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A smart space is embedded with several components such as sensors, actuators, and computing devices that enable the sensing and
control of the environment, and the inhabitants interact with the devices in the smart space whenever they need to. To model a
smart space, a dynamic relationship needs to be established among the elements of the space whereby the interactions with devices
are considered a dynamic-process state. In this paper, a linear model of a smart space is presented using a state equation, where the
two coefficient matrices 𝐿 and𝐻 need to be defined to model the smart space, and the coefficient matrix 𝐿 is used to determine the
states of the devices; similarly, the situation of the smart space is determined using coefficient𝐻. An algorithm is presented tomake
a linear model from the logical functions that are used to describe the system. This model is flexible in terms of the control of the
smart-space environment because the environmental factors are represented by a matrix element.This linear smart-space model is
helpful for the control of a context-aware system, and we use an example to illustrate the effectiveness of the proposed model.

1. Introduction

Themathematicalmodeling of a system is themost important
step in the design of a control system, as it represents the
behavior of a system in response to the changes of states and
inputs. The following are the two modeling approaches for
linear systems: the transfer-function approach and the state-
space approach [1]. Out of the two approaches, the state-space
approach is used to represent a dynamic system. The impor-
tant feature of the state-space approach is the usage of first-
order differential/difference equations to represent systems.
The behavior of the system can be predicted by solving the
differential/difference equations that are used for modeling.

A smart space is composed of a number of components
such as sensors, actuators, and computing devices that enable
the sensing and control of the environment. The goal of the
smart space is to collect the environmental information and
provide service automatically for user’s comfort and safety
[2]. In a smart space, users generally interact with various
devices according to their needs, and these interactions can

be considered a dynamic-process state. The next states of the
devices can be described using the information regarding the
current states of the devices and control inputs; in terms of the
smart space, its situation can be described according to the
current device states. The aim of this paper is to generalize
the smart-space domain through linear modeling by using
a state equation. This linear model describes the relations
between the next states of devices and the current states of
devices alongwith the control inputs and between the current
states of devices and the situations. Several algorithms were
proposed to implement context-aware systems using knowl-
edge and resources such as production rules (if-then relation-
ships), neural networks, support vectormachines, fuzzy logic,
Bayesian networks, and Hidden Markov Model [3–6]. In [7],
the author proposed a unified andmathematically compatible
method for logic-based intelligent system. However, this
method requires special knowledge on mathematical logic
and most of the deductions are tricky. Logic-based system
used the logical function sets to show the relations between
the states of devices and the control inputs and between the
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states of devices and the smart-space situation. The matrix
expression is very convenient in logic inference because it
converts the problem to solving linear algebraic equation. In
this paper, we have presented an algorithm to convert these
logical functions into a linear algebraic equation using the
Sum of Products (SOP) canonical form and logic vector. The
proposed smart-space linear model can be helpful for the
control of a context-aware system because all of the variables
are expressed by a matrix element and the relation between
every variable is expressed by a coefficient matrix.

The rest of the paper is organized as follows: Section 2
presents an algorithm to convert a logic function into a linear
algebraic equation; Section 3 illustrates the mathematical
modeling of a smart space; and Section 4 presents an example
to illustrate the effectiveness of the smart-space model,
followed by the conclusion and a discussion of future work
in Section 5.

2. Linear Algebraic Representation of
Logic Function

Generally, a smart space can be described by logic expressions
and logic related special knowledge needs to control the
environment. If logic expressions are converted into algebraic
equation, then control can be done effectively by manipulat-
ingmatrix elements. To develop a linear model, we need con-
version of logic expression into algebraic equations. Edwards
uses a canonical form to express Boolean functions in matrix
algebra [8]. This approach is different from “conventional”
matrix algebra, as it requires the “unit” matrix [𝐴]UNIT for
multiplication operations. Authors in [9] proposed the usage
of a semitensor product to represent Boolean functions in an
algebraic form. In this paper, we have proposed an algorithm
using Sumof Products (SOP) canonical form and logic vector
(𝑖th column of an identity matrix) as logic value to represent
the logic functions in the algebraic equations. Using this
approach, the logic function has been represented similarly
to its representation in conventional algebra, as follows:

𝑦 = 𝐷 ⋅ 𝑥, (1)

where 𝐷 is called the coefficient matrix that defines the logic
function(s) and 𝑥 and 𝑦 are the input and output vectors,
respectively.

2.1. Single Logic Function. In this section, a single logic func-
tion has been converted into a linear algebraic equation. Con-
sider the following Boolean-logic function:

𝑦 = 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) . (2)

Any Boolean function can be expressed as a Sum of Products
(SOP) in a canonical form, as follows:

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

= (𝑑
1
⋅ 𝑚
0
+ 𝑑
2
⋅ 𝑚
1
+ ⋅ ⋅ ⋅ + 𝑑

2
𝑛 ⋅ 𝑚
2
𝑛−1) .

(3)

Equation (3) can be represented in a matrix form, as follows:

𝑦 = [𝑑1 𝑑
2
⋅ ⋅ ⋅ 𝑑
2
𝑛] ⋅

[
[
[
[
[
[

[

𝑚
0

𝑚
1

.

.

.

𝑚
2
𝑛
−1

]
]
]
]
]
]

]

, (4)

where [𝑑1 𝑑
2
⋅ ⋅ ⋅ 𝑑
2
𝑛] is the coefficientmatrix that holds the

values of all of the minterms of the logic function, while the

[

𝑚
0

𝑚
1

.

.

.

𝑚
2
𝑛
−1

] vector holds all of the minterms. The order of the

matrix and vector terms must be adhered to.
The 𝑖th column of an identity matrix (𝐼

𝑛
) is used to rep-

resent the logic value in the logic equations [9]. Considering
the identity matrix, 𝑉 = [

1 0

0 1
] in terms of Boolean values.

True (1) and False (0) are represented as V1
2
= [
1

0
] and V2

2
=

[
0

1
], respectively. If there are 𝑛 variables, then the Boolean

function is a logical mapping from a set of {V1
2
, V2
2
}
𝑛 to {V1

2
, V1
2
}.

Assuming that 𝑥
1
and 𝑥

2
are two logic variables that are

represented as 𝑥
1
= [ 𝑎
𝑎
] and 𝑥

2
= [ 𝑏
𝑏
], with 𝑎 and 𝑏 ∈ {0, 1},

then the Kronecker product (⊗) of the two logic variables is
calculated in the following way:

𝑥
1
⊗ 𝑥
2
= [

𝑎

𝑎
] ⊗ [

𝑏

𝑎

] =

[
[
[
[
[
[

[

𝑎𝑏

𝑎𝑏

𝑎𝑏

𝑎𝑏

]
]
]
]
]
]

]

=

[
[
[
[
[

[

𝑚
0

𝑚
1

𝑚
2

𝑚
3

]
]
]
]
]

]

. (5)

Equation (5) shows that the Kronecker product between two
logic variables represents all of the minterms; similarly, the
following can also be shown:

𝑥 = 𝑥
1
⊗ 𝑥
2
⋅ ⋅ ⋅ ⊗ 𝑥

𝑛
=

[
[
[
[
[
[

[

𝑚
0

𝑚
1

.

.

.

𝑚
2
𝑛
−1

]
]
]
]
]
]

]

. (6)

The coefficient matrix elements (𝑑
1
, 𝑑
2
, . . . , 𝑑

2
𝑛) consist of

two values [ 𝑑𝑖
𝑑
𝑖

], where 𝑑
𝑖
∈ {0, 1} and 𝑖 = 1, 2, . . . , 2

𝑛 are
the substituting values, and the dimension of the coefficient
matrix 𝐷 is equal to 2-by-2𝑛, where 𝑛 is the number of logic
variables:

𝐷 = [
𝑑
1
𝑑
2
⋅ ⋅ ⋅ 𝑑
2
𝑛

𝑑
1
𝑑
2
⋅ ⋅ ⋅ 𝑑
2
𝑛

] . (7)

From (4), and using (6), it can be written as the following:

𝑦 = 𝐷 ⋅ 𝑥, (8)

where 𝑦 = [
𝑦

𝑦
] with 𝑦 ∈ {0, 1}. In the previously mentioned

section, a single logic function is converted into an algebraic
equation, whereas the next section will present multiple logic
functions.
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2.2. Multiple Logic Functions. Consider the following Bool-
ean-logic functions:

𝑦
1
= 𝑓
1
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

𝑦
2
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2
(𝑥
1
, 𝑥
2
, . . . , 𝑥
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.
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.
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𝑚
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2
, . . . , 𝑥

𝑛
) .

(9)

Equation (8) can be expressed as the SOP in a canonical form:

𝑓
1
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

= (𝑒
1,1
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+ ⋅ ⋅ ⋅ + 𝑒
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⋅ 𝑚
1
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2
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𝑓
𝑚
(𝑥
1
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2
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𝑛
)

= (𝑒
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1
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2
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(10)

Equation (10) can be represented by 𝑚 linear equations akin
to (4):

𝑦
1
= [𝑒1,1 𝑒

1,2
⋅ ⋅ ⋅ 𝑒
1,2
𝑛] ⋅
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.

(11)

All of the elements of the coefficient matrix and 𝑦
𝑖
in (10) are

represented by 𝑒
𝑖,𝑗
= [ 𝑒
𝑒
], 𝑦
𝑖
= [
𝑦

𝑦
], with 𝑒, and 𝑦 ∈ {0, 1}, and

are expressed as follows:

[

𝑦
1

𝑦
1

] = [

𝑒
1,1

𝑒
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𝑒
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]
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𝑦
2

𝑦
2

] = [

𝑒
2,1

𝑒
2,2

⋅ ⋅ ⋅ 𝑒
2,2
𝑛
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[
[
[
[
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]
]
]
]
]
]

]

,

.

.

.

[

𝑦
𝑚

𝑦
𝑚

] = [

𝑒
𝑚,1
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𝑚,2

⋅ ⋅ ⋅ 𝑒
𝑚,2
𝑛

𝑒
𝑚,1
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⋅ ⋅ ⋅ 𝑒
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] ⋅

[
[
[
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𝑚
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.
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𝑚
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𝑛
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]
]
]
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.

(12)

By applying the Khatri-Rao product (∗) between all of the
coefficient matrices, we can obtain the coefficient matrix 𝐸

for (12) [10].The dimensions of coefficient matrix 𝐸 are equal
to 2𝑚-by-2𝑛, where𝑚 is the number of logic functions and 𝑛
is the number of logic variables, as follows:

𝐸 = 𝑒
1
∗ 𝑒
2
∗ ⋅ ⋅ ⋅ ∗ 𝑒

𝑚
,

𝐸

= [Col1 (𝑒1) ⊗ Col
1
(𝑒
2
) ⊗ ⋅ ⋅ ⋅Col

1
(𝑒
𝑚
) Col

2
(𝑒
1
) ⊗ Col

2
(𝑒
2
) ⊗ ⋅ ⋅ ⋅Col

2
(𝑒
𝑚
) ⋅ ⋅ ⋅ Col

2
𝑛 (𝑒
1
) ⊗ Col

2
𝑛 (𝑒
2
) ⊗ ⋅ ⋅ ⋅Col

2
𝑛 (𝑒
𝑚
)] .

(13)

Applying the Kronecker product (⊗) on the left side of (12),

𝑦 = [

𝑦
1

𝑦
1

] ⊗ [

𝑦
2

𝑦
2

] ⋅ ⋅ ⋅ ⊗ [

𝑦
𝑚

𝑦
𝑚

] . (14)

From (12), the usage of (6), (13), and (14) can be written as the
following:

𝑦 = 𝐸 ⋅ 𝑥. (15)

3. Linear Modeling of a Smart Space

Smart space is set up with the sensors and several devices.
In this section, we have presented the linear model of a
smart space. In a smart space, an inhabitant interacts with
several devices through the combinational state of devices,
and each device can be operated in two states. The next
state of a device can be described by the logical function of
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Input
vector (u)

State
vector (x)

Input-state
coefficient
matrix (C)

State-situation
coefficient
matrix (H)

Output
vector (y)

Kronecker
product (⊗)

Multiplication (·)Multiplication (·)

u(t)

x(t)

x(t)x(t + 1)

x(t + 1) = C · x(t) ⊗ u(t)

y(t)

y(t) = H · x(t)

Figure 1: Block diagram of the proposed smart-space model.

the current states of the device and its input information
about the environment. The situation of a smart space at
any time is described by the combination of the states of the
devices at that time. The sensor network in a smart space is
used to collect the input data about the environment which
is needed to represent a space state. The next states of the
devices can be expressed as the following:

𝑥
1
(𝑡 + 1) = 𝑓

1
(𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡) , 𝑢
1
(𝑡) , . . . , 𝑢

𝑚
(𝑡)) ,

𝑥
2
(𝑡 + 1) = 𝑓

2
(𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡) , 𝑢
1
(𝑡) , . . . , 𝑢

𝑚
(𝑡)) ,

.

.

.

𝑥
𝑛
(𝑡 + 1) = 𝑓

𝑛
(𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡) , 𝑢
1
(𝑡) , . . . , 𝑢

𝑚
(𝑡)) ,

(16)

where 𝑓
𝑖
: 𝑉
𝑛+𝑚

→ 𝑉, 𝑖 = 1, 2, . . . , 𝑛, and 𝑥
𝑗
∈ 𝑉, 𝑗 = 1,

2, . . . , 𝑛, are the states of the devices and 𝑢
𝑙
∈ 𝑉, 𝑙 = 1,

2, . . . , 𝑚, are the inputs that represent the environment.
The situation of the smart space can be expressed as the

following:

𝑦
1
(𝑡) = ℎ

1
(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) ,

𝑦
2
(𝑡) = ℎ

2
(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) ,

.

.

.

𝑦
𝑝
(𝑡) = ℎ

𝑝
(𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) ,

(17)

where ℎ
𝑗
: 𝑉
𝑛
→ 𝑉, 𝑗 = 1, 2, . . . , 𝑝, are the logical functions;

𝑥
𝑗
∈ 𝑉, 𝑗 = 1, 2, . . . , 𝑛, are the states of the devices; and𝑦

𝑙
∈ 𝑉,

𝑙 = 1, 2, . . . , 𝑝, are the situations.
Using the procedure described in Section 2, the multiple

logical functions expressed by (16) and (17) can be converted
into standard discrete-time dynamic systems, as follows:

𝑥 (𝑡 + 1) = 𝐶 ⋅ (𝑥 (𝑡) ⊗ 𝑢 (𝑡)) ,

𝑦 (𝑡) = 𝐻 ⋅ 𝑥 (𝑡) ,

(18)

where the matrices 𝐶 and 𝐻 are called the coefficients of
the logical functions of (16) and (17), respectively. One has

Table 1: Logic rules for state change.

Rules for state change

(i) If 𝑥
1
∨ ¬𝑥
2
∨ ¬𝑥
3
∨ 𝑥
4
∧ 𝑢
1
∧ 𝑢
2
∧ ¬𝑢
3
∧ ¬𝑢
4
∧ ¬𝑢
5
= True

then 𝑥
1
= True

(ii) If 𝑥
1
∨ 𝑥
2
∨ 𝑥
3
∨¬𝑥
4
∨ 𝑥
5
∧ 𝑢
1
∧¬𝑢
2
∧¬𝑢
3
∧¬𝑢
4
∧¬𝑢
5
= True

then 𝑥
2
= True

(iii) If ¬𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∨¬𝑥4 ∨ 𝑥5 ∧ 𝑢1 ∧¬𝑢2 ∧¬𝑢3 ∧ 𝑢4 ∧¬𝑢5 = True
then 𝑥

3
= True

(iv) If 𝑥
1
∨¬𝑥
2
∨¬𝑥
3
∨ 𝑥
4
∨ 𝑥
5
∧ 𝑢
1
∧¬𝑢
2
∧ 𝑢
3
∧¬𝑢
4
∧¬𝑢
5
= True

then 𝑥
4
= True

𝑥(𝑡 + 1) = 𝑥
1
(𝑡 + 1) ⊗ 𝑥

2
(𝑡 + 1) ⊗ ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑡 + 1), 𝑥(𝑡) =

𝑥
1
(𝑡) ⊗ 𝑥

2
(𝑡) ⊗ ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑡), 𝑢(𝑡) = 𝑢

1
(𝑡) ⊗ 𝑢

2
(𝑡) ⊗ ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡), and

𝑦(𝑡) = 𝑦
1
(𝑡) ⊗ 𝑦

2
(𝑡) ⊗ ⋅ ⋅ ⋅ 𝑦

𝑝
(𝑡).

The input-state coefficient matrix (𝐶) and the state-
situation coefficient matrix (𝐻) are matrix representations of
the SOP of a logic variable that is used in logic expressions.
Input (𝑢), state (𝑥), and output (𝑦) vectors represent the
possible control inputs, the states of the devices, and the
situations in the smart space, respectively. A block diagram
of the proposed linear model is shown in Figure 1.

4. An Example of a Smart Space

In this example, we assume that a smart space which is com-
posed of a sensor network and four devices will be operated
by sensor data. The input data about the environment 𝑢

1
, 𝑢
2
,

𝑢
3
, 𝑢
4
, and 𝑢

5
are formed on the basis of the sensor data and

the four devices’ states are considered as 𝑥
1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
.

The next states of the devices are determined based on the
current states of the devices and the input information about
the environment. The situation of a smart space at any time
is dependent on the combinational states of the devices at
that time. Two different logical functions are used to describe
the relations between the information about the environment
and device states and the device states and situations. All of
the variables are considered Boolean logical variables (“ON,”
“OFF”). If the current states of the devices are known, then
the next device states are updated according to the current
states and input information about the environment [11]. The
next states of the devices can be represented by (16) and we
can express the function by logic rules (if-then relationship)
as tabulated in Table 1.
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x4 x3 x2 x1 u5 u4 u3 u2 u1

Figure 2: The format variables that can be used in the minterm
calculations.

These logic rules can be assumed as the following:

𝑥
1
(𝑡 + 1) = (𝑥

1
(𝑡) + 𝑥

2
(𝑡) + 𝑥

3
(𝑡) + 𝑥

4
(𝑡)) ⋅ 𝑢

1
(𝑡)

⋅ 𝑢
2
(𝑡) ⋅ 𝑢

3
(𝑡) ⋅ 𝑢

4
(𝑡) ⋅ 𝑢

5
(𝑡) ,

𝑥
2
(𝑡 + 1) = (𝑥

1
(𝑡) + 𝑥

2
(𝑡) + 𝑥

3
(𝑡) + 𝑥

4
(𝑡)) ⋅ 𝑢

1
(𝑡)

⋅ 𝑢
2
(𝑡) ⋅ 𝑢

3
(𝑡) ⋅ 𝑢

4
(𝑡) ⋅ 𝑢

5
(𝑡) ,

𝑥
3
(𝑡 + 1) = (𝑥

1
(𝑡) + 𝑥

2
(𝑡) + 𝑥

3
(𝑡) + 𝑥

4
(𝑡)) ⋅ 𝑢

1
(𝑡)

⋅ 𝑢
2
⋅ 𝑢
3
(𝑡) ⋅ 𝑢
4
(𝑡) ⋅ 𝑢

5
(𝑡) ,

𝑥
4
(𝑡 + 1) = (𝑥

1
(𝑡) + 𝑥

2
(𝑡) + 𝑥

3
(𝑡) + 𝑥

4
(𝑡)) ⋅ 𝑢

1
(𝑡)

⋅ 𝑢
2
(𝑡) ⋅ 𝑢
3
(𝑡) ⋅ 𝑢

4
(𝑡) ⋅ 𝑢

5
(𝑡) .

(19)

There are four current states and five input variables on the
right-hand side of (19). We consider that 29 = 512, SOP for
the expression of the logical function (19) into a canonical
form.When we calculated the minterms, we used variable 𝑥

4

as MSB and 𝑢
1
as LSB. Figure 2 shows the variable minterm

format.
Equation (19) can be expressed as the SOP in canonical

form, as follows:

𝑥
1
(𝑡 + 1) = 𝑚

3
+ 𝑚
35
+ 𝑚
67
+ 𝑚
99
+ 𝑚
131

+ 𝑚
163

+ 𝑚
227

+ 𝑚
259

+ 𝑚
291

+ 𝑚
323

+ 𝑚
355

+ 𝑚
387

+ 𝑚
419

+ 𝑚
451

+ 𝑚
483

,

𝑥
2
(𝑡 + 1) = 𝑚

1
+ 𝑚
33
+ 𝑚
65
+ 𝑚
97
+ 𝑚
129

+ 𝑚
161

+ 𝑚
193

+ 𝑚
225

+ 𝑚
289

+ 𝑚
321

+ 𝑚
353

+ 𝑚
385

+ 𝑚
417

+ 𝑚
449

+ 𝑚
481

,

𝑥
3
(𝑡 + 1) = 𝑚

9
+ 𝑚
41
+ 𝑚
73
+ 𝑚
105

+ 𝑚
137

+ 𝑚
169

+ 𝑚
201

+ 𝑚
233

+ 𝑚
265

+ 𝑚
329

+ 𝑚
361

+ 𝑚
393

+ 𝑚
425

+ 𝑚
457

+ 𝑚
489

,

𝑥
4
(𝑡 + 1) = 𝑚

5
+ 𝑚
37
+ 𝑚
69
+ 𝑚
101

+ 𝑚
133

+ 𝑚
169

+ 𝑚
229

+ 𝑚
261

+ 𝑚
293

+ 𝑚
325

+ 𝑚
357

+ 𝑚
389

+ 𝑚
421

+ 𝑚
453

+ 𝑚
485

.

(20)

Equation (20) can be represented in a matrix form as the
following:

[𝑥1 (𝑡 + 1)] = [0 0 1 0 0 ⋅ ⋅ ⋅ 0] ⋅

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑚
0

𝑚
1

𝑚
2

𝑚
3

𝑚
4

.

.

.

𝑚
511

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

[𝑥2 (𝑡 + 1)] = [1 0 0 0 0 ⋅ ⋅ ⋅ 0] ⋅

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑚
0

𝑚
1

𝑚
2

𝑚
3

𝑚
4

.

.

.

𝑚
511

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

[𝑥3 (𝑡 + 1)] = [0 0 0 0 0 ⋅ ⋅ ⋅ 0] ⋅

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑚
0

𝑚
1

𝑚
2

𝑚
3

𝑚
4

.

.

.

𝑚
511

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

[𝑥4 (𝑡 + 1)] = [0 0 0 0 1 ⋅ ⋅ ⋅ 0] ⋅

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑚
0

𝑚
1

𝑚
2

𝑚
3

𝑚
4

.

.

.

𝑚
511

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(21)

From (21), the first matrix on the right-hand side is the
coefficientmatrix that holds all of theminterms values of each

function of (20), and the [
𝑚
0

𝑚
1

.

.

.

𝑚
511

] vector holds all of the 512

minterms of the logic functions of (20). All of the elements
of the coefficient matrix are substituted by True (1) = [

1

0
]

and False (0) = [
0

1
]. By applying the Khatri-Rao product

(∗) between all four of the coefficient matrices in (21), the
following coefficient of matrix 𝐶 can be obtained:



6 Mathematical Problems in Engineering

𝐶 = 𝑐
1
∗ 𝑐
2
∗ ⋅ ⋅ ⋅ ∗ 𝑐

4
,

𝐶

= [Col1 (𝑐1) ⊗ Col
1
(𝑐
2
) ⊗ ⋅ ⋅ ⋅Col

1
(𝑐
4
) Col

2
(𝑐
1
) ⊗ Col

2
(𝑐
2
) ⊗ ⋅ ⋅ ⋅Col

2
(𝑐
4
) ⋅ ⋅ ⋅ Col

512
(𝑐
1
) ⊗ Col

512
(𝑐
2
) ⊗ ⋅ ⋅ ⋅Col

512
(𝑐
4
)] .

(22)

The dimension of the coefficient of matrix 𝐶 is equal to 16-
by-512. The minterm vector can be calculated by 𝑥(𝑡) ⊗ 𝑢(𝑡),
where 𝑥 = 𝑥

1
⊗ 𝑥
2
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

4
and 𝑢 = 𝑢

1
⊗ 𝑢
2
⊗ ⋅ ⋅ ⋅ ⊗ 𝑢

5
, as

follows:

𝑥 (𝑡) ⊗ 𝑢 (𝑡) =

[
[
[
[
[
[

[

𝑚
0

𝑚
1

.

.

.

𝑚
511

]
]
]
]
]
]

]

. (23)

By substituting 𝑥
𝑖
(𝑡+1) by 𝑥

𝑖
= [
𝑥
𝑖

𝑥
𝑖

]with 𝑥
𝑖
∈ {0, 1}, followed

by the application of the Kronecker product (⊗) on the left-
hand side of (21), the following can be derived:

𝑥 (𝑡 + 1) = [

𝑥
1

𝑥
1

] ⊗ [

𝑥
2

𝑥
2

] ⋅ ⋅ ⋅ ⊗ [

𝑥
4

𝑥
4

] . (24)

From the use of (22) by (21), (23) and (24) can be written in
the following way:

𝑥 (𝑡 + 1) = 𝐶 ⋅ (𝑥 (𝑡) ⊗ 𝑢 (𝑡)) . (25)

The situation of this smart space can be expressed by (17),
and we can express the function by logic rules (if-then rela-
tionship) as shown in Table 2.

These logic rules can be assumed as the following:

𝑦
1
(𝑡) = 𝑥

1
(𝑡) ⋅ 𝑥

2
(𝑡) ⋅ 𝑥

3
(𝑡) ⋅ 𝑥

4
(𝑡) ,

𝑦
2
(𝑡) = (𝑥

1
(𝑡) + 𝑥

2
(𝑡) + 𝑥

3
(𝑡)) ⋅ 𝑥

4
(𝑡) ,

𝑦
3
(𝑡) = (𝑥

1
(𝑡) + 𝑥

2
(𝑡)) ⋅ 𝑥

3
(𝑡) ⋅ 𝑥

4
(𝑡) ,

𝑦
4
(𝑡) = 𝑥

1
(𝑡) ⋅ (𝑥

2
(𝑡) + 𝑥

3
(𝑡) + 𝑥

4
(𝑡)) .

(26)

Similarly, a logical function that describes the situation can
be represented by a linear algebraic equation in the following
way:

𝑦 (𝑡) = 𝐻 ⋅ 𝑥 (𝑡) , (27)

where𝐻 is the coefficient matrix and 𝑦 and 𝑥 are the output
and input vectors, respectively. The dimensions of 𝑦,𝐻, and
𝑥 are 16-by-1, 16-by-16, and 16-by-1, respectively.

In this example, a total of nine variables (sum of device
states and environmental information) are used. Using these
nine variables, there are 29 = 512 different input sequences
available. These 512 input sequences are used to determine
next states of devices. Then, smart-space situations can be
calculated from combination of different devices states. We

have calculated smart-space situation in two ways: firstly
using logic rules and secondly using linear model. In logic
rules method, we used rules for state change (Table 1) and
rules for situation (Table 2) to infer the situation of smart
space and considered the outcomes as manipulated data.
In terms of the linear model, (25) and (27) represent the
state equation and situation equation, respectively, and these
matrix expressions generalize the logical operations that are
convenient in logical inference. Control can be complete
effectively by matrix calculations using this linear smart-
space model. The situation of smart space can be inferred
using Algorithm 1. Outcomes of Algorithm 1 are considered
as linear-model data.

Using manipulated data, a plot was drawn for the “ON”
states of the devices with a corresponding situation, while the
linear-model data is presented for the purpose of comparison,
as shown in Figure 3; every situation is composed of a set
of device states. In Figure 3, different markers were used to
show the “ON” state of each device. Our results show an
overlap between the linear-model data and the manipulated
data, proving that a linearmodel represents the logic function
equally well and can be used to model a smart space. Using
linear model control can be done easily by manipulating
matrix elements.

5. Conclusion

We have proposed a smart-space linear model through the
conversion of a logic function to a linearmodel. A smart space
is typically represented by a logic function whereby smart
devices operate in the smart space; in a state-space approach,
the smart space is expressed as a linearmodel by the presented
algorithm. This linear model describes the relations between
the device states and inputs that represent the environment
andbetween the device states and the situation of smart space.
The example in this paper presents a linear model of smart
space using four devices, each of which has two states and
five control inputs based on the proposedmodel. In addition,
the states of the devices and the corresponding situations
are shown with different control inputs. Experimental result
shows that outcomes using this linear model are the same as
logic rules. Although the linear-model results are the same
as logic functions, control can be done easily using linear
model by manipulating the matrix elements. Moreover, if the
infrastructure of smart space is changed, then it can be easily
adopted because environmental factors are represented by
matrix elements and the relation between every variable is
expressed by the coefficientmatrix.Thismodel can be applied
in an Internet of Things platform whereby correspondence
between devices is necessary for a number of purposes. In
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Data: input-state coefficient matrix 𝐶, state-output coefficient matrix𝐻, at a given
time, List of input 𝐼, List of state 𝑆, input vector 𝑢, state vector 𝑥
Result: Situation 𝑦
(1) 𝑥, 𝑢 initialization;
/∗ Next state calculation ∗/
(2) for 𝑖 = 1 to 𝑞 do

/∗ 𝑞 is the total no. of inputs in list of input 𝐼 ∗/
(3) 𝑢 = 𝑢 ⊗ 𝐼

𝑗
;

(4) end
(5) 𝑥 = 𝐶 × 𝑥 ⊗ 𝑢;
(6) for 𝑗 = 1 to 𝑙 do

/∗ 𝑙 is the total no. of inputs in list of input 𝐼 ∗/
(7) 𝑥 = 𝑥 ⊗ 𝑆

𝑗
;

(8) end
(9) 𝑦 = 𝐻 × 𝑥;

Algorithm 1: Linear model (𝐶,𝐻, 𝑢, 𝑥).

1 2 3 4 50
Device at “ON” state

0

1

2

3

4

5

Si
tu

at
io

n

Device-1 manipulated
Device-2 manipulated
Device-3 manipulated
Device-4 manipulated

Device-1 linear model
Device-2 linear model
Device-3 linear model
Device-4 linear model

Figure 3: Representation of a situation with corresponding devices
at “ON” states.

Table 2: Logic rules for situation.

Rules for situation

(i) If 𝑥
1
∧ ¬𝑥
2
∧ ¬𝑥
3
∧ ¬𝑥
4
= True

then 𝑦
1
= True

(ii) If 𝑥
1
∨ 𝑥
2
∨ 𝑥
3
∧ ¬𝑥
4
= True

then 𝑦
2
= True

(iii) If 𝑥
1
∨ 𝑥
2
∧ ¬𝑥
3
∧ ¬𝑥
4
= True

then 𝑦
3
= True

(iv) If ¬𝑥
1
∧ 𝑥
2
∨ 𝑥
3
∨ 𝑥
4
= True

then 𝑦
4
= True

this modeling, all of the logical variables are represented by
the values of 1 or 0. In the future, 𝑘-value logic will be used to
express the logic variable more effectively.
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