3 shows the results of decomposing a rank-
3 symmetric fourth order tensor constructed from 3 crossing
rank-1 tensors, according to (7), at angles decreasing from
90
∘ to 0∘. Figure 3 shows that the Adecomp-SHOT method

gives once again a correct decomposition with a zero mean
error whatever the separation angles between the 3 origin
rank-1 tensors. Other tests on symmetric fourth order tensors
of rank-4 and rank-5 have been conducted; the results of
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Data: An homogenous polynomial 𝑓(𝑋) of degree 𝑑.
Result: 𝑓(𝑋) = ∑𝑟

𝑗=1

𝜆
𝑗

𝐾(𝑋)
𝑑 with 𝑟minimal.

(1) Calculate coefficients of 𝑓∗ ∈ 𝑅∗
𝑑

from those of
𝑓 ∈ 𝑅

𝑑

.
(2) Construct the Hankel matrix𝐻(𝑁 ×𝑁) from the
coefficients of 𝑓∗.
(3) if all the (2 × 2) minors of 𝐻 are zero then

𝑟 = 1 (tensors rank)
else
𝑟 = 2.

Repeat
(4) Compute from𝐻 a square sub-matrix Δ of
dimension (𝑟 × 𝑟) corresponding to a monomials
basis 𝐵 of degree ≤ 𝑑 connected one
of size |𝐵| = 𝑟. and its extension Δ+ of dimension
((𝑟 + 1) × (𝑟 + 1)) corresponding to
the monomials basis 𝐵+ of size |𝐵+| = 𝑟 + 1,
which is the extension of 𝐵.
(5) Compute the matrix Δ

𝑥𝑖
corresponding to

the monomials basis 𝐵multiplied by 𝑥
𝑖

for
𝑖 = 1, . . . , 𝑛 and the multiplication matrix

𝑀
𝑖

= Δ
𝑥𝑖
(Δ)
−1

(6) Find the parameters ℎ such that det(Δ) ̸= 0

and the matrix𝑀
𝑖

commute.
if solutions ℎ exist then

Calculate the rank 𝑅
Δ

of Δ and 𝑅+
Δ

the rank of Δ+.
if 𝑅
Δ

== 𝑅
+

Δ

then
𝑟 = 𝑅

Δ

else
𝑟 = 𝑟 + 1; Repeat Step 4.

else
𝑟 = 𝑟 + 1; Repeat Step 4.

Until the eigenvalues of ∑𝑛
𝑖=1

𝑎
𝑖

𝑀
𝑖

are simples
with arbitrary real 𝑎

𝑖

;
(7) Calculate the 𝑛 × 𝑟 eigenvalues 𝑘

𝑖,𝑗

of the common
eigenvectors V

𝑗

of the multiplication matrix𝑀
𝑖

such
that𝑀

𝑖

⋅ V
𝑗

= 𝑘
𝑖,𝑗

⋅ V
𝑗

, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑟.
(8) Then solving the linear system in (𝜆

𝑗

)
𝑗=1,...,𝑟

:

𝑓 (𝑥
0

, 𝑥
1

, . . . , 𝑥
𝑛

) =

𝑟

∑

𝑗=1

𝜆
𝑗

(𝑘
0,𝑗

⋅ 𝑥
0

+ ⋅ ⋅ ⋅ + 𝑘
𝑛,𝑗

⋅ 𝑥
𝑛

)
𝑑

where 𝑘
𝑗

are the eigenvalues found in Step 7.

Algorithm 2

these experiences show that theAdecomp-SHOTmethod still
gives the correct decomposition in case of rank-4 while for a
rank-5 fourth order tensors the decomposition is found with
insignificant angular error not exceeding 0.5∘. However, by
increasing the order of the tensor from 4 to 6 the error drops
to zero.

2.3. Fiber Directions from Diffusion Data Using the Analytical
Decomposition of FourthOrder Tensor. In this sectionwe pro-
pose to extract the fibers orientations from the dMRI signal
by decomposing analytically the three dimensional fourth
order CT-FOD using the Adecomp-SHOT. The coefficients
of the fourth order FOD are estimated from the dMRI data as

described in Section 2.1.Thus,we are interested to decompose
the Cartesian FOD tensor in sum of powers of rank-1 linear
forms:

𝑓 (𝑔) =

𝑟

∑

𝑖=1

𝜆
𝑖
𝐾
𝑖
(𝑔)
4 (11)

with 𝑟 minimal representing the tensor rank; 𝐾
𝑖
are rank-1

linear forms in 3 variables with the real normalized coeffi-
cients [𝑘

𝑖,0
, 𝑘
𝑖,1
, 𝑘
𝑖,2
], and 𝜆

𝑖
are the real positive weights.

The normalized coefficients of𝐾
𝑖
represent the Cartesian

coordinates of the fibers orientations, weighted by the scalar
𝜆
𝑖
, and 𝑟 represents the number of crossing fibers bundles in

each voxel.
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Figure 2: Rank-2 symmetric fourth order. (a) Blue: the mean error. (a) Red: the number of detected rank-1 tensors. (b) The weights 𝜆 of the
rank-1 tensors. Horizontal axes (a-b): the separation angles from 90

∘ to 0∘.
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Figure 3: Rank-3 symmetric fourth order. (a) Blue: the mean error. (a) Red: the number of detected rank-1 tensors. (b) The weights 𝜆 of the
rank-1 tensors. Horizontal axes (a-b): the separation angles from 90

∘ to 0∘.

However, as described in Section 2.2.2 the affine decom-
position of a homogenous polynomial of any order and any
dimension is done assuming that all coefficients of the first
Cartesian coordinate in the decomposition are nonzero; that
is, 𝑘
𝑖,0

̸= 0, for 1 ≤ 𝑖 ≤ 𝑟, with 𝑟 the tensor rank.
This constraint implies that only fiber orientations whose
first coordinate coefficient is nonzero can be detected. To
avoid missing fiber orientations, we propose to introduce a
coordinate changing in case where maxima are located in
undetectable area. Also, not doing this coordinate transfor-
mation systematically and imposing a stopping criterion, we

propose to make a first exhaustive search on the FOD by
discretizing it on unit sphere and then localize roughly its
maxima. A given FOD function 𝑓(𝑔), with 𝑔 the gradient
of the magnetic field, can be discretized on units sphere as
follows:

𝑓 (𝑔) =

𝑁



∑

𝑗=1

𝑝
𝑗
𝑓
𝑗
(V𝑗
1

, V𝑗
2

, V𝑗
3

) (12)

with 𝑁 the number of samples; 𝑝
𝑗
𝑓
𝑗
is a rank-1 fourth

order tensor constructed in the orientation (V𝑗
1

, V𝑗
2

, V𝑗
3

) and
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represents the value of the FOD in this orientation, and the
3 dimensional unit vectors V

𝑗
are obtained by a uniform

tessellation of unit sphere. Thus, the 𝑝
𝑗
are found by solving

the linear system 𝐵 = 𝑊𝑃, with𝑊 representing a vector of
𝑁
 weights𝑝

𝑗
,𝐵 vectors of 15 unique coefficients of the fourth

order tensor FOD and 𝑃 a (15 × 𝑁) matrix; 𝑃 contains the
15 unique coefficients of the 𝑁 rank-1 fourth order tensor
constructed from unit vectors V. Once the FOD is discretized,
we check the first coordinate of the FOD values weighted
by 𝑝
𝑗
< (0.5 × 𝑝max) corresponding to the FOD lobes,

and we make a coordinate changing before decomposing
the tensor if these coordinates are close to zero. Obviously,
after decomposition, the inverse coordinate transformation
is required to bring back the resulted rank-1 tensor to the
origin coordinate system. In order to preserve the angles
between two vectors and their lengths, the transformation
matrix should be orthogonal. Therefore, to preserve the fiber
orientations we use a rotation transformation; considering
the initial coordinates or variables 𝑋 = [𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
], 𝑋 =

[𝑥


0

, 𝑥


1

, . . . , 𝑥


𝑛

] is obtained from 𝑋 by the following linear
transformation:

𝑥


0

= 𝑎
11
𝑥
0
+ 𝑎
12
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑎

1𝑛
𝑥
𝑛

𝑥


1

= 𝑎
21
𝑥
0
+ 𝑎
22
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑎

2𝑛
𝑥
𝑛

...

𝑥


𝑛

= 𝑎
𝑛1
𝑥
0
+ 𝑎
𝑛2
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛𝑛
𝑥
𝑛

𝑋


= 𝑀 × 𝑋

(13)

As mentioned, the matrix 𝑀 is an orthogonal matrix or
a rotation matrix. This coordinate transformation can be
done either on the homogenous polynomial as a change
of variable using a rotation transformation or simply by
rotating the fourth order tensor coefficients. This coordinate
transformation insures recovering the entire crossing fibers
whatever its locations in the Cartesian space.

The Adecomp-SHOT as initially described in [14] would
provide a minimal decomposition with a minimal analytical
rank, without any constraints on the weights 𝜆

𝑖
or 𝐾
𝑖
values;

in theory this is not a problem, but when we are interested
in detecting the fibers orientations, negatives values for
the weights or complexes coefficients do not correspond to
any physical meaning. To overcome this limit, we propose
ignoring the𝐾

𝑖
with complexes coefficients found at Step 7 of

Algorithm 2 and then solve the linear system (14) with only
the linear forms𝐾

𝑖
with real coefficients:

𝑓 (𝑔) ≈

𝑟



∑

𝑖=1

𝜆
𝑖
𝐾
𝑖
(𝑔)
4 (14)

𝑟


≤ 𝑟 represents the tensor rank and 𝐾
𝑖
∈ 𝑅
4
. This linear

system can be written as a matrix equation 𝐵 = 𝑊𝐴, with𝑊
a vector of length 𝑟 containing the fibers weights 𝜆

𝑖
and 𝐴 is

a (𝑟 × 15) matrix containing the polynomials coefficients of
the rank-1 linear forms 𝐾

𝑖
(𝑔)
4 of order 4 and 𝐵 is a vector

of length 15 containing the coefficients of the fourth order

fiber orientation distribution function 𝑓(𝑔). To impose the
positivity constraint on the weights 𝜆

𝑖
values, we propose to

solve the minimization problem 2.17 using the well-known
Lawson and Hansons NNLS algorithm [15]:

min
𝑤

‖𝐵 −𝑊𝐴‖
2

. (15)

However, to verify that a set of 𝜆
𝑖
> 0 such that 𝑓(𝑔) ≈

∑
𝑟



𝑖=1

𝜆
𝑖
𝐾
𝑖
(𝑔)
4 exists we check the norm ‖𝐵 −𝑊𝐴‖

2; if the
residual norm is less than 1, we assert that it is sufficient to
consider the resulted decomposition accurately and the 𝐾

𝑖

weighted by 𝜆
𝑖
> 0 correspond to the maxima of 𝑓(𝑔); else,

we propose to relaunch the decomposition by doing a change
of coordinates. This trick allows imposing the positivity
constraint and increasing the accuracy of the decomposition.

Finally, to take into account the effect of the noise due to
the diffusion model, we have introduced a heuristic cleaning
that consists in removing all the fiber orientations weighted
by 𝜆
𝑖
≤ 0.1𝜆max and merging fibers separated by angle 𝛼 ≤

15
∘ [20].

3. Results and Discussion

To validate our proposed crossing fibers detection method,
we conduct many tests, first on synthetic diffusion dataset
simulated with a multitensor model with 60 gradient direc-
tions and a 𝑏-value of 3000 s/mm2; these data represent
crossing fibers with variable separating angles from 90

∘ to
0
∘. On these synthetic diffusion data we have compared
our method to other methods in literature such as CP-
decomposition based method and the Z-eigenvalues based
approach; the results of this comparison are illustrated in
Figure 4.Then, the synthetic dataset is corruptedwith a rician
noise of different signal to noise ratio (SNR = 40, 30, 20, and
10); 100 trials of noise are performed for each SNR level and
for each separating angle; the results of the effect of a rician
noise are presented in Figures 5 and 6 and Table 1. Finally,
ourmethod is tested on phantom and on in vivo human brain
diffusion data as illustrated in Figures 7 and 8.

3.1. Validations on Synthetic Diffusion Dataset

Comparison with CP-Decomposition and Z-Eigenvalues Based
Approaches. In order to compare the angular resolution of our
fiber extraction approach to the one of the CP-decomposition
and the Z-eigenvalues based methods, we have conducted
experiments on same noise-free synthetic diffusion dataset.
From these data we reconstruct the fourth order CT-FODs
and then we extract the maxima of the CT-FODs using
the CP-decomposition, the Z-eigenvalues approach, and our
proposed Adecomp-SHOT based approach. As it is required
by the CP-decomposition, to decompose the fourth order
CT-FOD we set the low-rank of the decomposition approx-
imation to 2; that is, we assume that we know the number
of fibers in the voxel. We recall that rather than the CP-
decomposition our Adecomp-SHOT based approach does
not require predefining the rank of the decomposition, that
is, not require knowing a priori the number of fibers in the
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Figure 4: Free-noise synthetic diffusion data: (a) solid lines: mean error in degree; (a) black dot: the number of detected fibers by the
Adecomp-SHOT based approach. (b) The weights 𝜆. (a-b) Red: the Z-eigenvalues based approach; green: the CP-decomposition based
approach; blue: the Adecomp-SHOT based approach. Horizontal axes (a-b) represent the separation angles from 90

∘ to 0∘.

voxel. Moreover, to insure roughly the convergence of the
ALS algorithm used by PARAFAC we initialize it by the
eigenvectors of each mode of the fourth order tensor. This
initialization is possible only for lower ranks up to 3, because
the tensor is of dimension 3 and contains only 3 modes; for
higher ranks, the initialization will be random which do not
insure the convergence of the algorithm.

Figure 4 illustrates the results obtained by the CP-
decomposition, the Z-eigenvectors, and the Adecomp-SHOT
based approach. From Figure 4 we clearly notice that the
tensor decomposition methods have a better angular reso-
lution than the Z-eigenvalues classical method which is not
able to recover crossing fibers orientations at angles below
60
∘. The results show too that if we assume that the number

of fibers is a priori known, then both of CP-decomposition
and Adecomp-SHOT based method are equivalent in terms
of angular resolution and accuracy. Nevertheless, the CP-
decomposition remains limited by the constraint of predefin-
ing the rank and by the convergence of the ALS algorithm.
The proposed Adecomp-SHOT based approach efficiently
solves these problems without loss of angular resolution or
accuracy. With an order of tensors not exceeding four and
without predefining the number of fibers in a voxel, the fiber
orientations are recovered with an angular resolution limit of
30
∘ and a mean error less than 4∘ up to separation angles of

36
∘.

The Effect of a Rician Noise. The most important aspect of
the Adecomp-SHOT based method is its ability to render
the number of fibers automatically without any assumption;
therefore, we evaluate in 100 experiences on noisy synthetic
data the success rate of our approach in detecting the number
of crossing fiber bundles for different crossing angles. The
synthetic data are corruptedwith a Rician noise with different

SNR levels of 40, 30, 20, and 10; the results are summarized
in Table 1. Furthermore, in order to compare our results with
the state-of-the-art, we conduct the same experiences for each
of the CP-decomposition and the Z-eigenvalue approaches.
The results in Table 1 show that up to a crossing angle of
48
∘ in case of SNR 30 the success rate of our method is of

100%; this rate slightly decreases for a crossing angle of 42∘
where the correct number of fibers is rendered at 95%, and
for a crossing angle of 36∘ the success rate is of 41%. Notice
that, even in case of low signal to noise ratio SNR = 20, the
correct number of fibers is found with a rate of 99% up to
crossing angle of 48∘, and for a really low SNR level of 10 the
success rate is higher than 72%up to a separation angle of 54∘.
These results prove that the ability of the Adecomp-SHOT
method to find automatically the number of fibers is not
highly sensitive to noise. Thus, our Adecomp-SHOT based
method is really reliable when we aim to detect the number
of underlying fibers, even in case of really low SNR levels. For
comparison, results about the number of fibers rendered by
the CP and the Z-eigenvalues methods are too represented
in Table 1; we can notice from these results that even if the
number of fibers is automatically recovered by the Adecomp-
SHOT approach, the success rate does not highly differ from
the success rate of the CP-decomposition where the number
of fibers constitutes an input parameter.

To evaluate the effect of noise on the accuracy of our
Adecomp-SHOTbased approachwe represent on the left col-
umn of Figures 5 and 6 the mean and the standard deviation
of the mean error between the recovered fiber orientations
and the ground truth fiber orientations, corresponding to
different SNR levels, and on the right column of Figures 5
and 6 we represent the mean and standard deviation of the
fiber weights 𝜆; figures on the center column of Figures 5
and 6 represent the mean and the standard deviation of the
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Figure 5: Noisy synthetic data with SNR 40 and 30: (a, b, and c) SNR 40 and (d, e, and f) SNR 30. (a, d)Themean and the standard deviation
of the mean error; (b, e) the mean and the standard deviation of the fiber weights 𝜆; (c, f) the mean and the standard deviation of the number
of detected fibers. Horizontal axes (a–f) the separation angles from 90

∘ to 0∘.

number of detected fibers. Once again, in order to compare
our approach to other classical and state-of-the-art methods,
results for each of our Adecomp-SHOT based approach CP
and Z-eigenvalues approaches are illustrated on Figures 5 and
6. As in the free-noise case, Figures 4(a) and 4(b), for SNR
= 40, Figures 5(a)–5(c), the method recovers effectively the
entire simulated fiber orientations with an angular resolution

limit equal to 30∘ and up to a separation angle of 36∘ the
two crossing fibers are detected with a slight increase in the
mean error but the mean of the mean error remains less than
9
∘ as it is shown by Figure 5(a). While, for SNR 30, Figures
5(d)–5(f), the angular resolution limit is somewhat reduced
and its value is between 36∘ and 30∘ with a mean of the
mean error not exceeding 8∘ for a separating angle of 42∘ as
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Figure 6: Noisy synthetic data with SNR 20 and 10: (a, b, and c) SNR 20 and (d, e, and f): SNR 10. (a, d)Themean and the standard deviation
of the mean error; (b, e) the mean and the standard deviation of the fiber weights 𝜆; (c, f) the mean and the standard deviation of the number
of detected fibers. Horizontal axes (a–f) the separation angles from 90

∘ to 0∘.

shown in Figure 5(d); we notice that even when the SNR level
equals 30, the angular resolution limit is still better than the
angular resolution limit of the classical maxima localization
methods in the free-noise case. For a low signal to noise ratio
of 20, Figures 6(a)–6(c), the method still recovers the fiber
orientations with an angular limit between 36∘ and 42∘ and

the mean error remains inferior to 8∘ for a crossing angle of
48
∘. Up to SNR level of 20 the results of each of the Adecomp-

SHOT and CP methods are equivalent in terms of angular
resolution and accuracy if we assume the number of fiber
known. Concerning the Z-eigenvalues approach, the results
on Figure 5 confirm that even in case of a high SNR level
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Table 1: Success rate (%) in detecting the number of crossing fiber bundles, results of 100 simulations of noise for each crossing angle and for
each SNR level.

Separation angle
90
∘

84
∘

78
∘

72
∘

66
∘

60
∘

54
∘

48
∘

42
∘

36
∘

30
∘

SNR Method

40
Adecomp-SHOT 100% 100% 100% 100% 100% 100% 100% 100% 100% 68% 3%
CP-decomp. 100% 100% 100% 100% 100% 100% 100% 100% 100% 61% 1%
Z-eigenvalues 100% 100% 99% 99% 90% 11% 0%

30
Adecomp-SHOT 100% 100% 100% 100% 100% 100% 100% 100% 95% 41% 4%

CP-decomp 100% 100% 100% 100% 100% 100% 100% 100% 94% 39% 3%
Z-eigenvalues 100% 100% 98% 100% 74% 11% 0%

20
Adecomp-SHOT 99% 99% 99% 99% 98% 99% 98% 99% 77% 33% 8%

CP-decomp 100% 100% 100% 100% 100% 100% 100% 99% 74% 34% 4%
Z-eigenvalues 99% 100% 100% 99% 72% 24% 0%

10
Adecomp-SHOT 96% 82% 88% 82% 80% 81% 72% 67% 54% 36% 27%

CP-decomp 100% 100% 100% 100% 100% 100% 99% 92% 80% 67% 55%
Z-eigenvalues 100% 99% 98% 95% 73% 47% 0%

(a) (b)

Figure 7: (a) Fourth order CT-FODs reconstructed from FiberCup data. (b) Fiber directions corresponding to the fourth order CT-FODs
maxima extracted using the Adecomp-SHOT based approach.

the Z-eigenvalues method clearly fails to recovers crossing
fiber orientationswhen the separation angle is lower than 60∘.
Furthermore, additional tests are performed with really low
SNR level of 10 to evaluatemuchmore the robustness to noise.
The results are represented in Figures 6(d)–6(f) and show that
in case of SNR 10 the angular resolution of our method is
between 48∘ and 54∘ where the correct number of fibers is
rendered at more than 67% (Table 1) with amean of themean
error not exceeding 16∘ for a separation angle of 48∘ while
for the same separation angle the CP-decomposition method
has a mean of the mean error higher than 21∘. These results
prove that our proposed Adecomp-SHOT based approach is
effective and robust to noise.

3.2. Phantom Diffusion Dataset. We conduct other exper-
iments on the FiberCup phantom data acquired at 𝑏 =

2000 s/mm2 with 64 acquisitions [21, 22] downloaded from
the computer-assisted neuroimaging laboratory (LNAO)
link: http://www.lnao.fr/spip.php?article112.The fourth order
tensor is estimated from the phantom data using the

CT-FOD algorithm and represented by spherical function
in Figure 7(a). The recovered fiber directions are plotted on
Figure 7(b).The results show that our Adecomp-SHOTbased
approach is able to render the fiber bundle directions.

3.3. In Vivo Human Cerebral Dataset. We conduct further
tests, on real dataset obtained from the Stanford University
[23] link: http://purl.stanford.edu/yx282xq2090. These data
were acquired with 160 gradient directions with a 𝑏-value of
2000 s/mm2; the thickness of slice is 2mm. The CT-FODs of
fourth order are estimated from these data and decomposed
with the Adecomp-SHOT; Figures 8(a) and 8(b) show the
fourth order CT-FODs and the fiber directions, respectively.
On a coronal slice, Figure 8 shows that the method reliably
extracts the Corpus Collum (CC), the Corticospinal Tractu
(CST), the Cingulum (CG), and the Superior Longitudinal
Fasciculus (SLF). Two regions representing the CC, CST, and
SLF intersections are highlighted onFigures 8(c) and 8(d) and
show the ability of our approach to extract crossing fiberswith
a high angular resolution.
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(a)

SLF

CST

CG

CC

SLF

CST

(b)

(c) (d)

Figure 8: (a) Fourth order CT-FODs are reconstructed from in vivo human cerebral dataset and represent the Corpus Collum (CC),
the Corticospinal Tract (CST), the Cingulum (CG), and the Superior Longitudinal Fasciculus (SLF) on a coronal slice; the CT-FODs are
superposed on the rawdiffusion signal. (b) represents the fiber directions (colored according to their directions) extracted using theAdecomp-
SHOT based approach. Yellow and red highlighted areas are, respectively, zoomed in (c) and (d).

4. Conclusion

In this paper, we have proposed an Adecomp-SHOT based
approach to extract the fiber directions from DW-MRI
data. Till now, the CP-decomposition approach constitutes
the state-of-the-art of the tensor decomposition applied to
the fiber directions search in dMRI. Although the CP-
decomposition method provides a better angular resolution
and accuracy than the classical methods of maxima localiza-
tion, this numerical method is suboptimal and suffers from
two important inconveniences: the inability to ensure the
convergence of the algorithm and the requirement to pre-
defining the rank of the decomposition, that is, the number of
fibers in the voxel. Thus, to overcome the considerable limits
related to the CP-decomposition approach in the diffusion
MRI, we propose a novel approach based on an analytical
decomposition of symmetric high order tensor to extract
the fiber directions in dMRI. Unlike CP-decomposition, our
proposed approach is able to recover the entire crossing
fiber directions whatever its number and that without any
assumption. To exploit the Adecomp-SHOT on diffusion
dataset and to take into account the ground truth properties
of the diffusion, we imposed a real and nonnegative con-
straint by using the NNLS algorithm and by introducing a
change of variables. The change of variables was done by a
rotation transformation to preserve the fiber directions. This
coordinate transformation permitted to overcoma significant
constraint imposed by the original Adecomp-SHOT. Indeed,
the Adecomp-SHOT, as initially described, enables to extract
directions in the affine space whose first Cartesian coordi-
nates are zero, but by using optimally the transformation
coordinates, the entire fibers directions are recovered what-
ever its positions in the affine space. Different validations
tests were conducted on synthetic noisy diffusion data,
phantom, and real data. The tests on synthetic dataset have
shown three principal advantages. (1) The Adecomp-SHOT
based approach overcomes the limits related to CP-decomp

osition without loss in the angular resolution and angular
accuracy. (2) Our approach is efficient, accurate, and robust
to noise: for SNR equal to 30 our Adecomp-SHOT based
approach has an angular resolution limit < 36∘ and up to 42∘
the mean of the mean error does not exceed 8∘. (3)The rician
noise does not really affect the ability of the method to detect
the number of fibers in a voxel; indeed, up to a crossing angle
of 48∘ for a low SNR equal to 20 the correct number of fibers
is found at 99%. Finally, the tests conducted on phantom and
real data confirm the ability of the method to reliably extract
the directions of fiber bundles especially in regions where
many fiber bundles intersect.

Appendix

As described by (7) of Section 2.2.2, the affine and minimal
decomposition of a rank-4 polynomial 𝑓 of degree 4 in 3
variables is given by the following form:

𝑓 (𝑥
0
, 𝑥
1
, 𝑥
2
) =

4

∑

𝑗=1

𝜆
𝑗
𝐾
𝑗
(𝑥
0
, 𝑥
1
, 𝑥
2
)
4

,

𝐾
𝑗
(𝑥
0
, 𝑥
1
, 𝑥
2
) = 𝑘
𝑗,0
⋅ 𝑥
0
+ 𝑘
𝑗,1
⋅ 𝑥
1
+ 𝑘
𝑗,2
⋅ 𝑥
2
.

(A.1)

According to (A.1), we generate a 4th order tensor of rank-
4 in 3 dimensions from 4 crossing vectors 𝑘

𝑗
separated with

angle of 63.43∘; these vectors 𝑘
𝑗
, given below, are uniformly

distributed on the unit sphere and weighted with the same
weights 𝜆

𝑗
= 0.25. Consider



𝑘
1

𝑘
2

𝑘
3

𝑘
4

0.00623 −0.4 0.79 0.6367

0.0644 −0.828 0.385 −0.6531

−0.998 0.392 0.478 0.41



. (A.2)
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The resulted tensor is represented by the polynomial 𝑓 given
by

𝑓 (𝑥
0
, 𝑥
1
, 𝑥
2
) = 0.145𝑥

4

0

+ 0.0739𝑥
3

0

𝑥
1
+ 0.316𝑥

3

0

𝑥
2

+ 0.563𝑥
2

0

𝑥1
2

− 0.137𝑥
2

0

𝑥
1
𝑥
2
+ 0.353𝑥

2

0

𝑥
2

2

+ 0.095𝑥
0
𝑥
3

1

+ 0.179𝑥
0
𝑥
2

1

𝑥
2
+ 0.153𝑥

0
𝑥
1
𝑥
2

2

+ 0.0998𝑥
0
𝑥
3

2

+ 0.169𝑥
4

1

− 0.31𝑥
3

1

𝑥
2

+ 0.323𝑥
2

1

𝑥
2

2

− 0.117𝑥
1
𝑥
3

2

+ 0.274𝑥
4

2

.

(A.3)

In the following, we propose to illustrate how the Adecomp-
SHOT algorithm works by decomposing the homogenous
polynomial 𝑓 given in (A.3) step by step. 𝑓 will be thus
decomposed in a minimal sum of 4th order rank-1 terms
as described in (A.1), and at the end we expect to find
the vectors 𝑘

𝑗
given in the equation (A.2) and the weights

𝜆
𝑗
= 0.25. An affine decomposition of 𝑓 exists, if and

only if an affine decomposition of 𝑓∗ exists; decomposing
𝑓 is then equivalent to decomposing 𝑓

∗, which is the
unhomogenization of 𝑓 in the dual space; then, the first step
of the Adecomp-SHOT algorithm is the computation of the
coefficients 𝐶∗ of 𝑓∗ from the coefficients 𝐶 of 𝑓.

Step 1. Consider computation of the coefficients 𝐶∗ of 𝑓∗

from the coefficients 𝐶 of 𝑓.
From the coefficients 𝐶 of 𝑓 we compute the coefficients

𝐶
∗ of 𝑓∗ as described in (A.5), with 𝑓∗ the associated linear

form of 𝑓 in the dual space 𝑅∗
4

.
Consider a general form of a 4th order tensor of dimen-

sion 3 given by

𝑓 (𝑥
0
, 𝑥
1
, 𝑥
2
) = ∑

𝑎+𝑏+𝑐=4

𝐶
𝑎,𝑏,𝑐
𝑥
𝑎

0

𝑥
𝑏

1

𝑥
𝑐

2

, (A.4)

𝐶
∗

𝑎,𝑏,𝑐

=
𝑎!𝑏!𝑐!

4!
× 𝐶
𝑎,𝑏,𝑐
. (A.5)

From the expression of 𝑓 in (A.3) we deduce the coefficients
𝐶 of 𝑓 and by the relation (A.5) we calculate the coefficients
𝐶
∗ of 𝑓∗ from the coefficients 𝐶:

𝐶 = [0.145, 0.0739, 0.316, 0.563,

− 0.137, 0.353, 0.095, 0.179, 0.153, 0.0998, 0.169,

− 0.31, 0.323, −0.117, 0.274] ,

𝐶
∗

= [0.145, 0.0185, 0.079, 0.0938, − 0.0115, 0.0588,

0.0238, 0.0149, 0.0127, 0.0249, 0.169,

−0.0775, 0.0538, −0.0292, 0.274] .

(A.6)

Then, the associated linear form 𝑓
∗ of 𝑓 in the dual space 𝑅∗

4

is given by the following expression:

𝑓
∗

= 0.145𝑥
4

0
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3

0

𝑥
1
+ 0.079𝑥

3
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𝑥
2
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2

0

𝑥
2
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𝑥
2
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𝑥
2
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𝑥
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4
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− 0.0775𝑥
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1

𝑥
2

+ 0.0538𝑥
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𝑥
2

2

− 0.0292
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𝑥

𝑥
3

2

+ 0.274𝑥
4

2

.

(A.7)

Computing 𝑓∗ by unhomogenizing 𝑓∗ according to 𝑥
0
,

𝑓
∗

= 0.145 + 0.0185𝑥
1
+ 0.079𝑥

2

+ 0.0938𝑥
2

1
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1
𝑥
2
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2
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3
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2
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𝑥
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+ 0.0249𝑥
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(A.8)

The nonhomogenous basis of monomial is given by 𝐵:

𝐵 = [1, 𝑥
1
, 𝑥
2
, 𝑥
2

1

, 𝑥
1
𝑥
2
, 𝑥
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, 𝑥
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, 𝑥
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𝑥
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2

, 𝑥
1
𝑥
3
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, 𝑥
4

2

] .

(A.9)

And the coefficients 𝐶∗ of 𝑓∗ are the same as the coefficients
𝐶
∗ of 𝑓∗:

𝐶
∗

= [0.145, 0.0185, 0.079, 0.0938, −0.0115, 0.0588,

0.0238, 0.0149, 0.0127, 0.0249, 0.169,

− 0.0775, 0.0538, −0.0292, 0.274] .

(A.10)

Step 2. Construct the Hankel matrix 𝐻 of size (𝑁 × 𝑁)

(Table 3) from𝑓∗; we notice that the elements corresponding
to monomials with total degree higher than the polynomial
degree 4 are unknown:

𝐻(𝑙,𝑚) = 𝐶
∗

𝑏𝑙+𝑏𝑚 ,𝑐𝑙+𝑐𝑚

if 𝑏
𝑙
+ 𝑏
𝑚
+ 𝑐
𝑙
+ 𝑐
𝑚
≤ 4

𝐻 (𝑙, 𝑚) = ℎ
𝑏𝑙+𝑏𝑚 ,𝑐𝑙+𝑐𝑚

(unknown) else
(A.11)

with 𝑙, 𝑚 = 1, . . . , 𝑁, the number of rows and
columns, respectively, of the Hankel matrix 𝐻, and
𝐶
∗

𝑏𝑙+𝑏𝑚 ,𝑐𝑙+𝑐𝑚

corresponding to the monomial 𝑥𝑏𝑙+𝑏𝑚
1

𝑥
𝑐𝑙+𝑐𝑚

2

.
We denote by𝑁 the number of unique coefficients in the

tensor;𝑁 is a function in the order 𝑑 and dimension 𝑛 and is
calculated by

𝑁 =
(𝑛 + (𝑑 − 1))!

𝑑! (𝑛 − 1)!
. (A.12)

In our case 𝑑 = 4 and 𝑛 = 3, then𝑁 = 15.
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Table 2: The (11 × 11) part of the Hankel matrix constructed from the coefficients 𝐶∗ of 𝑓∗.

1 𝑥
1

𝑥
2

𝑥
2

1

𝑥
1

𝑥
2

𝑥
2

2

𝑥
3

1

𝑥
2

1

𝑥
2

𝑥
1

𝑥
2

2

𝑥
3

2

𝑥
4

1

1 0.145 0.0185 0.079 0.0938 −0.0115 0.0588 0.0238 0.0149 0.127 0.0249 0.169

𝑥
1

0.0185 0.0938 −0.0115 0.0238 0.0149 0.0127 0.169 −0.0775 0.0538 −0.0292 ℎ 50

𝑥
2

0.079 −0.0115 0.0588 0.0149 0.0127 0.169 −0.0775 0.0538 −0.0292 0.0274 ℎ 41

𝑥
2

1
0.0938 0.0238 0.0149 0.0169 −0.0775 0.0538 ℎ 50 ℎ 41 ℎ 32 ℎ 23 ℎ 60

𝑥
1

𝑥
2

−0.0115 0.0149 0.0127 −0.0775 0.0538 −0.00292 ℎ 41 ℎ 32 ℎ 23 ℎ 14 ℎ 51

𝑥
2

2
0.0588 0.0127 0.0249 0.0538 −0.0292 0.274 ℎ 32 ℎ 23 ℎ 14 ℎ 05 ℎ 42

𝑥
3

1
0.0238 0.169 −0.0775 ℎ 50 ℎ 41 ℎ 32 ℎ 60 ℎ 51 ℎ 42 ℎ 33 ℎ 70

𝑥
2

1

𝑥
2

0.0149 −0.0775 0.0538 ℎ 41 ℎ 32 ℎ 23 ℎ 51 ℎ 42 ℎ 33 ℎ 24 ℎ 61

𝑥
1

𝑥
2

2
0.0127 0.0538 −0.0292 ℎ 32 ℎ 23 ℎ 14 ℎ 42 ℎ 33 ℎ 24 ℎ 15 ℎ 52

𝑥
3

2
0.0249 −0.0292 0.274 ℎ 23 ℎ 14 ℎ 05 ℎ 33 ℎ 24 ℎ 15 ℎ 06 ℎ 43

𝑥
4

1
0.169 ℎ 50 ℎ 41 ℎ 60 ℎ 51 ℎ 42 ℎ 70 ℎ 61 ℎ 52 ℎ 43 ℎ 80

Table 3: Hankel matrix structure.

𝑥
𝑏𝑚

1

𝑥
𝑐𝑚

2

⋅ ⋅ ⋅

𝑥
𝑏𝑙

1

𝑥
𝑐𝑙

2

𝐶
∗

𝑏𝑙+𝑏𝑚 ,𝑐𝑙+𝑐𝑚
⋅ ⋅ ⋅

...
...

Table 2 gives a (11 × 11) part of the Hankel matrix
constructed from the coefficients 𝐶∗ of 𝑓∗. We give below an
example onhow to calculate theHankelmatrix elements from
the coefficients 𝐶∗ of the polynomial 𝑓∗ given by (A.8):

𝐻(1, 1) = 𝐶
∗

0,0

corresponding to the monomial 𝑥0
1

𝑥
0

2

;

𝐻(1, 1) = 0.145;

𝐻(2, 4) = 𝐶
∗

3,0

corresponding to the monomial 𝑥3
1

𝑥
0

2

;

𝐻(2, 4) = 0.0238;

𝐻(5, 7) = 𝐶
∗

4,1

corresponding to the monomial 𝑥4
1

𝑥
1

2

;

𝐻(5, 7) = ℎ
41
(unknown);

𝐻(10, 8) = 𝐶
∗

5,1

corresponding to themonomial𝑥5
1

𝑥
1

2

;

𝐻(10, 8) = ℎ
51
(unknown).

Step 3. Check if the polynomial 𝑓 is of rank-1. For that, we
check if all the minors (2 × 2) that we can calculate from 𝐻

are equal to zero. In our case, all the minors (2 × 2) of𝐻 are
not zero; then we set 𝑟 = 2.

Step 4. Find the rank of the tensor iteratively.
For 𝑟 = 2, we compute from 𝐻 a square submatrix Δ of

dimension (𝑟 × 𝑟) corresponding to a monomials basis 𝐵 =
[1, 𝑥
1
] connected to one of size |𝐵| = 𝑟. Consider

Δ =



1 𝑥
1

0.145 0.0185

0.0185 0.0938



1
𝑥
1

(A.13)

and its extension Δ
+ of dimension ((𝑟 + 1) × (𝑟 + 1))

corresponding to the monomials basis 𝐵+ = [1, 𝑥
1
, 𝑥
2
] of size

|𝐵
+

| = 𝑟 + 1, which is the extension of 𝐵. Consider

Δ
+

=



1 𝑥
1

𝑥
2

0.145 0.0185 0.079

0.0185 0.0938 −0.015

0.079 −0.0115 0.0588



1
𝑥
1

𝑥
2

. (A.14)

Since Δ and Δ+ are totally defined, we just have to find the
ranks 𝑅 and 𝑅+ of each of them and verify if the rank remains
stable.

𝑅 = rank(Δ) = 2; 𝑅+ = rank(Δ+) = 3,𝑅 ̸= 𝑅
+; the stability

condition of the rank is not satisfied; then, we increment 𝑟 =
𝑟 + 1.

Repeat for 𝑟 = 3

Δ =



1 𝑥
1

𝑥
2

0.145 0.0185 0.079

0.0185 0.0938 −0.015

0.079 −0.0115 0.0588



1
𝑥
1

𝑥
2

Δ
+

=



1 𝑥
1

𝑥
2

𝑥
2

1

0.145 0.0185 0.079 0.0938

0.0185 0.0938 −0.015 0.238

0.079 −0.0115 0.0588 0.0149

0.0938 0.0238 0.0149 0.169



1
𝑥
1

𝑥
2

𝑥
2

1

.

(A.15)

𝑅 = rank(Δ) = 3; 𝑅+ = rank(Δ+) = 4, 𝑅 ̸= 𝑅
+; the stability

condition of the rank is not satisfied; then, we increment 𝑟 =
𝑟 + 1.

Repeat for 𝑟 = 4

Δ =



1 𝑥
1

𝑥
2

𝑥
2

1

0.145 0.0185 0.079 0.0938

0.0185 0.0938 −0.015 0.238

0.079 −0.0115 0.0588 0.0149

0.0938 0.0238 0.0149 0.169



1
𝑥
1

𝑥
2

𝑥
2

1

(A.16)
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Δ
+

=



1 𝑥
1

𝑥
2

𝑥
2

1

𝑥
1
𝑥
2

0.145 0.0185 0.079 0.0938 −0.015

0.0185 0.0938 −0.015 0.238 0.0149

0.079 −0.0115 0.0588 0.0149 0.0127

0.0938 0.0238 0.0149 0.169 −0.0775

−0.0115 0.0149 0.0127 −0.0775 0.0558



1
𝑥
1

𝑥
2

𝑥
2

1

𝑥
1
𝑥
2

.

(A.17)

𝑅 = rank(Δ) = 4; 𝑅∗ = rank(Δ) = 4,𝑅 = 𝑅
+; the stability

condition of the rank or equivalently the commutation
properties of the multiplication matrix are satisfied.

Step 5. Compute the matrices Δ
𝑥1

and Δ
𝑥2

corresponding
to the monomials basis 𝐵

𝑥1
= [𝑥
1
, 𝑥
2

1

, 𝑥
1
𝑥
2
, 𝑥
3

1

] and 𝐵
𝑥2
=

[𝑥
2
, 𝑥
1
𝑥
2
, 𝑥
2

2

, 𝑥
2

1

𝑥
2
], respectively, and the associated multipli-

cation matrix 𝑀
𝑥1

and 𝑀
𝑥2
, for 𝑟 = 4. The bases 𝐵

𝑥1
and

𝐵
𝑥2

correspond to the monomial basis 𝐵 = [1, 𝑥
1
, 𝑥
2
, 𝑥
2

1

]

multiplied by 𝑥
1
and 𝑥

2
, respectively:

Δ =



1 𝑥
1

𝑥
2

𝑥
2

1

0.145 0.0185 0.079 0.0938

0.0185 0.0938 −0.015 0.238

0.079 −0.0115 0.0588 0.0149

0.0938 0.0238 0.0149 0.169



1
𝑥
1

𝑥
2

𝑥
2

1

Δ
𝑥1
=



𝑥
1

𝑥
2

1

𝑥
1
𝑥
2

𝑥
3

1

0.0185 0.0938 −0.015 0.238

0.0938 0.0238 0.0149 0.0169

−0.0115 0.0149 0.0127 −0.0775

0.0238 0.169 −0.0775 ℎ 50



1
𝑥
1

𝑥
2

𝑥
2

1

Δ
𝑥2
=



𝑥
2

𝑥
1
𝑥
2

𝑥
2

2

𝑥
2

1

𝑥
2

0.079 −0.0115 0.0588 0.0149

−0.0115 0.0149 0.0127 −0.0775

−0.0588 0.0127 −0.0249 0.0538

0.0149 −0.0775 0.0588 ℎ 41



1
𝑥
1

𝑥
2

𝑥
2

1

(A.18)

Constructing the multiplication matrix,

𝑀
𝑥𝑖
= Δ
𝑥𝑖
(Δ)
−1

𝑀
1
=



0 1.0 0 0

0 0 0 1.0

−9.51 2.74 12.7 3.32

8299 − 4.14 × 10
4

× ℎ 50 1.04 × 10.
4

× ℎ 50 − 2088 5.34 × 10
4

× ℎ 50 − 1.07 × 10
4

1.69 × 10.
4

× ℎ 50 − 3377



𝑀
2
=



0 0 0 1.0

−9.51 2.74 12.7 3.32

159.0 −39.9 −205.0 −64.4

−4.14 × 10.
4

× ℎ 41 − 3577.0 1.04 × 10.
4

× ℎ 41 + 897.0 5.34 × 10.
4

× ℎ 41 + 4600.0 1.69 × 10.
4

× ℎ 41 + 1455.0



.

(A.19)

Step 6. Find the parameters ℎ such that det(Δ) ̸= 0 and the
matrix𝑀

𝑥𝑖
commute.

The commutation properties𝑀
𝑥𝑖
𝑀
𝑥𝑗
−𝑀
𝑥𝑖
𝑀
𝑥𝑗
= 0 lead

to 16 nonlinear equations, with only 5 nontrivial equations
to solve; a solution of this problem is [ℎ 41, ℎ 50] =

[−0.0835, 0.2].
Now, we verify if the rank 𝑟 = 4 is effectively the rank

of the tensor by verifying the last condition, which is the
multiplicity of the eigenvalues of ∑𝑛

𝑖=1

𝑎
𝑖
𝑀
𝑖
. Thus, if 𝐿 =

eig(∑𝑛
𝑖=1

𝑎
𝑖
𝑀
𝑖
) are simple with a random real value of 𝑎

𝑖
, then

𝑟 is effectively the rank of the tensor.
𝐿 = [0.8756, 0.4123, −0.3946, −33.9557]; the eigenvalues

𝐿 are simple; then the rank of the tensor is 𝑟 = 4.

Step 7. Solve the generalized eigenvalues problem for rank
𝑟 = 4: calculate the 𝑛 × 𝑟 eigenvalues 𝑘

𝑖,𝑗
of the common

eigenvectors V
𝑖
(:, 𝑗) of the multiplication matrix 𝑀

𝑥𝑖
, with

𝑖 = 0, 1, 2 and 𝑗 = 1, 2, 3, 4:

V
1
=



−0.0052 0.2014 0.7760 0.5389

−0.0536 0.4171 0.3783 −0.5426

0.8302 −0.1974 0.4697 0.3406

−0.5549 0.8640 0.1844 0.5566



V
1
(:, 1) =



−0.0052

−0.0536

0.8302

−0.5549



𝑙
1
=



10.3513 0 0 0

0 2.0715 0 0

0 0 0.4875 0

0 0 0 −1.0258



𝑙
1
= 10.3513.

(A.20)
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V
1
and 𝑙
1
are, respectively, the eigenvectors and the eigenval-

ues of𝑀
𝑥1
. Consider

V
2
=



−0.0052 0.2014 0.7760 0.5389

−0.0536 0.4171 0.3783 −0.5426

0.8302 −0.1974 0.4697 0.3406

−0.5549 0.8640 0.1844 0.5566



V
2
(:, 1) =



−0.0052

−0.0536

0.8302

−0.5549



𝑙
2
=



−160.2909 0 0 0

0 −0.9806 0 0

0 0 0.6053 0

0 0 0 0.6439



𝑙
2
(1, 1) = −160.2909.

(A.21)

V
2
and 𝑙
2
are, respectively, the eigenvectors and the eigenval-

ues of𝑀
𝑥2
.

We construct the elements of the vectors 𝑘
𝑗
from the

eigenvalues 𝑙
𝑖
of the common eigenvectors V

𝑖
(:, 𝑗), with

the first element corresponding to the unhomogenization
variable 𝑥

0
equal to 1 as follows.

If V
1
(:, 𝑗) = V

2
(:, 𝑗), then

𝑘
𝑗
=



1

𝑙
1
(𝑗, 𝑗)

𝑙
2
(𝑗


, 𝑗


)



with 𝑗, 𝑗 = 1, . . . , 𝑟. (A.22)

For instance, V
1
(:, 1) = V

2
(:, 1); then

𝑘
1
=



1

𝑙
1
(1, 1)

𝑙
2
(1, 1)



with 𝑗, 𝑗 = 1, . . . , 𝑟



𝑘
1

𝑘
2

𝑘
3

𝑘
4

1 1 1 1

10.1313 2.0715 0.4875 −1.0258

−160.2909 −0.9506 0.6053 0.6439



𝑥
0

𝑥
1

𝑥
2

.

(A.23)

By normalizing the vectors 𝑘
𝑗
, we get



𝑘
1

𝑘
2

𝑘
3

𝑘
4

0.0062 0.3999 0.7896 0.6367

0.0644 0.8284 0.3849 −0.6531

−0.9979 −0.3922 0.4779 0.4099



. (A.24)

The resulted 𝑘
𝑗
corresponds exactly to the original vectors

used to construct the tensor.

Step 8. Then we resolve the linear system in (𝜆
𝑗
)
𝑗=1,...,4

:

𝑓 (𝑥
0
, 𝑥
1
, 𝑥
2
)

=

4

∑

𝑗=1

𝜆
𝑗
(𝑘
0,𝑗
⋅ 𝑥
0
+ 𝑘
1,𝑗
⋅ 𝑥
1
+ 𝑘
2,𝑗
⋅ 𝑥
2
)
4

.

(A.25)

The solution of the above system is the following:

𝜆 = [0.25, 0.25, 0.25, 0.25] . (A.26)

Thus, the minimal decomposition of the symmetric
fourth order tensor of rank-4 in 3 dimensions associated
with the homogeneous polynomial of degree 4 in 3 variables
𝑓(𝑥
0
, 𝑥
1
, 𝑥
2
) is given as follows:

𝑓 (𝑥
0
, 𝑥
1
, 𝑥
2
)

= 0.25(0.0062𝑥
0
+ 0.0644𝑥

1
− 0.9979𝑥

2
)
4

+ 0.25(0.6367𝑥
0
− 0.6531𝑥

1
+ 0.4099𝑥

2
)
4

+ 0.25(0.3999𝑥
0
+ 0.8284𝑥

1
− 0.3922𝑥

2
)
4

+ 0.25(0.7896𝑥
0
+ 0.3849𝑥

1
+ 0.4779𝑥

2
)
4

.

(A.27)

Abbreviations

MRI: Magnetic resonance imaging
dMRI: Diffusion magnetic resonance

imaging
DTI: Diffusion tensor imaging
HARDI: High angular resolution imaging
DSI: Diffusion spectrum imaging
QBI: Q-ball imaging
SHOT: Symmetric high order tensor
ODF: Diffusion orientation distribution

function
FOD: Fiber orientation distribution

function
SH: Spherical harmonics
CT-FOD: Cartesian tensor-FOD
CP: CANDECOMP/PARAFAC
ALS: Alternating least squares
Adecomp-SHOT: Analytical decomposition of a

symmetric high order tensor
NNLS: Nonnegative least squares
SNR: Signal to noise ratio
CC: Corpus Callosum
CST: Corticospinal Tract
CG: Cingulum
SLF: Superior Longitudinal Fasciculus.
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