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Modular production and component commonality are two widely used strategies in the manufacturing industry to meet customers
growing needs for customized products. Using these strategies, companies can enhance their performance to achieve optimal safety
stock levels. Despite the importance of safety stocks in business competition, little attention has been paid to the way to reduce
them without affecting the customer service levels. This paper develops a mathematical model to reduce safety stock levels in
organizations that employ modular production. To construct the model, we take advantage of the benefits of aggregate inventories,
standardization of components, component commonality, and Group Technology philosophy in regard to stock levels. The model
is tested through the simulation of three years of operation of two modular product systems. For each system, we calculated and
compared the safety stock levels for two cases: (1) under the only presence of component commonality and (2) under the presence
of both component commonality and Group Technology philosophy. The results show a reduction in safety stock levels when we
linked the component commonality with the Group Technology philosophy. The paper presents a discussion of the implications of
each case, features of the model, and suggestions for future research.

1. Introduction

Over the past few decades, manufacturing has faced a steady
growth in market competition caused mainly by three factors:
(1) globalization [1], (2) technological advances, and (3) high
demand for customized products [2-4]. To meet this demand
and being competitive, the companies have applied as main
strategy the offering of a wider variety of products [1, 2, 5-
9]. However, having a wider variety of products increases
the complexity of the organization because it increases the
quantity of parts or components that the company must make
or buy.

To meet efficiently the high demand of customized
products, some researchers [1, 9, 10] suggest two methods:
(1) increasing production capacity and (2) applying modular
production systems. Of these strategies, the modular pro-
duction or modularity is the most popular [11, 12]. The basic
idea of the modularity is to design modules or components
standardized with standard interfaces in such a way that
they can be combined in a high number of end products
to meet customer requirements [5, 13, 14]. A truly modular
production system makes it possible to manufacture custom
products and to react quickly to customer requirements with



virtually the same features found in the mass production [15-
18]. One of the main benefits of modularity is that it leads to
a reduction of the stock levels.

By using Make to Stock (MTS) and Assemble to Stock
(ATS) production approaches, a manufacturer can maintain
cycle stock levels according to a forecast demand. However,
in an environment with uncertainly, forecasts are not reliable.
For this reason, the manufacturers use an investment in safety
stocks, which allow them to respond effectively to forecast
errors and to overcome or mitigate the risk of stock-outs. The
strategy most widely used to minimize the safety stock levels
in modular production systems is component commonality,
which replaces two or more parts of an end product by a
common part [14, 19-23].

The studies for minimizing the safety stock levels in mod-
ular production systems began with Collier [24], who argued
that, by increasing the degree of component commonality
in a modular production system, the costs of operation and
the stocks levels can be reduced because larger production
batches are created and standardization improved. Thus,
Baker [19] proved that the safety stock levels decrease as
much as the degree of commonality increases. Baker et al.
[25] examined the effect of component commonality on
optimal safety stock levels in two products with a two-level
inventory model, showing that replacing two unique parts
with a common part results in a smaller requirements for the
common part. Gerchak and Henig [20] replicated Baker et al.
[25] and showed that in Assemble to Order (ATO) systems
the stocks of product-specific components always increase
when other components are combined with common parts.
Gerchak et al. [21] extended the results of Baker et al. [25]
in understanding the impact of component commonality on
safety stock levels under service level constraints. Hillier [26]
analyzed the effects of component commonality in the total
cost of a modular production system using a multiperiod
model when a common component is significantly more
expensive than the unique parts. Chew et al. [27] quantified
the impact of component commonality in a two-echelon
assembled-to-stock system consisting of several common
components and end products. The results showed that when
each type of component is shared by at least two end products,
the safety stock levels are reduced requiring to be held at a
sufficiently high service level. Catena et al. [28] proposed four
models with commonality for calculating safety stock levels
for subassemblies and manufacturing components under
ATO and Make to Order (MTO) systems. Persona et al. [29]
extended the study of Catena et al. [28] and applied the
models in two different industries to prove the reduction in
the safety stock levels. Like these works, there are many other
studies focused on the effect of the component commonality
on safety stock levels in modular production systems such as
Gerchak and Henig [30]; Eynan and Rosenblatt [31]; Fisher
et al. [32]; Cheung [23].

The main contribution of this work is the proposal of a
model that includes Group Technology philosophy (GT) for
the computation of safety stock levels in modular production
systems. This inclusion extends the previous approaches that
only considered component commonality. The mathematical
model is tested through the simulation of three years of
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operation of two modular product systems. For each system,
we calculated and compared the safety stock levels for
two scenarios: (1) under the only presence of component
commonality and (2) under the presence of both component
commonality and GT. These scenarios are used to compare
the performance of the mathematical model proposed with
the traditional model. The results show a reduction in the
safety stock levels without affecting the customer service
levels (CSL).

The remainder of the paper is organized as follows.
Section 2 shows the development of the proposed model. In
Section 3 the simulation results are presented. Section 4 dis-
cusses the main implications of the model. Finally, Section 5
presents the conclusions and suggestions for future research.

2. Mathematical Model

According to Mikkola [6], the structure of a modular product
is divided into four levels of complexity: system, subsystem,
modules, and components. However, this structure is deter-
mined mainly by organizations considering their production
approaches and the intended application of the products.
This study divides the modular product into three levels of
complexity: system, modules, and components.
A modular products system assumes the existence of

(i) m end products with indexes [ = 1,2,...,m;
(ii) n modules with indexes j = 1,2,...,n;
(iii) ¢ components with indexesi =1,2,...,c.

The number of components i required to build one
module j is denoted as a;;; and the number of modules j
required to build one end product ! is denoted as b;;. Figure 1
shows this configuration and the matrices of composition of
modules and components.

2.1. Preliminary Analysis. The structure of a modular prod-
ucts system supports managers in determining stock levels,
because it allows them to know exactly the number of
modules and components they need in an end product.
In reality, all manufacturers operate with an investment in
inventories, even those organizations that employ the Just-
in-Time strategy. These inventories consist of raw material,
work in process, products from a reverse logistic system,
subassemblies, and end products. All of them are necessary
for very specific reasons that, taken together, facilitate effi-
cient performance in organizations. In the ideal case, where
a manufacturing system operates in a purely deterministic
environment, the forecast demand is not necessary. However,
in actual practice, this does not happen; there is always
uncertainty in the environment and sudden changes in the
customers behavior causing inaccurate forecasts, regardless
of the forecasting method used.

It is well known that organizations turn to the prepara-
tion of forecasts to determine the future demand for their
products. With these forecasts, they adjust their resources
and production capacities in order to meet these demands.
Because forecast is only approximations, the managers must
always take into account a forecast value and a forecast
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FIGURE 1: General structure of a modular products system and its matrices of composition.

error as metrics to determine the stocks levels. Therefore, to
meet the real demand for a modular product over a period
of time t, managers consider a deterministic amount and
a random amount of inventory. As a consequence of the
random component, safety stocks become necessary in an
organization. Safety stocks are inventory that remain to meet
the demand that exceeds the forecast in a period of time
t. These stocks avoid stock-out costs and lost sales. For an
organization, it is important to maintain optimal safety stock
levels, because they also generate costs to keep them in the
warehouse. It is harmful to have excess inventory when new
competing products are introduced because the available
inventory becomes obsolete.

In an environment of modular production, where the
demand of a product in a period of time t is bigger than
forecast demand, the forecast error can be cover by the safety
stock as follows:

D, = wu +SS, @
where

D, is demand of the period t;

w is unit of time (days, weeks, and months) of the
period t;

u is the average of the forecasted demand;

SS is safety stock.

Assuming that the demand D, is normally distributed
with mean y and a variance var[D,], by definition of the
normal standard distribution and its inverse, the following
expression is obtained:

D, = wy + ka VL. )

Therefore, the safety stock is defined by the next expres-
sion:

SS = ko VL, 3)
where

SS is safety stock;

k is the safety factor that determines the probability
that the real demand of a product is less than or equal
to the forecasted demand plus the safety stock;

L is lead-time;
o is standard deviation of the demand.
Indeed, the safety stock SS represents the stock-out in the

stock cycle during the period of time between the processes
of placing and receiving an order; that is,

ROP = Ly +SS, (4)



where ROP is the reorder point and y is the mean of the
demand through the planning horizon.

Expression (3) determines the safety stock for an end
product, which assumes independence in its demand and
does not consider the presence of component commonality.
This expression only considers as key metrics the standard
deviation and a safety factor k to ensure a certain CSL.

However, in practice, organizations adopt different strate-
gies to reduce the safety stock levels to maintain low costs;
to start to reduce them, an organization needs to create an
aggregate inventory; this consists in centralizing inventories
in a single warehouse, instead of having different storage
points. The aggregate inventories generate savings in inven-
tory holding costs; the process of building part families by
GT is facilitated and allows the efficient use of the component
commonality.

An organization that offers a wide variety of modular
products as customized products must maintain an aggrega-
tion in inventories. Now, if this organization seeks to reduce
the safety stock levels, in addition to this aggregation, it also
must consider the application of the component common-
ality. Then, in this case, Expression (3) can be generalized
considering the distribution of the aggregate inventory, which
has a normal distribution with an aggregate demand d’, a
variance var[d'], and a standard deviation o', as follows in
expressions (5). One has

m
d'=Yd,
=1
Var[ ] Z(’l +ZZCOVIZ ZUZ+ZZPIZGIGZ’ 3)

I<z I<z

o' = var [d'] ZO‘ +22plzolaz,

I<z
where p,, is the Pearson correlation coefficient between
the final products [ and z, while the sum of the standard
deviations represents those deviations where component
commonality exists. From expressions (3) and (5), the safety
stock for each final product / into an aggregate inventory
of modular products with component commonality can be
determined based on the next expression:

88, = ko \[L; = k Zol +2Y pooo L. (©)

I<z
When the demands are independent (p;, = 0) between all
end products, expression (6) is simplified as follows:

5, = Ky Y o7 7)
=1

Expressions (6) and (7) determine the safety stock levels
of end products with dependent and independent demands,
respectively, considering the use of the aggregate inventories
and the component commonality.
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FIGURE 2: Degree of commonality in two simple modular products.

This preliminary analysis develops expressions (3)-(7)
that already have been developed in previous literature. These
expressions are presented in this paper because these are the
basis to construct the proposed model.

2.2. Proposed Model. Under MTS and ATS production
approaches, it is necessary to determine the safety stock levels
for each component that exists in a modular products system,
and expressions (6) and (7) are the basis for calculation.

To determine the safety stock of each component of a
modular products system, we must consider the degree of
commonality present in the system. According to Collier
[24], the structure of the system determines the degree of
commonality; this is defined as the total number of modules
and components in the system divided by the total number of
distinct modules and components. Figure 2 shows an example
ofhow to calculate the degree of commonality of two modular
products.

Considering the existence of modules and common
components, expression (6) is adjusted to determine the
safety stock levels of each component in the system; therefore,
in each term of the expression, we consider the participation
of components in modules and modules in end products. The
expression developed is as follows:

SS;

1

-1

(8)

3

m
Z aizjbjlbjzplzalaz \/L\z

z=2
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When there is independence in demands between the end
products, expression (8) is simplified as follows:

a;;by07 \/L\z 9)

I=1

TM=
Mz
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Expressions (8) and (9) have been developed in this paper
for calculating safety stocks of the components of a modular
products system with component commonality and with
three levels of complexity. However, the proposed model also
suggests the presence of a factor of substitution from the GT
philosophy to reduce further the safety stock levels.

2.2.1. Factor of Substitution. The GT is a manufacturing
philosophy that brings together the components with similar
physical features (shape, size, and manufacturing processes)
in part families to take advantages in the optimization of
many processes such as lead times, setup times, processing
times, labor operations, and reworks. From GT philosophy,
we define a factor of substitution of a componentias f;, which
considers a fraction of substitute components r; within the
part family to which the component i belongs, and by their
similarities, the component i can be replaced by them in case
of stock-out. An example of substitutes components are two
similar screws with different drives in the heads. It assume
that this substitution does not affect or change the shape,
function, costs, and physical and mechanical properties of the
end product. The fraction 7; is defined as follows:

1
LN D) (10)
where

r; is fraction of substitution of the component i;

n; is amount of substitute components of the compo-
nent i;

N istotal components within the part family of the
component i.

By using a basic mathematical model, the factor of
substitution f,; decreases at a rate r; proportionally to the

number of components #; existing within the part family.
If f,; is the factor of substitution of a component i, then
f,; varies at a rate Af; = r;f; as much as the number of
components #; increases or decreases; in other words, for
every unit that increases the value #; in the system, f; takesa
proportional value to this change. Hence

Afg = (-1ify) An;. (11)

In differential equation form,

dfsi — —T‘-f-

_n,
- ; '. 2
an (<, N,-1)/C) far  (12)

For any value of 7;, the solution of the differential equation
is presented in next expression:

fu = AL NA, (13)

Figure 3 shows some patterns of the factor of substitution
under different sizes of part families. In this figure we
can observe that, in a scenario with absence of substitute
components (n; = 0), the factor of substitution takes a
maximum value (f; = 1), and while increasing the value of
n;, the value of f; approximates to zero.

2.2.2. Integration of the Proposed Model. Expressions (8) and
(9) determine the safety stock levels for the components of
a modular products system with commonality and under an
aggregate inventory. However, these levels can be reduced
including the factor of substitution in expression (8) as
follows:

SS;=e™ i ND/Cl g ZZa b0t + Zi

j=1l=1

When demands are independent, expression (14) is sim-
plified as follows:

§§ = oIS Nl [ \ﬁ 5
i=¢€ ZZ“!J 107\ Lie (15)

j=1I=1

Expressions (14) and (15) are the result of joining the
component commonality with the GT philosophy for reduc-
ing the safety stock levels. We can see that when f; takes
its maximum value, expression (14) becomes expression (8);
while increasing the value by #;, the safety stock SS; is
reduced.

The basic principle of the proposed model consists in
reducing safety stock levels in modular production systems
through an exponential smoothing. This reduction is in

m—1

i 1] ]lb]zplzala \/L\ (14)

j=11=1 z=2

function of the degree of commonality and of the amount
of components N; and #; in the part families. The reduction
is given due to the possibility of sharing cyclical and safety
stocks between substitute components. Thus, this strategy
allows eliminating the negative effect in case of stock-outs.

To evaluate the proposed model, Section 3 presents two
applications based on simulation regarding the operation of
two different modular products systems.

3. Application and Results

The proposed model is evaluated through two applications
based on the simulation of three years of operation of two
modular products systems, where each system has its own
structure and its own degree of component commonality. The
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analysis of each application makes the comparison of perfor-
mance between safety stocks calculated for two scenarios: (1)
under the only presence of component commonality and (2)
with the presence of component commonality and the factor
of substitution from GT philosophy.

The simulations have been developed using C++ lan-
guage, where after generating demands for end products,
the safety stocks, reorder points, initial and final inventories,
components used, and stock-outs for each component are
calculated. The results for each scenario in both applications
have been derived from thirty simulation runs. Figure 4
shows the general simulation process.

To make the applications simple, we suppose the follow-
ing conditions held:

(1) A continuous review (Q, R) policy is used to deter-
mine the safety stock levels.
(2) There is one period of lead-time for first application.

(3) There are two periods of lead-time for second appli-
cation.

(4) In each period simulated, demand for end products
I follows a normal distribution, with mean y; and
standard deviation ;.

(5) For each case, it assumes aggregate inventories for
production.

(6) The CSLis 90% (k = 1.28).

(7) There is a buffer of enough substitute components to
meet the demand in case of stock-outs.

(8) The substitution of components does not affect or
change the shape, function, costs, and physical and
mechanical properties of the end product.

(9) Each component analyzed belongs to a different part
family.

3.1 Application One. This application simulates and analyzes
two modular products (EP1 and EP2) of an enterprise that
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TaBLE 1: Initial inventories and quantity orders.

G 1 2 3 4
I. Initial 10000 9500 10500 9000
Q 7000 8000 7000 4000

TABLE 2: Safety stock levels and reorder points.

G 1 2 3 4
SS; 185 212 185 154
ROP; 1985 2712 1985 1254

i

offers a high variety of different modular products to its
customers. To manufacture all its products, the enterprise
applies GT philosophy to arrange its components in part
families. The two products analyzed are assembled from
3 modules and 4 components as shown in Figure 5. The
structure of these two products has a degree of commonality
of 1.7.

We suppose that the demands of these two end products
are independent and normally distributed with means ppp, =
700 and pgp, = 1100, standard deviations opp; = 80 and
Opp, = 120. Table 1 shows the initial inventories and order
quantities used for the two scenarios analyzed.

Case 1 (safety stocks with commonality). Based on the
structure of Figure 4 and considering that the system handles
aggregation in inventories with only component common-
ality, the safety stock for each component is determined by
applying expression (9). Table 2 shows the calculated values
for safety stocks and reorder points.

The results of the thirty simulation runs for this case
are shown in Table 3. This table shows that five stock-
outs occurred in five simulation runs, generating a stock-
out average equal to 1. The average inventories for each
component also are showed.

Case 2 (safety stocks with commonality and factor of substi-
tution). In this case, we suppose that each component i of the
two modular products analyzed belongs to a part family, the
experiment assumes that each part family has its own total
number of components N; with #; substitute components
for the component i, and each substitute component has a
large buffer to meet any demand. Table 4 shows the details
with respect to the composition of the part families of each
component i of the system analyzed.

For an organization, obtaining the data in Table 4 is not a
difficult task; they can be obtained through the construction
of part families and identifying the substitute components
for each member of the families. Once this information is
structured, it can be used to calculate the safety stock levels
for each component.

Given the information in Table 4, safety stock for each
component of the system is determined using the expression
(15), which considers the aggregation in inventories, existence
of component commonality, independent demands, and the
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TABLE 3: Results of the simulation: Case 1.
Stock-outs Average inventories
Amount of stock-outs Runs with stock-outs Average of stock-outs cl 2 3 c4
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FIGURE 5: A system of two modular products and its matrices of
composition.

TABLE 4: Part families composition.

c,. 1 2 3 4
N, 25 30 45 60
n 3 6 4 6

TABLE 5: Safety stock levels and reorder points.

G 1 2 3 4
Ss, 166 135 152 98
ROP, 1966 2635 1952 1198

factor of substitution. Table 5 shows the calculated values for
safety stocks and reorder points.

The results of the thirty simulation runs for this case
are shown in Table 6. This table shows that eight stock-
outs occurred in six simulation runs, generating a stock-
out average equal to 1.3. The average inventories for each
component also are showed.

3.1.1. A Performance Comparison between the Two Cases.
Tables 3 and 6 show the results of each case; these tables
show that there are a greater number of stock-outs and lower
average inventories in Case 2 as a result of reducing safety
stock levels. However, the experiment involves the possibility
of using substitute components to meet this demand, while
stock-outs in Case 1become in shortage costs. Figure 6 shows
the difference between safety stock levels calculated in each
case for each component in the system. An example of one
simulation run for both cases is shown in Table 7.

3.2. Application Two. Similar to the previous application, this
application analyzes and simulates a system of modular prod-
ucts composed of five end products EP1, EP2,.. ., EP5, which
are assembled from five modules and five components as
shown in Figure 7. The structure has a degree of commonality
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TABLE 6: Results of the simulation: Case 2.

Stock-outs Average inventories
Amount of stock-outs Runs with stock-outs Average of stock-outs cl c2 3 c4
8 6 1.3 5542 6795 5785 3648

Cen)[e e [ee] [ ][«

CERORG
i) ()0 [A
|

2 |
|C1||C3||C1|C2||C5||C5||C2||C3|
1 0010 10100
11000 10001
“ij=01110 bjl=11000
00100 00100
00001 00011

FIGURE 7: A system of five modular products and its matrices of
composition.

of 2.5. The system uses the ATO strategy to meet the needs of
its customers.

For this modular products system, we suppose that
the demands of the end products are dependent. Table 8
shows the initial inventories and the order quantities of each
component of the system, whereas Table 9 shows the means
of the demands, the standard deviations, and the correlation
coefficients of the end products. The information of both
Tables 8 and 9 are used for the two cases analyzed.

Case 1 (safety stocks with commonality). In an environment
where there are dependent demands between end products,
determining safety stocks of each component of the system
is performed by applying expression (8). Table 10 shows the
calculated values for safety stocks as well as reorder points for
each component.

The results of the thirty simulation runs for this case
are shown in Table 11. This table shows that eight stock-
outs occurred in eight simulation runs, generating a stock-
out average equal to 1. The average inventories for each
component also are showed.

Case 2 (safety stocks with commonality and factor of substitu-
tion). Similar to Case 2 of the application 1, each component
i of the modular products system belongs to a part family.
Each part family has its own total number of components N;
with a number #; of substitute components by the component
i, and each substitute component has a large buffer to
meet any demand. Table 12 shows the details regarding the
composition of the part families of each component i of the
system analyzed.

For this case, the safety stocks are calculated using
expression (14), because this expression considers the exis-
tence of aggregation in inventories, commonality, dependent
demands, and factor of substitution. Table 13 shows the
calculated values of the safety stocks and reorder points for
each component of the system.

The results of the thirty simulation runs for this case are
shown in Table 14. This table shows that forty-four stock-outs
occurred in twenty-six simulation runs, generating a stock-
out average equal to 1.7. The average inventories for each
component also are showed.

3.2.1. A Performance Comparison between the Two Cases.
Tables 11 and 14 show the results of each case; these tables
show that there are a greater number of stock-outs and lower
average inventories in Case 2 as a result of reducing safety
stock levels. Similar to that in application one, the experiment
involves the possibility of using substitute components to
meet this demand, while stock-outs in Case 1 become in
shortage costs. Figure 8 shows the difference between safety
stock levels calculated in each case for each component in the
system. An example of one simulation run for both cases is
shown in Table 15.

4. Discussion

Currently, uncertainty in demand and variability in consumer
behavior hinder decision-making concerning the determi-
nation of the optimal safety stock levels. As a result, an
organization requires a sufficient level of these inventories
to ensure a high CSL. Greater safety stock levels represent
higher costs. Of course, safety stocks are not the only factor
that can negatively affect the CSL; there are other factors
that also affect it directly, such as product quality, after-sales
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10 Mathematical Problems in Engineering

TABLE 8: Initial inventories and quantity orders.

G 1 2 3 4 5
I Initial 10000 10000 10000 10000 10000
Q 6000 12000 14000 4000 4000

TaBLE 9: Correlation coefficients, means of demands, and standard deviations.

o EP1 EP2 EP3 EP4 EP5
EP1 — 0.72 0.61 0.75 0.8
EP2 0.72 — 0.55 0.66 0.91
EP3 0.61 0.55 — 032 0.53
EP4 0.75 0.66 0.32 — 0.44
EP5 0.8 0.91 0.53 0.44 —
w 550 450 650 600 450
o, 80 75 95 105 75

TaBLE 10: Safety stocks and reorder points.

[ 1 2 3 4 5
SS; 333 390 411 261 278
ROP; 4033 4790 5711 2261 2378

TaBLE 11: Results of the simulation; Case 1.

Stock-outs Average inventories
Amount of stock-outs Runs with stock-outs Average of stock-outs cl c2 3 c4 5
8 8 1 5375 8452 10024 3951 3978

TABLE 12: Part families composition.

G 1 2 3 4 5
N, 9 15 18 9 13
n 7 5 5 6

TABLE 13: Safety stocks and reorder points.

G 1 2 3 4 5
S, 176 55 152 97 66
ROP, 3876 4455 5452 2097 2166

TABLE 14: Results of the simulation: Case 2.

Stock-outs Average inventories
Amount of stock-outs Runs with stock-outs Average of stock-outs cl c2 3 c4 5
44 26 1.7 5239 8169 9728 3821 3820

services, and production capacity. Integrating all these factors ~ to offer a wide variety of products. The model suggests
to ensure a high CSL is an important area for research. that the safety stock level for a component belonging to a

The proposed model in this paper solves the problem  modular products system can be reduced through exploiting
of reducing safety stock levels without affecting CSL in  the benefits of the aggregation of inventories, standardization
organizations that employ modular production as a strategy =~ of components, the degree of commonality, and the GT
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FIGURE 8: Safety stock levels for each component in both scenarios.

philosophy. The model assumes that the negative effect of
increasing the amount of stock-outs can be eliminated when
using substitute components to meet demands.

The model facilitates basic economies of substitution,
such as costs reduction and inventory reduction as well as
reduction in system complexity. For best performance, the
model requires a high degree of integration between all areas
of the organization, because that forces organizations to adopt
the best strategies to achieve a proper standardization and to
define an eflicient methodology for the construction of part
families.

5. Conclusions and Suggestions for
Future Research

In this paper, we explored and quantified the positive effect
of linking component commonality and GT philosophy on
safety stock levels for organizations that employ modular
production. Specifically, we achieved two objectives: (1) we
showed an efficient way of reducing safety stock levels, and (2)
we expanded knowledge regarding the positive relationship
between component commonality and the GT philosophy.

The main contribution of this paper is the development of
an efficient model for reducing safety stocks levels in modular
production systems by linking component commonality with
GT philosophy, thus creating a factor of substitution for
components with great physical similarities. The factor of
substitution constitutes an extension to the basic theory of
quantitative models used for determining safety stock levels
in organizations employing modular production. The model
is a good option for companies whose holding costs are bigger
than their shortage costs.

It is important to mention that, traditionally, researchers
have developed mathematical models to try to determine
the optimal safety stock levels for different strategies of
production. They assumed that the demand that exists within
the elapsed time period between when an order is made and
when it is received follows a normal distribution. However,
some studies have shown that the normal distribution is
not the best representation of the demand behavior during
a waiting time, but for ease of operation, a model that

Mathematical Problems in Engineering

assumes a normal distribution represents the basis for other
applications with higher requirements.

The proposed model is compared with the traditional
method through a simulation study for two modular products
systems with different degrees of commonality, where, for
each component in both systems, we calculated the safety
stocks, reorder points, initial and final inventories, and the
usability of components. The result shows a reduction in
safety stock levels allowing a high CSL.

For future research, the model can be tested using
components belonging to the same part family and these
can be substituted between them; also the model can be
adjusted to different demand distributions to evaluate the
performance. It is possible to supplement it with a study
assessing the impact on total costs under different scenarios
and different operational strategies. Finally, the model can be
extended to products of more than three levels of complexity.
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