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A novel matheuristic approach is presented and tested on a well-known optimisation problem, namely, capacitated facility location
problem (CFLP). The algorithm combines local search and mathematical programming. While the local search algorithm is used
to select a subset of promising facilities, mathematical programming strategies are used to solve the subproblem to optimality.
Proposed local search is influenced by instance-specific information such as installation cost and the distance between customers
and facilities. The algorithm is tested on large instances of the CFLP, where neither local search nor mathematical programming
is able to find good quality solutions within acceptable computational times. Our approach is shown to be a very competitive
alternative to solve large-scale instances for the CFLP.

1. Introduction

The capacitated facility location problem (CFLP) is one of
the most important problems for companies which distribute
products to their customers.Theproblem consists of selecting
specific sites at which to install plants, warehouses, and
distribution centres while assigning customers to service
facilities and interconnecting facilities using flow assignment
decisions. This paper considers a two-level supply chain in
which a single plant serves a set of warehouses, which in turn
serve a set of end customers or retailers. Figure 1 shows the
basic configuration of our supply chain. Therefore, we aim
to solve this problem by finding a set of locations that allows
us to serve the entire set of customers in an optimal way. As
Figure 1 shows, each customer (or cluster) is served only by
one warehouse.

The CFLP in this work contains a set of warehouses
that supply a set of customers that are uniformly distributed

in a limited area. The model considers the installation cost
(i.e., the cost associated with opening a specific warehouse)
and transportation or allocation cost (i.e., the cost related
to transportation of a specific amount of products from a
warehouse to a customer). The mathematical model for the
CFLP is presented as follows:
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Figure 1: Distribution network structure considered in this study. It consists of one central plant, a set of possible warehouses, and a set of
customers or retailers.
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Equation (1) is the total system cost. The first term is
the fixed set-up and operating cost when opening ware-
houses. The second term is the daily transport cost between
warehouse and customers which depends on the customer
demand 𝑑 and distance 𝐶

𝑖𝑗
between warehouse 𝑖 and cus-

tomer 𝑗. Inequality (2) ensures that total demand of ware-
house 𝑖 will never be greater than its capacity 𝐼cap. Equation
(4) ensures that customers are served by only one warehouse.
Finally, (5) states (0-1) condition for the binary variables 𝑌

𝑖𝑗

and𝑋
𝑖
.

While both heuristics and mathematical programming
methods have been used to solve the CFLP, in this work
we present a matheuristic method [1] that combines two
well-known algorithms: mixed-integer programming and
local search. During the last decade, the idea of combining
the power of mathematical programming with flexibility of
heuristics has gained attention within researchers commu-
nity. We can find matheuristics attempting to solve problems
arising in the field of logistics [2–4], health care systems [5–
7], and pure mathematics [8, 9], among others. Matheuristics
have been demonstrated to be a promising research field
in order to solve complex optimisation problems. Some
interesting surveys on matheuristics are found in [10, 11].

The remainder of the paper is organised as follows. First,
a literature review on the techniques for solving the CFLP
is presented in Section 2. Then, in Section 3, we describe
the matheuristic approach used in this work. Section 4 starts
explaining the procedure used to generate the set of instances
presented in this paper. In Section 4.1, the obtained results are
presented. Finally, in Section 5, some conclusions based on
the numerical results are outlined.

2. Literature Review

The CFLP is a well-known problem in operations research.
Heuristic methods, such as evolutionary algorithms [12–14]
and local search [15, 16], as well as mathematical pro-
gramming [17–19] have been used to address this prob-
lem. Several surveys have been dedicated to cover this
problem and its variations [20, 21]. In spite of that, only
little attention has been paid to matheuristics attempting
to solve the CFLP problem. In [22], the authors develop a
Lagrangian-based heuristic (LH) that provides lower bounds
to the problem, and a Tabu Search (TS) algorithm is
subsequently used to find the upper bound of the prob-
lem. In this case, the TS is initialised using the primary
information provided by LH. Additionally, in [23], the
authors combine Lagrangian Relaxation with Ant Colony
Optimisation to solve the discrete CFLP problem. Other
authors have presented matheuristic approaches applied to
CFLP variations such as the (𝑟 | 𝑝)-centroid problem
[24] and 𝑝-median problem [25]. None of the approaches
mentioned before is applied to large-scale CFLP problems.
In [26], authors propose hybrid algorithm that combines
artificial bee algorithms and mixed-integer programming
(MIP) to solve large-scale CFLP problems ranging from
300 to 1000 warehouses and 1000 customers. They found
that their hybrid approach outperformed each technique
separately.This is particularly true for largest instance in their
study.

3. Proposed Approach

Heuristic methods are a common approach to solve hard
combinatorial optimisation problems such as the CFLP.
Despite the fact that heuristics do not guarantee optimality,
the solutions provided by them can be considered good
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suboptimal ones. In contrast exact methods guarantee opti-
mality; however, they usually fail when dealingwithmedium-
and large-sized problems. In this paper, a local search algo-
rithm, which is a variation of the well-known Tabu Search
(TS) algorithm, has been developed.

3.1. Local Search Framework. As we mentioned above, the
proposed matheuristic algorithm is based on a local search
strategy which in turn is a variation of the well-known TS
algorithm. As in TS we make use of an adaptive memory
structure, namely, tabu list. Moreover, our algorithm, as in
any local search algorithm, needs to “exchange information”
with its neighbours. To do that, first, the neighbourhood
must be defined. Our algorithm has only one neighbourhood
move that defines a set of possible candidate solutions. This
move is used across all executions of the algorithm. Moving
from one solution to one of its neighbours implies that we
need to close 𝑘 of the open facilities and, at the same time,
open 𝑘 of the previously closed one. That means the size of
the neighbourhood is O (( 𝑘

𝑊
+ ) × ( 𝑘

𝑊
− )), where 𝑊+ is the

number of open facilities in the current solution and 𝑊− is
the number of closed facilities. The number of facilities that
are open at each iteration remains constant. Different rules
could be used in order to decide what facilities should be
opened/closed at each iteration. In this paper such a decision
is made randomly, taking into account the fact that the total
installed capacity, that is, the sum of the individual capacities
over the set of opened facilities, must be larger than the total
demand of the system +10%. Thus, we ensure that feasible
allocations can be found for the new set of open facilities and
that the capacity constraint shall not be violated.

Clearly, other neighbourhood definitions might be con-
sidered. For instance, using neighbourhood definitions that
lead to smaller neighbourhoods could be considered, as it
would allow us to explore the entire neighbourhood enhanc-
ing the exploitation ability of our algorithm.However, smaller
neighbourhood definition might impair the exploration abil-
ity of the algorithm. Thus, although the proposed algorithm
supports different neighbourhood definitions, changing it
might provoke a big impact in the algorithm behaviour.

Moreover, since we want to solve large instances of the
CFLP problem, visiting the entire neighbourhood for the
current solution is impractical in terms of computational
time. Thus, we need to select a subset of the neighbourhood
of the current solution. After an extensive trial and error
process, we end up with the size of the neighbourhood
set equal to 10. We need to stress that this number largely
depends on the available computational resources. Thus, it
might not be the best one for other researchers using different
infrastructure.

Our algorithm also shared with TS a diversification
mechanism that allows it to get out of low-quality neigh-
bourhoods and “jump” to explore new neighbourhoods.
The diversification mechanism implemented here is a restart
method, which reinitialises a current solution without losing
the best solution found by the algorithm.

One distinctive difference between our LS algorithm and
TS is that in our approach we do not start with a (completely)

begin
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noBestSol = 0;

noBestSol++;
𝑠
𝑘
= 𝑛𝑠𝑏𝑒𝑠𝑡
𝑘

;
update(tabuList);
check (diversificationCriterion, noBestSol);
𝑘 = 𝑘 + 1

Algorithm 1: LS-MIP matheuristic algorithm.

random solution but instead we try to find a “warm start”
solution by (partially) solving a subproblem that includes
a large portion of the available facilities (columns). We use
MIP solver to solve the subproblem described above and
set a very short time-out (15 secs). After the solver finishes
because of the time-out we keep those facilities that are open
and discard the closed ones. It is important to note that the
number of columns considered in the first iteration is large
enough to provide a warm start solution and, at the same
time, small enough so the solver can converge within the
time-out. Discarded facilities are discarded only regarding
the initial solution. Thus, after we found the warm start, all
the possible facilities are considered for next iterations.

3.2. Proposed Matheuristic Approach. In this work we pro-
pose a matheuristic approach which combines a local search
(LS) algorithm and a mixed-integer programming solver.
The LS algorithm starts by obtaining a warm start solution
as described above. Once the algorithm has set open ware-
houses, the MIP solver is called to solve the subproblem
that considers only the open warehouses as candidates. That
means that𝑁 becomes𝑊+ in (1), (2), (3), (4), and (5), where
𝑊+ < 𝑁. This allows us to fairly compare different sets
of possible warehouses as we obtain the optimal solution
for each subproblem. We need to state at this point that
the number of open warehouses 𝑊+ at each iteration is
very important and, consequently, we need to choose it
carefully. On one hand, setting 𝑊+ too large would lead to a
subproblem that is not possible to solve to optimality within
an appropriate time. On the other hand, setting𝑊+ too small
would provoke the subproblem to become infeasible as there
is no enough installed capacity to serve the total demand
from customers. Algorithm 1 shows the main steps of our
approach.
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Once the initial solution is calculated, the neighbourhood
𝑁𝑆
𝑘
is generated. The corresponding MIP subproblem is

solved for each neighbour.We then select the neighbour with
the lowest cost and check whether it is in the tabu list or not.
In case it is in the tabu list, we check whether it is better
than the best solution found so far. If so, the new solution
(aspiration criterion in TS) is set. Otherwise, the second best
neighbour is checked.

Once a neighbour is selected from the neighbourhood
list we check whether the new best neighbour is better than
the best solution so far. If so, we reset the diversification
counter. Otherwise, the diversification counter increases in
one. If the diversification counter reaches its threshold, the
restart method is called and a new solution is generated as in
the first iteration. We perform some few experiments to find
a good value for the threshold. As expected, we found that
threshold value depends on the size of the problem. For small
cases, threshold is set between 8 and 12 iterations without
improvement. For larger instances, threshold is set to 30.The
algorithm proceeds in the same way until the time limit is
reached. In our case, time limit was set at 2000 secs for all our
experiments.

4. Computational Experiments

In this section, we present the benchmark applied for per-
formance comparison and a summary of the computational
results obtained for our matheuristic approach. Computa-
tional experiments were performed on an Intel Core Duo
processor CPU T2700, 2.33GHz, with 6GB of RAM. Linux
14.02 was the operating system. The matheuristic algorithm
was coded in JAVA 8 language using NetBeans IDE. The
MIP subproblem was modelled using AMPL and solved with
GUROBI 6.0 solver.

To validate the algorithm and measure its conver-
gence, we chose a set of medium-sized instances that
have known optimal solutions, namely, capa, capb, and
capc. These instances were obtained from Beasley’s OR-
Library (http://people.brunel.ac.uk/∼mastjjb/jeb/info.html).
Optimal solutions for these instances can be found in [17].
Our algorithm found the optimal solution for all these
instanceswithin acceptable times.We then create a set of large
instances with 500 to 1000 warehouses (step size of 100) and
500 clients using the strategy provided in [27]. This strategy
was also used in [26]. The set of customers and the set of
warehouses are uniformly distributed over a plane of 10 × 10
distance units. The Euclidean distance between a customer
𝑗 and a warehouse 𝑖 corresponds to the transportation cost
𝐶
𝑖𝑗
.The demand 𝑑

𝑗
is calculated using a uniform distribution

U[5, 35]. 𝐼cap
𝑖

is calculated using U[100, 1600]. We amplify
the capacity of the warehouses to obtain harder instances.
Finally, the fixed cost of warehouse 𝑖 is 𝐹

𝑖
= U[0, 90] +

U[100, 110] × √𝐼cap
𝑖

/10. We generate 6 different classes of
problems: {500, 600, 700, 800, 900, 1000}× {500} (warehouses
× customers). To avoid any instance-dependent effects, we
generate 10 different instances for each class. In order to
compare our algorithm with previously proposed algorithms
in the literature, we apply our algorithm to three sets of

Table 1: Obtained results for instances with 500 customers and 500
to 1000 possible warehouse locations.

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 𝑇𝑖𝑚𝑒 (sec) 𝑘 𝐺𝐴𝑃 (%)
MIP 97038 2002 0 0.00%

500 × 500 RAND 103546 1101 79 6.71%
MATH 97273 1276 21 0.24%
MIP 116388 2002 0 0.06%

600 × 500 RAND 127667 1182 108 9.75%
MATH 116321 1499 25 0.00%
MIP 138396 2005 0 0.15%

700 × 500 RAND 153628 1505 284 11.17%
MATH 138190 1670 26 0.00%
MIP 158222 2003 0 0.45%

800 × 500 RAND 178445 675 167 13.29%
MATH 157518 1110 19 0.00%
MIP 179087 2003 0 0.48%

900 × 500 RAND 199431 238 34 11.90%
MATH 178230 1008 18 0.00%
MIP 202706 2003 0 0.45%

1000 × 500 RAND 214914 2228 102 6.50%
MATH 201794 976 15 0.00%

instances proposed by Avella and Boccia [28] and also used
by Guastaroba and Speranza [29]. We call these three sets of
instances AB1, AB2, and AB3, where AB1 consists of 20 test
instances with 300 potential warehouses and 300 clients. AB2
also consists of 20 instances with 500 potential warehouses
and 500 clients. Finally, AB3 consists of 20 instances with
700 potential warehouses and 700 clients. We execute our
algorithm 30 times for each instance to assess and avoid
outlier performance. Results we present later in this section
correspond to the average values obtained for each class of
problems. The MIP algorithm was executed only once per
instance due to its deterministic behaviour.

4.1. Results. In this subsection we present a summary of the
obtained results. Table 1 shows all the obtained results.

First column denotes the instance name. Second column
corresponds to the algorithm by which the results were
obtained. Here 𝑀𝐼𝑃 means the mathematical programming
approach using the MIP solver from GUROBI, 𝑅𝐴𝑁𝐷,
corresponds to our baseline algorithm which allocates cus-
tomers randomly. 𝑀𝐴𝑇𝐻 corresponds to our matheuristic
approach. Column 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 corresponds to the average
total cost obtained by each approach. Column 𝑇𝑖𝑚𝑒 corre-
sponds to average time the algorithm takes to find the best
solution, while 𝑘 column shows the iteration where the best
solution was found by each algorithm (in average). Column
𝐺𝐴𝑃 shows the difference between the result obtained by the
corresponding algorithm and the best solution known for
each instance.

As we can see in Table 1, as the number of decision
variables increases our approach obtains better results with
respect to the ones obtained by the LS and MIP separately.
The MIP solver obtains better results than our matheuristic
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Table 2: Results for the AB instances.

AB1 AB2 AB3
# 𝐺𝐴𝑃 𝐵𝑒𝑠𝑡𝐺𝐴𝑃 𝑡 (sec) # 𝐺𝐴𝑃 𝐵𝑒𝑠𝑡𝐺𝐴𝑃 𝑡 (sec) # 𝐺𝐴𝑃 𝐵𝑒𝑠𝑡𝐺𝐴𝑃 𝑡 (sec)
1 0.00% 0.00% 84.0 1 0.00% 0.00% 174.8 1 0.00% 0.00% 201.3
2 0.00% 0.00% 95.6 2 0.00% 0.00% 112.2 2 0.00% 0.00% 311.5
3 0.00% 0.00% 141.0 3 0.00% 0.00% 166.2 3 0.00% 0.00% 213.1
4 0.00% 0.00% 182.3 4 0.00% 0.00% 193.6 4 0.00% 0.00% 226.4
5 0.00% 0.00% 83.0 5 0.00% 0.00% 554.2 5 0.00% 0.00% 543.7
6 0.00% 0.00% 159.3 6 0.00% 0.00% 96.4 6 0.00% 0.00% 827.3
7 0.01% 0.00% 211.8 7 0.00% 0.00% 146.7 7 0.12% 0.09% 1228.5
8 0.00% 0.00% 158.0 8 0.07% 0.00% 713.6 8 0.00% 0.00% 154.7
9 0.00% 0.00% 31.7 9 0.00% 0.00% 166.9 9 0.00% 0.00% 247.8
10 0.10% 0.10% 16.0 10 0.00% 0.00% 69.8 10 0.90% 0.10% 695.4
11 0.13% 0.11% 74.7 11 0.47% 0.31% 796.7 11 0.00% 0.00% 608.5
12 0.00% 0.00% 77.8 12 0.20% 0.17% 951.3 12 0.17% 0.17% 188.0
13 0.17% 0.15% 133.5 13 0.00% 0.00% 269.7 13 0.00% 0.00% 163.1
14 0.00% 0.00% 118.3 14 0.00% 0.00% 363.6 14 0.00% 0.00% 63.2
15 1.02% 0.77% 64.1 15 0.00% 0.00% 463.2 15 0.09% 0.09% 426.4
16 0.00% 0.00% 109.7 16 0.09% 0.00% 336.7 16 0.11% 0.08% 795.8
17 0.00% 0.00% 27.4 17 0.13% 0.09% 318.5 17 0.11% 0.11% 59.6
18 0.34% 0.28% 449.0 18 0.08% 0.00% 962.7 18 0.00% 0.00% 75.9
19 0.13% 0.11% 90.6 19 0.08% 0.00% 933.1 19 0.00% 0.00% 66.7
20 0.00% 0.00% 108.5 20 0.18% 0.18% 361.8 20 0.21% 0.16% 118.9

approach only for the smallest class (500 × 500). For all the
other problems, our matheuristic approach improves results
obtained by the MIP algorithm and performs faster. We need
to point out that, because of the time limit we impose, the
MIP solver is not always able to find the optimal solution
within the allowed time. Figure 2 shows convergence of
both MIP and matheuristic algorithms. Crosses correspond
to the matheuristic algorithm. Circles correspond to the
MIP algorithm and triangles correspond to the lower bound
obtained by the MIP algorithm.

As we can see in Figure 2, our algorithm converges
much faster than MIP does. Moreover, Figure 2 suggests
that diversification methods other than the random one
used in this work could be very useful to avoid that the
matheuristic algorithm which gets trapped into poor locally
optimal solutions.

Regarding AB instances, Table 2 shows a summary of the
obtained results for such instances. Column # is the cor-
responding instance number. Columns 𝐺𝐴𝑃 and 𝐵𝑒𝑠𝑡𝐺𝐴𝑃
show the average GAP after 10 runs and the best GAP
obtained, respectively. Time (𝑡) is shown in seconds. As
we can see, our algorithm is able to obtain the optimal
solution (GAP = 0) for most of the instances. Moreover, the
average GAP equal or close to the best obtained GAP is a
good indicator of the reliability of the algorithm. Although
results are good in terms of the obtained GAP values, other
algorithms in the literature, such as the Kernel Search in
Guastaroba and Speranza [29], exhibit a better convergence
rate. Thus, it is worth to further study the behaviour of
our algorithm in order to find alternative ways to speed it
up.

1.9

2

2.1

2.2

C
os

t

MATH
MIP
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500 1,5001,000 2,0000
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×10
5

Figure 2: Convergence of both MIP and matheuristic algorithm.

5. Conclusions and Future Work

In this paper, we have presented a matheuristic approach that
is able to find good solutions within acceptable time. Our
algorithmcombines the flexibility of a local search framework
based on the well-known Tabu Search metaheuristic and
the calculation efficiency of the exact algorithm embedded
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within the MIP solver. Our algorithm solves many subprob-
lems by opening and closing, in turns, available warehouse
locations. Once a new set of candidates locations is set, the
MIP solver solves to optimality the associated allocation
subproblem. In average, our algorithm is able to find solutions
that are below the upper bound found by the MIP algorithm
and, therefore, is able to minimize the gap between the best
solution found and the corresponding lower bound found
by the exact method. Furthermore, our algorithm converges
faster than the associated MIP solver.

As a future work, new heuristic methods can be used
to seek good combinations of possible warehouse locations.
Moreover, other exact methods such as Lagrangian Relax-
ation can be tested in order to speed up subproblem solving
process. Also new diversification strategies as well as guided
search should be studied.
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[1] V. Maniezzo, T. Stützle, and S. Voß, Eds., Matheuristics—
Hybridizing Metaheuristics and Mathematical Programming,
vol. 10 of Annals of Information Systems, Springer, New York,
NY, USA, 2010.

[2] M. Caserta and S. Voss, “A math-heuristic Dantzig-Wolfe
algorithm for capacitated lot sizing,”Annals of Mathematics and
Artificial Intelligence, vol. 69, no. 2, pp. 207–224, 2013.

[3] L. C. Coelho, J.-F. Cordeau, and G. Laporte, “Heuristics for
dynamic and stochastic inventory-routing,”Computers &Oper-
ations Research, vol. 52, part A, pp. 55–67, 2014.

[4] B. Raa, W. Dullaert, and E.-H. Aghezzaf, “A matheuristic
for aggregate production-distribution planning with mould
sharing,” International Journal of Production Economics, vol. 145,
no. 1, pp. 29–37, 2013.

[5] H. Allaoua, S. Borne, L. L’etocart, and R. Calvo, “A matheuristic
approach for solving a home health care problem,” Electronic
Notes in Discrete Mathematics, vol. 41, pp. 471–478, 2013.

[6] Y. Li, D. Yao, W. Chen, J. Zheng, and J. Yao, “Ant colony system
for the beam angle optimization problem in radiotherapy
planning: a preliminary study,” in Proceedings of the IEEE
Congress on Evolutionary Computation, vol. 2, pp. 1532–1538,
Edinburgh, Scotland, September 2005.

[7] Y. Li, D. Yao, J. Zheng, and J. Yao, “A modified genetic algo-
rithm for the beam angle optimization problem in intensity-
modulated radiotherapy planning,” in Artificial Evolution, E.-
G. Talbi, P. Liardet, P. Collet, E. Lutton, and M. Schoenauer,
Eds., vol. 3871 of Lecture Notes in Computer Science, pp. 97–106,
Springer, Berlin, Germany, 2006.
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