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We first experimentally collect conductance fluctuation signals of oil-in-water two-phase flow in a vertical pipe. Then we detect
the flow pattern asymmetry character from the collected signals with multidimensional time irreversibility and multiscale
time irreversibility index. Moreover, we propose a novel criterion, that is, AMSI (average of multiscale time irreversibility), to
quantitatively investigate the oil-in-water two-phase flow pattern dynamics. The results show that AMSI is sensitive to the flow
pattern evolution that can be used to predict the flow pattern transition and bubble coalescence.

1. Introduction

Oil-in-water two-phase flow widely exists in petroleum
industry such as crude oil production and transportation.
Due to the existence of fluid turbulence and phase interfacial
interaction, themixed fluid often exhibits complex behaviors.
In particular, under very low mixture velocity, the existence
of bubble coalescence phenomenon leads to more complex
fluid dynamics. In this regard, characterizing the oil-in-
water two-phase flow structure and dynamics is still quite a
challenging problem which is helpful for the flow parameters
measurement and pipe pressure drop prediction.

Study on oil-in-water two-phase flow dates back to the
1960s, and early researchers’ main focus is on the flow
pattern observation anddefinition.Govier et al. [1] first define
the dispersed oil phase in 1.04-inch inner diameter pipe
as oil bubble and slug. Then Flores et al. [2] redefine the
dispersed oil phase as three different flow patterns, that is,
slug flow, bubble flow, and dispersed bubble. This definition
for dispersed oil phase is more elaborate that has been
approved by several researchers [3, 4]. Recently, researchers
are more concerned about oil-in-water two-phase flow under
certain flow conditions, such as two-phase flow in bend pipe

[5], two-phase flow in microchannels [6], and high-viscosity
oil-water two-phase flow [7]. In addition, more advanced
experimental methods are adopted to explore the oil bubble
characteristics.Themethods such asminiprobe detection [8],
high speed photography [9], microwave measurement [10],
process tomography [11], and PIV technology [12] have been
applied to study the characteristics of oil-in-water two-phase
flow.

In recent years, characterizing complex systems from
time series has attractedmuch attention [13, 14].These signals
are time series that are collected to reflect the conductance or
pressure fluctuations of the mixed fluid. Note that adopting
different signal processing methods would reveal different
aspects of flow characteristics. For example, time-frequency
method [15] focuses on revealing the motion behaviors of
dispersed phase, wavelet analysis [16] and Hilbert-Huang
transform method [17] mainly reflect the multiscale and
polymorphism dynamics, and nonlinear information anal-
ysis techniques [18] are advanced in complex fluid dynamic
indication. It is worth noting that complex network has been
proved to be an effective tool to characterize the system
dynamics [19–21], and the fluid dynamic can also be revealed
with mapping the fluctuating signals to networks [22–26].
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In general, the flow dynamics revealed from experiment
fluctuation signals are less affected by flow condition such as
flow rate, pipe diameter, and pipe direction; these methods
have attracted many researchers’ attention in recent years.

It is a remarkable fact that under lowmixture velocity the
oil-in-water two-phase flow exhibits quite complex dynamics.
First, the fluid exhibits spatial asymmetry structure due to the
bubble coalescence.How to characterize this fluid asymmetry
is still a difficult problem. In addition, how to effectively
characterize the flow pattern transition phenomenon, for
example, from slug flow to bubble flow, is still unsolved.
Therefore, developing a reliable tool to characterize the oil-
in-water two-phase flow dynamics and flow pattern evo-
lution character is quite a necessary issue. Recently, time
irreversibility index has been proved to be a powerful tool
to detect system dynamics and quantify the existence of
system disequilibrium [27]. If the statistical properties of a
time series are invariant with respect to time reversal, we
can say that this time series is reversal. Otherwise it is time
irreversible. Till now, many indexes have been proposed to
quantify the time series irreversibility of a complex system,
such as multiscale time irreversibility [27–31], symbolic time
series irreversibility [32], time irreversibility extracted from
Poincaré plot [33–35], complex network time irreversibility
[36, 37], and time irreversibility in high dimensional space
[38, 39]. The scientific and engineering applications of time
series irreversibility also involve many fields including finan-
cial system [40, 41], human heart rate [42–44], human brain
[45], and seismicity [46]. Employing the time irreversibility
index to analyze the two-phase flow fluctuating signals can
effectively reveal the flow pattern formation, coalescence,
and evolution characteristics. Also, the time irreversibility
index can be an indicator for the flow pattern transition
phenomenon, for example, from slug to bubble.

In this paper, we first carry out low flow rate oil-water
two-phase flow experiment in vertical 20mm inner diameter
Plexiglass pipe and the conductance fluctuation time series
which reflect the oil-in-water two-phase flow characteristics
have been collected.Thenwe investigate the time irreversibil-
ity of the collected fluctuation series. Note that the dimension
of an oil-water two-phase system is typically 5 or more [47];
we use Casali’s multiple testing strategy [38] to detect the oil
bubble flow time irreversibility. Multiscale analysis method
has also been employed to the time irreversibility detection,
considering that oil-water two-phase flow dynamics can
be revealed more clearly under different scales [48–50].
Moreover, we propose a novel criterion, that is, average
of multiscale time irreversibility (AMSI) to quantitatively
characterize the two-phase flow system time irreversibility.
The results suggest that AMSI can be a sensitive indication
to predict the flow pattern transition phenomenon.

2. Experiments and Data Acquisition

2.1. Experimental Setup. We carried out the low flow rate oil-
water two-phase flow experiment in a vertical 20mm inner
diameter Plexiglass pipe. As shown in Figure 1, the oil-water
two-phase flow loop consists of a water tank, an oil tank, a
mix tank, two peristaltic metering pumps, and testing pipes.
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High speed
camera

Four-ring 
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1800mm

Figure 1: Schematic of oil-water flow loop facility.

During the experiment, the two phases, that is, oil and water,
are first pumped out from the tanks, respectively, and mixed
in the horizontal pipe section.Then themixed fluid flows into
the vertical test pipe, on which the measurement facility and
sensor are installed. After the flowparameters and fluctuation
measurement are done, the mixed fluid is drained into the
mix tank to separate. The peristaltic pumps we used in the
experiment are high precision metering pump, which can
ensure precision of inlet flow rate and phase fraction.

In the experiment we employ a four-ring conductance
sensor to collect the fluctuation signals. As shown in Figure 2,
the sensor consists of four stainless steel pieces which are
axially separated and flush mounted on the inside wall of
the testing pipe. E1-E2 are the excitation electrodes that
connected to a 20KHz sinusoidal signal. H1-H2 are the
measuring electrodes and the conductance fluctuating signals
measured from H1-H2 are mainly correlated with the fluid
fluctuations and dynamics.The detailed description of sensor
geometry and working principle refers to our previous
literatures [4, 51]. During the experiment, we also use a high
speed digital camera to take snapshots of the fluid to identify
the flow patterns and monitor the flow state.

The experimental schedule is as follows: we first fix the
value of water phase fraction and then gradually increase the
total velocity of the oil-water mixture flow. When the total
flow rate reaches a preset value, the conductance fluctuation
signal is collected. In the experiment, thewater phase fraction
is in the range of 70%–100%, while the mixture total flow rate
was set at 0.01842m/s, 0.03684m/s, 0.07368m/s, 0.11052m/s,
0.14737m/s, 0.18421m/s, and 0.22105m/s, respectively. The
experiential mediums were tap water and white oil with a
density of 856 kg/m3 and a viscosity of 11.984 cP (40 1C).
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Figure 2: The four-ring conductance sensor. (a) Schematic of the sensor. (b) Real photo of the sensor.

The fluctuation signals from four-ring conductance sensor
were recorded by National Instrument Corporation’s data
acquisition card PXI 4472 which operated by LabVIEW
software. During the experiment, we set the sampling rate as
6000 and the sampling duration as 30 s.

2.2. Flow Patterns and the Collected Conductance Fluctuation
Signals. In the experiment we observed three kinds of oil
dispersed flow patterns, that is, oil slug flow, oil bubble flow,
and the very fine dispersed oil bubble flow (VFDbubble flow).
The collected typical conductance signals under different
mixture velocity are shown in Figure 3. Oil slug flow is the
flow pattern that often occurs in very lowmixture velocity. In
this situation, the dispersed oil phase coalesces into oil slugs.
With the aid of high speed camera, we observed that the oil
slugs intermittently pass through the vertical testing pipe, and
the intervals between two slugs exhibit some disequilibrium.
As shown in Figure 3, the conductance signals of oil slug flow
showobvious intermittent fluctuations indicating the large oil
slugs passing through the sensitive area of the sensor.We also
observed that the slug fluctuation amplitude is much higher
than that of the other two flow patterns.

With increasing the total mixture velocity, the flow
pattern changes to oil bubble flow. From the snapshots
taken by high speed camera we find that the oil phase of
bubble flow is distributed in the continuous water phase in
the form of discrete bubbles, and the random motions of
oil bubbles resulting in the conductance fluctuation signals
show stochastic character. With even more increasing of the
total mixture velocity, the discrete oil bubbles change to
very small oil droplets that are uniformly distributed in the
continuous water phase which is known as VFD bubble flow.
The fluctuation signals of this flow pattern are noise-like but
with even lower fluctuation amplitude than that of oil bubble
flow.
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Figure 3: The conductance signals of three typical flow patterns.

3. Multiscale Time Irreversibility Index in
𝑚-Dimensional Phase Space

Note that the underlying flow dynamics of oil-in-water two-
phase flow can be revealedmore clearly and efficiently inmul-
tidimensional phase space; we employ Casali’s multitesting
strategy [38] to detect the𝑚-dimensional time irreversibility
of the oil-in-water two-phase flow. In addition, we extend
this𝑚-dimensional time irreversibility index with multiscale
method, in the sense that oil-water two-phase flow exhibits
various flow dynamics on different scales.
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3.1. Multiple Testing Strategy for Irreversibility. Given a time
series𝑥(𝑖) = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}, the reconstructed𝑚-dimensional

vector can be expressed as
𝑋 (𝑡) = [𝑥 (𝑡) , 𝑥 (𝑡 + 𝜏) , . . . , 𝑥 (𝑡 + (𝑚 − 1) 𝜏)] , (1)

where 𝜏 refers to the delay time and𝑚 refers to the embedded
dimension.The irreversibility of a time series in the bidimen-
sional space can be revealed by quantified distribution of data
points in the bidimensional plane (𝑥(𝑖), 𝑥(𝑖 + 1)) [33] or can
be extracted by the probability characteristics of increments
time series 𝑦(𝑡) = 𝑥(𝑖 + 1) − 𝑥(𝑖) [27]. In order to detect
multidimensional time irreversibility of a complex system,
Casali et al. [38] first project the reconstructed phase space
on to any orthogonal two-dimensional plane (𝑥(𝑖), 𝑥(𝑖 + 𝐿)),
where 𝐿 = 0, . . . , 𝑚 − 1; then the 𝑚-dimensional time
irreversibility can be evaluated by analyzing data distribution
in each two-dimensional plane.

Here we employ Costa’s index [27] to detect the time
irreversibility of each projected plane. First we map the
projections in each plane into increment series:

𝑦
𝐿
(𝑖) = 𝑥 (𝑖 + 𝐿) − 𝑥 (𝑖) , 1 < 𝑖 ≤ 𝑛 − 𝑚 + 1, (2)

where 𝑦
𝐿
(𝑖) refers to the increment series of plane (𝑥(𝑖), 𝑥(𝑖 +

𝐿)), and the time irreversibility index of this plane can be
defined as follows:
𝐴 (𝐿)

=

∑
𝑦𝐿>0
𝑃 (𝑦
𝐿
) ln [𝑃 (𝑦

𝐿
)] − ∑

𝑦𝐿>0
𝑃 (𝑦
𝐿
) ln [𝑃 (𝑦

𝐿
)]

∑
𝑦𝐿
𝑃 (𝑦
𝐿
) ln [𝑃 (𝑦

𝐿
)]

.

(3)

In (3) Shannon entropy is adopted to evaluate the system
irreversibility, where 𝑃(𝑦

𝐿
) denotes the probability of the

value 𝑦
𝐿
. Histogram of 𝑦

𝐿
is calculated to get the probability

𝑃(𝑦
𝐿
), and bin size is selected as the inverse of the signal

sampling frequency. The number of data points in each bin
and the bin number give the probability 𝑃(𝑦

𝐿
) = 𝐻(𝑛)/𝑁,

where𝐻(𝑛) refers to the number of positive or negative data
points in each bin and 𝑁 refers to the divided bin number.
𝐴(𝐿) denotes the time irreversibility in plane (𝑥(𝑖), 𝑥(𝑖 + 𝐿)).
The time irreversibility of an𝑚-dimensional complex system
then can be quantified by the following equation:

𝑅 =

1

𝑚 − 1

𝑚−1

∑

𝐿=1

𝐴 (𝐿) . (4)

The system irreversibility can be characterized by (4). If 𝑅
equals 0, the system is reversible, and themore𝑅 deviate from
0 the more irreversible the system is.

3.2. Multiscale Time Series Irreversibility. Complex systems
always exhibit various behaviors at different scales, so it is an
effectiveway to characterize the systemdynamics frommulti-
scale prospective. In this paper we extend themultiple testing
strategy [38] for irreversibility with multiscale method [27].
First, we map the original time series 𝑥(𝑖) = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}

to coarse-grained time series as follows:

𝑧
𝑠
(𝑗) =

1

𝑠

𝑗𝑠

∑

𝑖=(𝑗−1)𝑠+1

𝑥 (𝑖) , 1 ≤ 𝑗 ≤

𝑛

𝑠

, (5)

where 𝑧𝑠(𝑗) denotes the coarse-grained time series at scale 𝑠.
Then by using 𝑧𝑠(𝑗), we can calculate the𝑚-dimensional time
irreversibility at each scale with (4):

𝑅 (𝑠) =

1

𝑚

𝑚−1

∑

𝐿=1

𝐴
𝑠
(𝐿) , (6)

where 𝑅(𝑠) refers to the 𝑚-dimensional time irreversibility
at scale 𝑠 and 𝐴

𝑠
(𝐿) denotes the time irreversibility index in

projected plane (𝑥(𝑖), 𝑥(𝑖 + 𝐿)) at scale 𝑠. With this defined
multiscale 𝑚-dimensional time irreversibility, we can detect
the system disequilibrium in the multidimensional space
which would provide rich dynamic information. In addition,
adopting multiscale strategy provides a new way to reveal
the system asymmetry from micro to the macro, which can
characterize the complex system more precisely and clearly.

We now demonstrate how to quantitatively characterize
the system disequilibrium with the average value of multi-
scale irreversibility (AMSI). This quantitative index can be
expressed as follows:

AMSI =
𝑘

∑

𝑠=1

𝑅 (𝑠) , (7)

where AMSI refers to the average value of multiscale irre-
versibility and the scale range is from 1 to 𝑘.

4. Time Irreversibility Dynamics of
Oil-in-Water Two-Phase Flow

4.1. Multidimensional Phase Space of Dispersed Oil Bubble
and Slug Fluctuating Signals. With the defined multiple time
irreversibility testing strategy, we explore the disequilibrium
and underlying dynamics of three typical flow patterns, that
is, oil slug flow, oil bubble flow, and very fine dispersed
oil bubble flow. According to the embedded theory and the
previous study of oil-water two-phase flow at similar flow
conditions [47], we here choose the embedded dimension
𝑚 = 5 and delay time 𝜏 = 6ms. Figure 4 shows the return
maps of three different oil-water two-phase flow patterns at
each projected two-dimensional plane. In order to spread the
attractor and get a clear view, in Figure 4, we use coarse-
grained signals at scale 20 to reconstruct the phase space.
As we can see, the return map of slug flow shows up as
obvious evolution trajectory and the range of the data points
is relatively wider than that of the other two flow patterns,
indicating the large signal fluctuations caused by the existence
of oil slugs. The data range of oil bubble flow decreases
comparing to that of the oil slug flow, due to the lower
signal fluctuating amplitude. Also, we find that there still exist
trajectories in the returnmap, indicating the existence of large
oil bubbles formed by the bubble coalescence. Data points of
VFDoil bubble flow are uniformly distributed in even smaller
range, which show the stationary and stochastic character of
small dispersed oil droplets. In Figure 4, the return maps in
different projection plane contain rich dynamic information.
Detecting the flow pattern disequilibrium from different
projected plan can provide a novel way to characterize the
flow pattern dynamic and evolution characteristic.
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Figure 4: Return maps of three typical flow patterns at each projected two-dimensional plane. Each column represents the orthogonal
projected planes of a typical flow pattern.

We also adopt the surrogate data approach [52, 53] to
check the irreversibility of the collected fluctuation signals.
Each of the 120 collected fluctuation signals has been used
to generate surrogate data; thus a set of 120 surrogate types
of data have been obtained. Figure 5 shows the return map
of typical surrogate data and original signals for slug flow

and bubble flow. We find that the original signals of oil slug
flow demonstrate clear asymmetry while the surrogate data
of slug flow shows symmetry.This indicated the irreversibility
feature of oil slug flow.What is more, compared to that of slug
flow, original signals of bubbly flow show less asymmetry in
the sense of the uniform distribution of oil bubbles.
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Figure 5: Return map of original signal and surrogate data. (a) Typical surrogate data of slug flow, (b) typical original signal of slug flow, (c)
typical surrogate data of bubble flow, and (d) typical original signal of bubble flow.

The irreversibility index (AMSI) of original signals and
surrogate signals is calculated and the results are shown in
Figure 6, as we can see from original data irreversibility
index, there exist obvious irreversibility changes when the
flow pattern transition occurs (the flow pattern evolves from
slug to bubble). However, the surrogate data irreversibility
indexes of three different flow patterns are close to 0 and have
no obvious changes, indicating that the nonlinear dynamics
associate with flow pattern transition which is responsible for
the data asymmetric distribution.

4.2. Detecting Oil-in-Water Two-Phase Flow Dynamics with
Multiscale Time Irreversibility Index. Oil-water two-phase
flow is quite a complex system such that the evolution of the
flow pattern exhibits obvious polymorphism. In this regard,
characterizing the flow pattern dynamics and irreversibility
at a fixed time scale seems inadequate. Multiscale analysis

method provides an effective way to investigate the system
characteristics from macro to micro. Investigating the mul-
tiscale time irreversibility of typical flow pattern signals can
not only reveal the flow pattern disequilibrium, but also
detect the flow pattern evolution character such as the bubble
coalescence and breakup. We calculate the multiscale time
irreversibility index of oil-water two-phase flow fluctuating
signals with (6) and the scale range is from 1 to 50.The length
of original analyzed signals is 60000 points with the sampling
frequency of 6000. At the scale of 50 the length of the
coarse-grained signal is 1200 points which keeps a sufficient
number to safely estimate the irreversibility index. As shown
in Figure 7 we list the multiscale index of eight typical
flow conditions at a fixed water-cut (84%) while increasing
the mixed velocity (from 0.01842m/s to 0.22105m/s). Three
typical flow patterns are observed, that is, oil slug flow, oil
bubble flow, and VFD oil bubble flow. As we can see in
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Figure 7, the time irreversibility index of VFD bubble flow
is around zero, which shows that the dispersed oil droplets
are uniformly distributed in water and the mixed fluid is
symmetrical.We also notice that the time irreversibility index
has no obvious change from scale 1 to scale 50, indicating
that the fluid structure of VFD bubble flow is symmetrical
from micro to macro; that is, the mixed flow is spatially
homogeneous along the pipe. Comparing to the VFD oil
bubble flow, the time irreversibility of oil bubble flow has no
obvious changes; the value of the irreversibility is still around
0 and independent of time scale. It reveals that although the
mixture velocity of oil bubble flow decreases and the very
fine dispersed oil droplets begin to coalesce into discrete oil
bubbles, the oil bubbles still remain uniformly distributed and
the flow structure shows spatially symmetrical character. It is
also worth noticing that, under certain flow condition of low
mixture velocity, the time irreversibility index of bubble flow
slightly deviates from 0.This is probably due to the occasional
presence of very large oil bubbles which are formed by the
coalescence of discrete oil bubbles under low turbulence
intensity. Oil slug flow occurs at very low mixture velocity;
in this situation the flow turbulence intensity is extremely
low and the dispersed oil phase coalesces into oil slug and
bubble clusters. The intermittent presence of oil slugs in the
pipe makes the fluid show disequilibrium and asymmetry
feature. The multiscale time irreversibility index of slug flow
has versified this phenomenon. As shown in Figure 7, the
irreversibility index of oil slug flow is obvious which deviates
from 0, showing the asymmetry character of slug flow. We
also notice that the time irreversibility of slug flow increases
with scale (the absolute value of irreversibility index increases
with scale), indicating the disequilibrium and asymmetry of
slug flow increase from micro special scale to macro special
scale along the pipe.

We now demonstrate how to quantitatively character-
ize the flow disequilibrium under certain flow conditions
with the average value of multiscale irreversibility (AMSI).
Figure 8 shows the AMSI under different mixture velocity
where the water-cut is fixed at 70%, 72%, 80%, 82%, 90%,
and 92%, respectively. As shown in the figure, with increasing
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Figure 8: Average value of multiscale irreversibility under different
mixture velocity.

the mixture velocity, the flow pattern evolves from oil slug
flow to oil bubble flow and then VFD oil bubble flow.
Correspondingly, the AMSI gradually increases. That is, the
asymmetry of the mixed fluid decreases with increasing
the mixture flow rate (the more the time irreversibility
index deviated from 0, the more the asymmetry of the
mixed fluid is). This can also be interpreted by the flow
pattern evolution characteristics. Oil slug flow occurs at very
low mixture velocity and the dispersed oil phase coalesces
into large intermittent oil slugs, which lead to asymmetric
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Figure 9: The average value of multiscale irreversibility of all the
flow conditions.

character of the fluid structure. With increasing the mixture
velocity, the turbulent intensity is high enough to break
up the oil slugs into uniformly distributed oil bubbles and
flow pattern changes to oil bubble flow. In this situation
the flow structure changes from asymmetric to symmetric
and the time irreversibility index is around 0. With even
more increasing the mixture velocity, discrete oil bubbles are
broken into smaller oil droplets which are also uniformly
distributed. In this regard, the flow structure shows symmetry
and the time irreversibility index is also around 0.

Figure 9 shows the AMSI of all 120 flow conditions. As we
can see, most AMSI indexes of bubble flow and VFD bubble
flow are around 0, indicating that oil bubble flow andVFD oil
bubble flow are basically symmetric. Also, it is worth noticing
that some AMSI indexes of oil bubble flow slightly derived
from 0, which is probably because of the occasional presence
of large oil bubbles that change the symmetry of the mixed
fluid. The AMSI index of oil slug flow is lower than that of
the other two flow patterns, and it is obviously deviated from
0 (below −0.1), which shows the asymmetrical character of
the intermittent oil slugs. From this point of view the AMSI
index can not only be used to characterize the two-phase
flow spatial asymmetry and detect the flow pattern dynamic
but also be employed as a criterion to identify the pattern
transition and bubble coalescence.

We also compared the proposed AMSI index with other
two time irreversibility indexes, that is, Porta’s index [33] and
Guzik’s index [34]. As shown in Figure 10, both the AMSI
index and Porta’s index [33] can effectively demonstrate
the system irreversibility when the flow pattern transition
occurs (both the AMSI index and Porta’s index [33] have
obvious changes with the flow pattern evolving from slug to
bubble flow). However, Guzik’s index [34] is less sensitive
for characterizing the flow pattern transition dynamics. So
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Figure 10: Comparison of AMSI index, Porta’s index [33], and
Guzik’s index [34].

we think that the proposed AMSI index is sufficient and
effective for characterizing the dynamics associated with the
flow pattern transition.

5. Conclusions

Characterizing the low flow rate oil-in-water two-phase flow
disequilibrium with experimental measurement signals has
been a challenging problem in the fields of time series analysis
and fluid dynamics. In this paper, we first experimentally
investigate the oil-in-water two-phase flow in a vertical pipe
and collect conductance fluctuating time series that reflect
the fluid dynamics. Then we detected the flow disequilib-
rium with two strategies, that is, multidimensional time
irreversibility andmultiscale time irreversibility. We find that
the collected fluctuating signals of oil bubble flow and very
fine dispersed oil bubble flow are reversible while the signals
of slug flow show irreversible character. This indicates that
both the oil bubble flow and very fine dispersed oil bubble
flow have the symmetric structure while oil slug flow shows
asymmetric flow characteristics due to the intermittent pres-
ence of oil slugs. Moreover, we propose a novel criterion, that
is, AMSI, to quantitatively characterize the flow asymmetry
character. The results show that the AMSI which is sensitive
to the flow conditions can be used to identify flow patterns
and predict dispersed phase coalescence phenomenon. Our
research not only reveals the oil-water two-phase flow pattern
evolution character but also provides a novel application
of time series irreversibility analysis to uncover the fluid
dynamics.
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