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This paper focuses on a novel approach for the quasi-plane strain-softening problem of the cylindrical cavity expansion based on
generalized Hoek-Brown failure criterion. Because the intermediate principal stress is deformation-dependent, the quasi-plane
strain problem is defined to implement the numerical solution of the intermediate principal stress. This approach assumes that the
initial total strain in axial direction is a nonzero constant (𝜀

0
) and the plastic strain in axial direction is not zero. Based on 3D failure

criterion, the numerical solution of plastic strain is given. Solution of the intermediate principal stress can be derived byHooke’s law.
The radial and circumferential stress and strain considering the intermediate principal stress are obtained by the proposed approach
of the intermediate principal stress, stress equilibrium equation, and generalized H-B failure criterion. The numerical results can
be used for the solution of strain-softening surrounding rock. In additional, the validity and accuracy of the proposed approach
are verified with the published results. At last, parametric studies are carried out using MATLAB programming to highlight the
influences of the out-of-plane stress on the stress and displacement of surrounding rock.

1. Introduction

Cavity expansion theory has been widely used in Geotech-
nical Engineering such as pressuremeter test and other
geotechnical problems. Based on the Mohr-Coulomb (M-
C) and Hoek-Brown (H-B) failure criteria, many researchers
have solved many engineering problems using the analytical
solution and semianalytical solution. Vesic [1] proposed an
approximate solution based on the Mohr-Coulomb failure
criterion for both spherical and cylindrical cavity expansion
problems. Carter et al. [2] presented an explicit pressure-
expansion relation and derived an analytical solution for
cavity expansion in nonassociated Mohr-Coulomb media.
Durban and Papanastasiou [3], enhanced the solutions of
cylindrical cavity expansion and contraction in pressure
sensitive geomaterials for the Tresca and Mises models, by
incorporating pressure sensitivity in the plastic potential
and effective stress. Durban [4–6] proposed the large strain
and general solutions for pressurized elastoplastic tubes, and

the finite straining of pressurized compressible elastoplastic
tubes, respectively. Papanastasiou and Durban presented the
elastoplastic analysis method of cylindrical cavity problems
in geomaterials. Papanastasiou discussed the influence of
plasticity in hydraulic fracturing. Collins andYu [7] proposed
the solutions for large strain undrained cavity expansion.
Pan and Brown [8] considered the effects of out-of-plane
stress and dilation on the convergence and stability of the
surrounding rock. Cao et al. [9] expanded the solutions on
modified Cam Clay model. Alonso et al. [10] obtained the
self-similar solution for the circular tunnel in strain-softening
rock masses. Lee and Pietruszczak [11] and Park et al. [12]
presented the solutions for the cavity expansion with unload-
ing by finite difference method. Yang and Zou [13] presented
a numerical solution of cavity expansion in the generalized
H-B media. Chen and Abousleiman [14, 15] presented an
analytical solution of cavity expansion based on the modified
Cam-Clay model. Wang et al. [16] studied the influence of
out-of-plane stress on the distribution of stress, strain, and
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displacement based on plane strain assumption. Zhou et
al. [17–19] proposed an analytical solution considering the
influence of the shear stress on cylindrical cavity expansion
in an undrained elastic-perfect soil.

Although some literatures [8, 16–22] focused on the effect
of out-of-plane stress have been published, those studies
assume that the plastic strain in axial direction is zero and
the plastic potential function is simple. For example, Pan and
Brown [8] proposed an approach in which the axial in situ
stress of the plastic zone is deformation-dependent and the
formula for the calculation of intermediate principal stress
was derived, only numerical solution through finite element
method was presented.

In the presented solutions, a numerical stepwise proce-
dure that considers the quasi-plane strain-softening behavior
is adopted and improved, where the deterioration of strength,
deformation, and dilation angle in the plastic region are
considered. The improved constitutive model considers the
strain-softening behavior and the deformation dependence
of intermediate principal stress compatible with generalized
H-B failure criterion.

2. Objective and Scope

The main objective of the present study is to introduce a
novel approach for the mechanical analysis of cylindrical
cavity expansion considering the influence of the axial stress
based on the assumptions of the quasi-plane strain-softening
problem, and the corresponding theoretical solutions for
the deformation-dependent intermediate principal stress and
axial strain are proposed.

3. Methodology

3.1. Definition of the Problem and Assumptions. As shown in
Figure 1, a cylindrical cavity expansion with an initial radius
(𝑎
0
) is subjected to a hydrostatic pressure (𝑝

0
) in rock mass

which is considered as continuous, homogeneous, isotropic,
and initially elastic. The out-of-plane stress (𝜎

𝑧
) along the

axis direction of the cylindrical cavity is also considered. The
cylindrical cavity expands to a radius of 𝑎 as the internal
cavity pressure increases from 𝑝 to 𝑝

𝑖
. Correspondingly, an

element initially located at a distance (𝑟
0
) from the centre of

the cavity wall moves to a new radial position (𝑟). The region
of rockmass around the cylindrical cavity is in the elastic state
when the cylindrical cavity expansion pressure 𝑝 is small. As
the cylindrical cavity expansion pressure 𝑝 increases to the
critical value, the plastic region of rockmass around the cavity
would appear with plastic deformation. If the cylindrical
cavity expansion pressure 𝑝 increases continually, the plastic
flow zone is formed, and the strength of surrounding rock
mass around cavity is reduced to the residual strength. The
cylindrical cavity expands to a radius of 𝑎 as the internal
cavity pressure increases from 𝑝 to 𝑝

𝑖
. The plastic region

around the cylindrical cavity is divided into two areas (i.e.,
plastic strain-softening region (𝑟

𝑝
) and plastic flowing region

(𝑟
𝑠
)). The rock mass beyond the plastic region would remain

elastic.
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Figure 1: Model of the axisymmetric and quasi-plane strain-
softening problem for cylindrical cavity expansion.

3.2. Hoek-Brown Failure Criterion. The generalized Hoek-
Brown failure criterion is adopted and expressed by [22–24]

𝜎
1
= 𝜎
3
+ 𝜎
𝑐
(

𝑚𝜎
3

𝜎
𝑐

+ 𝑠)

𝑎

, (1)

where 𝜎
1
and 𝜎

3
are the major and minor principal stresses,

respectively. 𝜎
𝑐
is the uniaxial compressive strength of the

rock mass. 𝑎, 𝑚, and 𝑠 are the strength parameters of
the generalized H-B failure criterion. These variables are
expressed as 𝑚 = 𝑚

𝑖
exp[(GSI − 100)/(28 − 14𝐷)], 𝑠 =

exp[(GSI − 100)/(9 − 3𝐷)], and 𝑛 = 1/2 + [exp(−GSI/15) −
exp(−20/3)]/6. 𝐷 is a factor that depends on the degree of
disturbance to which the rock has been subjected in terms of
blast damage and stress relaxation. Its value varies between 0
and 1. GSI is the geological strength index of the rock mass,
and its value ranges between 10 and 100.

3.3. Plastic Potential Function. In the paper, the plastic poten-
tial function based on 3D M-C failure criterion is adopted to
obtain the solution of strain. The plastic potential function
proposed by Pan and Brown [8] can be expressed by
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where 𝐼
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2
]. 𝜎
1
, 𝜎
2
, and 𝜎

3
are the major, intermediate,

and minor principal stress, respectively. 𝑛 is the dilation
parameter which is proposed by Pan and Brown [8].

Based on the plastic flow rule, the plastic strain increment
is given by

𝑑𝜀
𝑝
= 𝜆

𝜕𝑓

𝜕𝜎

. (3)
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The increments of major, intermediate, and minor plastic
strains are presented by
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(4)

where 𝜀𝑝
1
, 𝜀𝑝
2
, and 𝜀𝑝

3
are the major, intermediate, and minor

principal strains, respectively. 𝑑𝜆 is the plastic constant.

3.4. Deterioration of Strength and Deformation Parameters of
Surrounding Rock. Based on the research results of Alonso
et al. [10], the strength and deformation parameters of the
strain-softening rock mass are evaluated based on plastic
deformation and are controlled by the deviatoric strain

𝛾
𝑝
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1
− 𝜀
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3
, (5)

where 𝜀𝑝
1
and 𝜀𝑝

3
are the major and minor plastic strains,

respectively.
The physical parameters of the surrounding rockmass are

described according to the bilinear function of plastic shear
strain as follows:
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where 𝜔 represents a strength parameter, such as 𝑚, 𝑠, and
𝑎; 𝛾𝑝
𝑟
is the critical deviatoric plastic strain from which the

residual behavior is first observed and should be identified
through experimentation. The subscripts 𝑝 and 𝑟 represent
the peak and residual values, respectively.

When the axial force is considered as themiddle principal
stress, the elastic modulus and Poisson’s ratio in the plastic
zone of the deformation and stress evolution can be repre-
sented by a piecewise linear function as follows:
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(7)

To take into account the effect of variable dilation in
the plastic region, dilation angle 𝜑(𝛾𝑝) presumably decreases
linearly with strain from its peak value 𝜑

𝑝
at 𝛾
𝑝
= 0 to the

residual value 𝜑
𝑟
at 𝛾
𝑝
= 𝛾
𝑟

𝑝
, as in the following equation:
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where 𝜉
𝑝
and 𝜉
𝑟
are the peak and residual values of the dilation

angle of the rock, respectively; 𝛾𝑝 is the softening parameter;
𝛾
𝑝

𝑟
is the value of the softening parameter that controls the

transition between the softening and residual stages. In (5)–
(8), 𝛾𝑝 is obtained by (5). 𝛾𝑝

𝑟
is the critical deviatoric plastic

strain and should be determined through experimentation.
The corresponding of parameters (𝑚, 𝑠, and 𝑎) are as follows:
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𝜉
𝑝
and 𝜉

𝑟
are the peak and residual values of the dilation

angle of the rock and determined by experiments, respec-
tively. Then, the deterioration parameters of strength and
deformation of surrounding rock are determined [25].

4. Solutions of Stress and Displacement in
Elastic Zone

4.1. Equilibrium Equations and Stress Boundary Conditions.
Under the assumption of small deformation, the rock mass
satisfies the generalized Hooke’s law in the elastic region and
obeys generalized H-B failure criterion in the plastic region.
The stress equilibrium equation of an element near an cavity
wall can be represented by

𝑑𝜎
𝑟

𝑑𝑟

+

𝜎
𝑟
− 𝜎
𝜃

𝑟

= 0, (10)

where 𝜎
𝑟
is the radial stress; 𝜎

𝜃
is the tangential stress.

Stress boundary conditions can be given by

𝜎
𝑟




𝑟=𝑟0

= 𝑝

lim𝜎
𝑟

𝑟→∞

= 𝜎
0
.

(11)

The relationship of the radial and the tangential stresses at
the interface between the elastic and plastic zones is presented
by

𝜎
𝜃
= 2𝜎
0
− 𝜎
𝑅
. (12)
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The radial and the tangential stresses at the elastoplastic
interface are satisfiedwith the yield criterion and can be given
by

𝜎
𝑅
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𝜃
+ 𝜎
𝑐
(

𝑚𝜎
𝜃

𝜎
𝑐

+ 𝑠)

𝑎
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Combination of (12) and (13) leads to

{
{

{
{
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}
}
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}

}
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0
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}
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}
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}

. (14)

4.2. Stress and Strain Solutions. The solutions of stress and
displacement in the elastic zone are expressed as follows [21,
22, 26]:
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(15)

where𝑅 is the plastic radius of surrounding rock, 𝜐 is Poisson’s
ratio, and 𝐺 = 𝐸/2(1 + 𝜐) is the Shear modulus.

5. Stress and Strain in Plastic Region

Analytical solutions of stress and displacement are difficult
to obtain in the strain-softening rock mass, especially con-
sidering the axial stress. In this paper, the quasi-plane strain
and displacement of strain-softening rock mass are solved by
iteration method which is illustrated by Figure 2.

The total plastic region is divided into 𝑛 connect annuli
as shown in Figure 2. The 𝑖th annulus is delimitated by the
internal radiuswith𝜌

(𝑗−1)
= 𝑟
(𝑗−1)
/𝑅 and the outer radiuswith

𝜌
(𝑗)
= 𝑟
(𝑗)
/𝑅. The radius of the first ring is 𝜌

(0)
= 1 which is at

the interface between the elastic region and the plastic zone;
the surrounding rock soil mass remains the critical state of
the plastic.

The increment of radial stress results in the following:

Δ𝜎
𝑟
=

𝑝in − 𝜎𝑅
𝑛

. (16)

So the radial stress can be expressed by

𝜎
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= 𝜎
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+ Δ𝜎
𝑟
. (17)

The corresponding tangential stress is given by
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The axial stress 𝜎
𝑧(𝑖)

proposed by Pan and Brown [8] can
be represented by
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Figure 2: Normalized plastic region with finite number of annuli.

Combination of (17) and (18) leads to

Δ𝜎
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(20)

The elastic strain can be expressed by
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The stress equilibrium equation is given by
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+
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𝜌
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The stress equilibrium differential equation for the 𝑖th
annulus is expressed by
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If the annuli are sufficiently thin in the case of axial
symmetry, then the strain-displacement relationships can be
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described according to the model presented by Brown et al.
[27] as

𝑟
𝑗

𝑟
𝑗−1
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The normalized inner radius is defined as follows:
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Then, (25) is simplified to
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− 𝜀
𝑟(𝑗−1)

− 𝜀
𝑟(𝑗)

. (27)

The stain-displacement relationships can be given by

𝜀
𝑟
=

𝑑𝑢

𝑑𝑟

𝜀
𝜃
=

𝑢

𝑟

.

(28)

The compatibility equation can be written in the general
form as follows:

𝑑𝜀
𝜃

𝑑𝑟

+

𝜀
𝜃
− 𝜀
𝑟

𝑟

= 0. (29)

Combining (26) and (29), the normalized compatibility
equation can be expressed as follows:

𝑑𝜀
𝜃

𝑑𝜌

+

𝜀
𝜃
− 𝜀
𝑟

𝜌

= 0. (30)

The total strain in plastic zone is the sum of the elastic and
plastic strains as follows:

𝜀
𝜃
= 𝜀
𝑝

𝜃
+ 𝜀
𝑒

𝜃

𝜀
𝑟
= 𝜀
𝑝

𝑟
+ 𝜀
𝑒

𝑟

𝜀
𝑧
= 𝜀
𝑝

𝑧
+ 𝜀
𝑒

𝑧
.

(31)

The following equations can be obtained by (30):

𝑑𝜀
𝑝

𝜃

𝑑𝜌

+

𝜀
𝑝

𝜃
− 𝜀
𝑝

𝑟

𝜌

= −

𝑑𝜀
𝑒

𝜃

𝑑𝜌

−

𝜀
𝑒

𝜃
− 𝜀
𝑒

𝑟

𝜌

𝜀
𝑒

𝜃
− 𝜀
𝑒

𝑟
=

1 + V
𝐸

(𝜎
𝜃
− 𝜎
𝑟
)

(32)

𝑑𝜀
𝑝

𝜃

𝑑𝜌

+

𝜀
𝑝

𝜃
− 𝜀
𝑝

𝑟

𝜌

= −

𝑑𝜀
𝑒

𝜃

𝑑𝜌

+

1 + V
𝐸

𝐻(𝜎
𝜃
)

𝜌

. (33)

Combination of (32) and (33) leads to

Δ𝜀
𝑝

𝜃(𝑖)
(

1

Δ𝜌
(𝑖)

+

(𝑘
3
− 𝑘
1
)

𝜌
(𝑖)
𝑘
3

)

=

1 + V
𝐸

𝐻 (𝜎
𝜃(𝑖)
)

𝜌
(𝑖)

−

Δ𝜀
𝑒

𝜃(𝑖)

Δ𝜌
(𝑖)

−

1

𝜌
(𝑖)

(𝜀
𝑝

𝜃(𝑖−1)
− 𝜀
𝑝

𝑟(𝑖−1)
) ,

(34)

where Δ𝜌
(𝑖)
= 𝜌
(𝑖)
− 𝜌
(𝑖−1)

, 𝑘
1
= (√3(2𝜎

1
− 𝜎
2
− 𝜎
3
)/12√𝐽

2
−

1/3)𝑛 + (1/𝜎
𝑐
)(2𝜎
1
− 𝜎
2
− 𝜎
3
), and 𝑘

3
= (√3(2𝜎

3
− 𝜎
2
−

𝜎
1
)/12√𝐽

2
− 1/3)𝑛 + (1/𝜎

𝑐
)(2𝜎
3
− 𝜎
2
− 𝜎
1
).

The increments of the circumferential, radial, and axial
strains can be, respectively, expressed by

Δ𝜀
𝑝

𝜃(𝑖)
=

((1 + V) /𝐸) (𝐻 (𝜎
𝜃(𝑖)
) /𝜌
(𝑖)
) − Δ𝜀

𝑒

𝜃(𝑖)
/Δ𝜌
(𝑖)
− (1/𝜌

(𝑖)
) (𝜀
𝑝

𝜃(𝑖−1)
− 𝜀
𝑝

𝑟(𝑖−1)
)

(1/Δ𝜌
(𝑖)
+ (𝑘
3
− 𝑘
1
) /𝜌
(𝑖)
𝑘
3
)

Δ𝜀
𝑝

𝑟(𝑖)
= Δ𝜀
𝑝

𝜃(𝑖)

𝑘
1

𝑘
3

Δ𝜀
𝑝

𝑧(𝑖)
= Δ𝜀
𝑝

𝜃(𝑖)

𝑘
2

𝑘
3

.

(35)

Then, the total strain can be given by

𝜀
𝜃(𝑖)
= 𝜀
𝜃(𝑖−1)

+ Δ𝜀
𝑒

𝜃(𝑖)
+ Δ𝜀
𝑝

𝜃(𝑖)

𝜀
𝑟(𝑖)
= 𝜀
𝑟(𝑖−1)

+ Δ𝜀
𝑒

𝑟(𝑖)
+ Δ𝜀
𝑝

𝑟(𝑖)

𝜀
𝑧(𝑖)
= 𝜀
𝑧(𝑖−1)

+ Δ𝜀
𝑒

𝑧(𝑖)
+ Δ𝜀
𝑝

𝑧(𝑖)
.

(36)

Therefore, we can obtain the plastic radius as follows:

𝑅 =

𝑟
0

𝜌
(𝑖)

(37)

The displacement at each ring can be obtained by

𝑢 = 𝜀
𝜃(𝑖)
𝑅. (38)

The displacement of the annulus at radius 𝑟
𝑗
is expressed

as

𝑢
(𝑗)
= −𝜀
𝜃(𝑗)
𝑟
(𝑗)
. (39)

The displacements of the annulus at radius (𝑟
𝑗
) and plastic

radius (𝑅) are obtained through the numerical stepwise
procedure in combination with MATLAB.
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Figure 3: Displacement and stress with the different critical values of strain-softening parameters.

Table 1: Results by the proposed approach and Vesic’s solution [1].

𝑟
𝑝
/𝑎
𝑢

2 3 4 5 6 7

𝑝 (MPa) Vesic 21.9 27.6 32.4 36.6 40.4 43.9
H-B 22.8 28.3 33.0 37.0 40.5 43.6

Differences — 4.1% 2.5% 1.9% 1.1% 0.3% 0.7%

6. Validations

To confirm the validity and accuracy of the proposed
approach based on the generalized H-B failure criterion, the
results of the proposed approach are compared with those of
Vesic’s solution [1] for rock mass with the following data: 𝑎

𝑢

= 0.25m, 𝜎
0
= 10MPa, 𝐸 = 5500MPa, V = 0.25, 𝑎 = 0.55, 𝑠 =

0.0039,𝑚 = 1.7, 𝜎
𝑐
= 10MPa, and𝜓 = 0∘ [28]. However, Vesic’s

result [1] for rock mass is based on the M-C failure criteria.
In order to compare the result of the proposed solution,
the technique of the equivalent M-C and generalized H-B
strength parameters is adopted [29].The strength parameters
for the M-C failure criterion are as follows: 𝑐 = 1.36591MPa,
𝜑 = 18.8549MPa.

As seen from Table 1, the expansion pressures of the
proposed approach based on the generalized H-B failure
criterion agree well with those of Vesic’s solution [1]. In the
comparison, the maxim differences of expansion pressure
𝑝 do not exceed 5% for the cylindrical expansion cavity.
The validations show that the numerical stepwise method is
effective in analyzing the cavity expansion problem.

7. Numerical Analysis and Discussions

The stress and displacement of cylindrical cavity with out-
of-plane stress considered are calculated to emphasize the

influences of the out-of-plane stress. In order to study
the effect of strain-softening, dilation parameter, strength
parameter, elastic modulus, and Poisson’s ratio with the out-
of-plane stress considered, several examples are performed in
the proposed solution.

The input data of the proposed solution based on the
generalized H-B failure criterion presented by Sharan [28]
are as follows: 𝜎

0
= 10MPa, 𝐸 = 5500MPa, V = 0.25, 𝑝in =

30MPa, 𝑟
0
= 0.25m, 𝜎

𝑐
= 10MPa, 𝑞 = 10MPa,𝑚

𝑝
= 1.7, 𝑠

𝑝
=

0.0039, 𝑎
𝑝
= 0.55,𝑚

𝑟
= 0.8, 𝑠

𝑟
= 0.0019, 𝑎

𝑟
= 0.5.

7.1. Effects of the Strain-Softening Parameters. Softening
parameters are important characteristic of strain-softening
surrounding rock. Its value can be acquired from two meth-
ods. One is determined by the plastic shear strain 𝛾𝑝 = 𝜀𝑝

1
−𝜀
𝑝

3
,

and the other is to use the principal strain to determine 𝜀𝑝
1
. In

order to analyze the influence of softening parameters, four
cases are analyzed using the proposed approach (i.e., Case 1:
𝛾
𝑝 = 0; Case 2: 𝛾𝑝 = 0.004; Case 3: 𝛾𝑝 = 0.012; Case 4: 𝛾𝑝 =

100). The results are shown in Figure 3.
Figure 3 illustrates that the values of stress and displace-

ment decrease with the softening parameter (𝛾𝑝) increasing.
It can be seen from Figure 3 that the displacements of
the proposed approach would be reduced significantly if
𝛾
𝑝 increases from 0 to 100. For example, displacement is

0.041m, 0.033m, and 0.013m when 𝛾𝑝 equals 0, 0.004, and
100, respectively. The reduction of the displacement is 28% if
𝛾
𝑝 increases from 0 to 0.004.

7.2. Effect of Dilation Parameters. In order to examine the
effects of dilation parameters that consider out-of-plane
stress, four cases are performed using the proposed approach
(i.e., Case 1: 𝑛 = 0.1; Case 2: 𝑛 = 1; Case 3: 𝑛 = 2; Case 4:
𝑛 = 4). The results are shown in Figures 4 and 5.
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Figure 4: Displacement and stress with the different dilation parameters.
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The effects of dilation parameters on the displacement
and stress considering out-of-plane stress are significant. As
shown in Figure 4, displacements of this study decreases from
0.033m to 0.015m with dilation parameters increasing from
0.1 to 4 and it reduces by Δ = (0.033 − 0.015)/0.033 × 100% =
54.5%.Therefore, the effects of dilation parameters should be
taken into account carefully.

Figure 5 demonstrates the relationship between the dis-
placements of cavity and the dilation parameter. The dis-
placements decrease continuously with the increasing of the
dilation parameter. However, when the dilation parameter
is greater than 3.0, the displacements decrease slightly. But
the displacements decrease significantly when the dilation
parameter ranges from 0 to 3.0. Therefore, the effect of
dilation parameter changes with different dilation parameter.

7.3. Effects of Strength Parameters. In order to detect the effect
of strength parameter (𝑚) on stress and displacement, three
different cases are analyzed using the proposed approach.
They are Case 1: 𝑚

𝑝
= 𝑚
𝑟
= 0.8; Case 2: 𝑚

𝑝
= 1.7, 𝑚

𝑟
= 0.8;

Case 3:𝑚
𝑝
=𝑚
𝑟
= 1.7. The results are shown in Figure 6.

It is shown from Figure 6 that the effect of strength
parameter on stress and displacement is significant, and all of
themdecrease with strength parameter increasing.Moreover,
the plastic radius as shown in Figure 6(a) is 1.423m and
0.853m when 𝑚

𝑝
and 𝑚

𝑟
equal 0.8 and 1.7, respectively. It

can be seen from Figure 6(b) that the displacement decreases
from 0.050m to 0.014m with strength parameters increasing
from 0.8 to 1.7. Thus, the effects of strength parameter on
stress and displacement are significant.

7.4. Effects of Elasticity Modulus. To identify the effect of
modulus of elasticity on the stress and displacement, three
different cases are analyzed using the proposedmethod.They
are Case 1: 𝐸

𝑝
= 𝐸
𝑟
= 3500; Case 2: 𝐸

𝑝
= 5500, 𝐸

𝑟
= 3500; Case

3: 𝐸
𝑝
= 𝐸
𝑟
= 5500. The results are depicted in Figure 7.

The effect of the elastic modulus on the displacement
that considers out-of-plane stress is significant, while the
influence of the elastic modulus on stress is insignificant. As
shown in Figure 7, the displacement decreases from 0.056m
to 0.014m as the elastic modulus increases from 3500MPa to
5500MPa. However, the stresses for three different cases are
relatively steady. Therefore, the effects of elastic modulus on
displacement should be taken into consideration.

7.5. Effects of Poisson Ratio. To determine the effects of
Poisson’s ratio on stress and displacement, the results are
shown in Figure 8, for three different cases of Poisson’s ratio
using the proposed approach: Case 1: V

𝑝
= V
𝑟
= 0.25; Case 2:

V
𝑝
= 0.35, V

𝑟
= 0.25; Case 3: V

𝑝
= V
𝑟
= 0.35.
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Figure 7: Displacement and stress with the different elastic modulus.

Apparently, it can be seen from Figure 8 that variations
of different curves are very small. Hence, Poisson’s ratio has
little effect on the stress and displacement. For example,
displacements vary from 0.033m to 0.031m, and plastic
radius varies from 1.122m to 1.118m as V increase from 0.25
to 0.35.

8. Conclusions

Solutions of stress, displacement, and plastic radius for
cylindrical cavity expansion were proposed by considering

out-of-plane stress and the quasi-plane strain-softening prob-
lem based on the generalized Hoek-Brown failure criterion.
The intermediate principal stress is obtained by 3D plastic
potential function and Hooke’s law, which is deformation-
dependent. The validity and accuracy of the proposed solu-
tion are confirmed by Vesic’s solution [1]. Furthermore,
the effects of strain-softening, dilation parameter, strength
parameter, elasticmodulus, andPoisson’s ratio on stresses and
displacement of cavity expansion are studied with the new
approach.
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