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Parameter estimation of chirp signal, such as instantaneous frequency (IF), instantaneous frequency rate (IFR), and initial phase
(IP), arises in many applications of signal processing. During the phase-based parameter estimation, a phase unwrapping process
is needed to recover the phase information correctly and impact the estimation performance remarkably. Therefore, we introduce
support vector regression (SVR) to predict the variation trend of instantaneous phase and unwrap phases efficiently. Even though
with that being the case, errors still exist in phase unwrapping process because of its ambiguous phase characteristic. Furthermore,
we propose an SVR-based joint estimation algorithm and make it immune to these error phases by means of setting the SVR’s
parameters properly. Our results show that, compared with the other three algorithms of chirp signal, not only does the proposed
one maintain quality capabilities at low frequencies, but also improves accuracy at high frequencies and decreases the impact with
the initial phase.

1. Introduction

Chirp signals, that is, second-order polynomial phase signals,
are common in various areas of science and engineering.
For example, in a synthetic aperture radar (SAR) system,
when the target is moving, the regulated signals will change
into chirp ones after being reflected [1]. The SAR imaging
quality may be degraded by shifting and/or defocusing
due to inaccurate estimation of instantaneous frequency
(IF) and instantaneous frequency rate (IFR), respectively
[2]. In optical communications, coding or instability of the
laser diode results in chirp phenomenon [3]. The research
on estimating these chirp parameters is divided into two
parts: one is based on cubic phase function (CPF), even
high-order phase function (HPF) [4–6] and the other is
based on maximum likelihood (ML) [7–9]. The former has
the advantage in fast calculation of IFR, but costs more
to find IF. The latter tries its best to maximize an ML
function mainly in frequency domain, which involves a two-
dimensional nonlinear optimization. Unfortunately, there
is no exact, closed-form solution for solving this general
nonlinear programming problem.The solution either resorts
to a burdensome numerical search or is approximated by

linearized techniques. Djuric and Kay proposed an efficient
time-domainML estimator [10], which can achieve optimum
estimation at a moderate complexity. By extending the phase
noise model of [11] to chirp signals, Li et al. derived an
improved ML estimator and analyzed its performance in the
time domain [12, 13]. However, both of them are suitable
only at high signal-to-noise ratio (SNR), for the reason of
approximations of noise phase model and imperfections in
phase unwrapping process.

By introducing structural risk minimization (SRM) prin-
ciple, support vector regression (SVR) exhibits excellent
capabilities for generalizing and learning. From the viewpoint
of the quadratic relationship between absolute signal phase
and time series, therefore, this paper employs SVR to unwrap
phases and estimate IF and IFR recursively. We avoid taking
the rationality of phase noise model into account by not
making any approximations in it. At one time, we reduce the
estimation performance’s dependence on phase unwrapping
process with a proper choice of SVR’s parameters. It has been
shown that, except for the property of low sensitivity to initial
phase and closely approaching the Cramer-Rao lower bound
(CRLB) at low frequencies, the proposed algorithm improves
its estimation performance at high frequencies.
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2. The Proposed Algorithm

2.1. Signal Model. The signal model used here is similar to
that in [10, 12]. The complex, baseband chirp signal polluted
by noise is modelled as
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A more reasonable model proposed in [12] is given:
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2.2. SVR-Based Phase Unwrapping Process and Frequency
Estimation Algorithm. In (5), there are two approximations
still existing. Based on the quadratic relation in (3), this
paper utilizes SVR’s excellent capability for learning unknown
models to unwrap phases and estimate frequency. We yield a
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where 𝜀
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𝑇 is a transpose operator, and 𝐶 is a positive constant

to take compromise in SVR’s generalization capability and
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Figure 1: Recursive implementation of SVR-based algorithm.

Equation (9) is a strict convex quadratic programming
(QP) problem in optimal theories. Then, using Lagrange
multiplier method:
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Figure 2: (a) Arbitrary phase unwrapping processes with𝑓
𝑑
= 0.1, 𝑓

𝑟
= 0.05, 𝜙 = 0,𝑁 = 32, and SNR = 8 dB. (b)Arbitrary phase unwrapping

processes with 𝑓
𝑑
= 0.3, 𝑓

𝑟
= 0.05, 𝜙 = 0,𝑁 = 32, and SNR = 8 dB. (c) Arbitrary phase unwrapping processes with 𝑓

𝑑
= 0.1, 𝑓

𝑟
= 0.2, 𝜙 =

0,𝑁 = 32, and SNR = 8 dB.
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Figure 3: (a) MSE of IF with 𝑓
𝑑
= 0.1, 𝑓

𝑟
= 0.05, 𝜙 = 0, and𝑁 = 32. (b) MSE of IF with 𝑓

𝑑
= 0.3, 𝑓

𝑟
= 0.05, 𝜙 = 0, and𝑁 = 32. (c) MSE of

IF with 𝑓
𝑑
= 0.1, 𝑓

𝑟
= 0.2, 𝜙 = 0, and𝑁 = 32.

2.3. SVR’s Parameter Settings. Setting SVR’s parameters is a
difficult problem, but has a pronounced impact on SVR’s per-
formance, for example, insensitive loss coefficient 𝜀, penalty
factor 𝐶. There is no complete theoretical basis or explicit
closed form. Cross-validation is a widely used method until
now, but it is complex and time consuming. In this study, we
formulate proper parameter values by understanding SVR’s
theory and integrating a large number of references and
experiments.

When 𝑘 is small, imperfect phase unwrapping at a
particular time point can easily have an impact on the
variation trend of 𝑓(𝑥). In order to avoid this discrepancy,
a new model must be constructed with the aptitude of
better generalization capability. As 𝑘 increases, its necessity
decreases contrarily, which is due to the degrading impact of

improperly unwrapped phase. Simple speaking, the model’s
generalization capability is inversely proportional to the size
of the set 𝑆.

Intuitively, insensitive loss coefficient 𝜀 is the vertical
height of 𝜀-tube. The larger 𝜀 is, the less support vectors
there are. Nevertheless, too large 𝜀 will cause unfixable 𝑏.
Noted that, if the predicted phase is in the vicinity of 𝜋’s
odd times, the estimation performance is deteriorated rapidly
for its ambiguous phase characteristic. Selecting a proper
𝜀 can reduce this impact. At the same time, 𝜀 is inversely
proportional to SNR, so insensitive loss coefficient at time
point 𝑘 (1 ≤ 𝑘 ≤ 𝑁) is given by [14]

𝜀
𝑘
= 𝜏√

1

SNR
ln 𝑘
𝑘

, 𝑘 = 1, . . . , 𝑁, (13)
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Figure 4: (a) MSE of IFR with 𝑓
𝑑
= 0.1, 𝑓

𝑟
= 0.05, 𝜙 = 0, and𝑁 = 32. (b) MSE of IFR with 𝑓

𝑑
= 0.3, 𝑓

𝑟
= 0.05, 𝜙 = 0, and𝑁 = 32. (c) MSE

of IFR with 𝑓
𝑑
= 0.1, 𝑓

𝑟
= 0.2, 𝜙 = 0, and𝑁 = 32.

where 𝜏 is a positive constant, and 𝜏 = 0.8 is set in this study
after experimental comparisons and validations, and SNR is
assumed to be known.

Penalty factor 𝐶 controls the penalty degree of vectors
outside the 𝜀-tube and determines SVR’s generalization capa-
bility. 𝐶 is directly proportional to the sample size and SNR.
As (12) is a line in a two-dimension plane, the first item of
target function during solving SVR’s QP problem is directly
proportional to its slope; so a very small 𝐶 will result in a
horizontal and underfitting 𝐶. Inspired by [14, 15], penalty
factor at time point 𝑘 (1 ≤ 𝑘 ≤ 𝑁) is given by

𝐶
𝑘
= 𝛿√SNR 3√𝑘max (


𝑔
𝑘
− 𝜆𝜎
𝑘





,




𝑔
𝑘
+ 𝜆𝜎
𝑘





) ,

𝑘 = 1, . . . , 𝑁;

(14)

where 𝑔
𝑘
= (1/𝑘)∑

𝑘−1

𝑛=0
|𝑦
𝑛
|
2

, 𝜎
𝑘
= √(1/𝑘)∑

𝑘−1

𝑛=0
(|𝑦
𝑛
|
2

− 𝑔
𝑘
)

2,
𝑦
𝑛
= ∠𝑟
𝑛−1

is a section of the element of training set 𝑆
𝑘
; as

(13), SNR is assumed to be known; 𝛿, 𝜆 are positive constants
and 𝛿 = 0.1, 𝜆 = 0.5 are set in this study, by the same way as
𝜏.

3. Results and Analyses

We have compared the proposed algorithm entitled as SVR
estimator with the other three: the HPF estimator proposed
in [6]; the DK estimator proposed in [10]; the LFK estimator
proposed in [12].

3.1. Phase Unwrapping Process. Because HPF estimator does
not need the phase unwrapping process, Figure 2 illustrates
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the arbitrary phase unwrapping processes of the other three,
while 𝑓

𝑑
= 0.1, 𝑓

𝑟
= 0.05, 𝑓

𝑑
= 0.3, 𝑓

𝑟
= 0.05, and 𝑓

𝑑
=

0.1, 𝑓
𝑟
= 0.2. The number of Monte Carlo experiments is

10000, and 𝜙 = 0, 𝑁 = 32, and SNR = 8 dB. It is shown
that SVR estimator can unwrap phase accurately, whatever
the value of 𝑓

𝑑
and 𝑓

𝑟
is. However, errors emerge in DK and

LFK ones as 𝑓
𝑑
and 𝑓

𝑟
increase.

3.2. Estimation Performance. Figures 2, 3, and 4 illustrate the
MSE curves of IF and IFR versus SNR, respectively, where
MSEs are defined as 𝐸[( ̂𝑓

𝑑
− 𝑓
𝑑
)

2

], 𝐸[(
̂
𝑓
𝑟
− 𝑓
𝑟
)

2

], ̂𝑓
𝑑
,
̂
𝑓
𝑟
are

the estimation values of 𝑓
𝑑
, 𝑓
𝑟
. CRLBs are given by [12]

CRLB
𝑓𝑑
=

1

SNR
6 (8𝑁 − 11) (2𝑁 − 1)

(2𝜋)
2

𝑁(𝑁 − 1) (𝑁
3
+ 𝑁
2
− 4𝑁 − 4)

,

CRLB
𝑓𝑟
=

1

SNR
360

(2𝜋)
2

𝑁(𝑁 − 1) (𝑁
3
+ 𝑁
2
− 4𝑁 − 4)

,

CRLB
𝜙
=

1

SNR
3 (3𝑁

2

− 3𝑁 + 2)

2𝑁 (𝑁
2
+ 3𝑁 + 2)

.

(15)

It is shown that whether 𝑓
𝑑
= 0.1, 𝑓

𝑟
= 0.05, 𝑓

𝑑
=

0.3, 𝑓
𝑟
= 0.05, or 𝑓

𝑑
= 0.1, 𝑓

𝑟
= 0.2, SVR estimator is the

best one during both IF and IFR estimations all the while;
also, MSE performances of IF and IFR totally decrease as 𝑓

𝑑

and𝑓
𝑟
increase, but SVR estimator is the most robust and has

had a great advantage already when 𝑓
𝑑
= 0.3, 𝑓

𝑟
= 0.05 or

𝑓
𝑑
= 0.1, 𝑓

𝑟
= 0.2.

3.3. Impact of the Sample Size𝑁. Everything is as in Figure 2
other than 𝑓

𝑑
= 0.1, 𝑓

𝑟
= 0.05; the MSE curves of IF and IFR

of SVR estimator versus SNR while𝑁 is 8, 16, 32, and 64 are
plotted in Figures 5 and 6, respectively. It is clear that as 𝑁
increases, MSE performances of IF and IFR of SVR estimator
are both improved.

3.4. Impact of Initial Phase 𝜙. Everything is as in Figure 3
except that 𝜙 = 0.4𝜋, 0.8𝜋; the MSE curves of IF and IFR
are plotted against SNR in Figures 7 and 8, respectively.
Comparing with Figures 3(a) and 4(a), we can see that SVR
estimator is immune to 𝜙, but the other three are not.

3.5. Computational Complexity. Because we translate SVR
into QP problem and need to search the minimums during
the process, we can not derive the explicit form of the
computational complexity of SVR estimator. So everything
is as in Figure 2 except that the number of Monte Carlo
experiments is 100, SNR is 8 dB, and 𝑓

𝑑
= 0.1, 𝑓

𝑟
= 0.05;

the consuming times are listed in Table 1, while𝑁 is 8, 16, 32,
and 64, respectively. The running computer is ASUS-PC1111
having, Intel(R) Pentium 2.13GHz CPU and 2.00GB RAM.

We can see that SVR estimator’s consuming times are
more than the others’, especially when 𝑁 becomes larger. As
a matter of fact, however, it is acceptable and tolerable.

4. Conclusions

Phase unwrapping process is a key point in phase-based
frequency estimation of chirp signal. Firstly, we adopt SVR
to learn the unwrapped phases at previous time points,
predict the variation trend of phase efficiently, and derive the
estimation value for the next time point. Once acquired, in
terms of relationship between absolute signal phase and time
series, we address a simple and effective frequency estimation
algorithmof chirp signal.Theproposed algorithm completely
exhibits its advantages of higher estimation accuracy, lower
sensitivity of frequency, and initial phase, by sacrificing more
consuming times.

Because SVR predicts the curve’s variation trend merely
in terms of training set which consists of previous points’
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Figure 8: (a) MSE of IFR with 𝑓
𝑑
= 0.1, 𝑓

𝑟
= 0.05, 𝜙 = 0.4𝜋, and𝑁 = 32. (b) MSE of IFR with 𝑓

𝑑
= 0.1, 𝑓

𝑟
= 0.05, 𝜙 = 0.8𝜋, and𝑁 = 32.

Table 1: Consuming time with different𝑁 (ms).

Algorithm 𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

HPF 380 942 3721 10654
DK 203 476 1098 3711
LFK 299 784 2362 8643
SVR 437 1107 4805 13074

values, we even can estimate the frequency of chirp signal
under the nonGaussian condition by the same way.

Stressing that the proposed algorithm learns training set
and gets the approximate values of SVR’s insensitive loss
coefficient 𝜀 and penalty factor 𝐶, as a next step, therefore,
improving SVR’s parameter setting is an important research
point.
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