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𝐸(𝑀, 𝐾) (𝐸
𝑤
(𝑀, 𝐾)), the set of Pareto efficient (weak efficient) points of a set 𝑀 with respect to a cone 𝐾 in 𝑅

𝑛, is expressed as
a differencebetween two sets 𝑀 and 𝑀 + 𝐾\{0} (𝑀 and 𝑀 + int𝐾). Using the new representation, the properties of 𝐸(𝑀, 𝐾) are
proved more easily than before. When 𝑀 or 𝐾 is in the form of union, intersection, sum, or difference of two sets or two cones,
respectively, the properties of 𝐸(𝑀, 𝐾) are considered. Most of the properties are proved by the binary operations of sets, which
is a new method in the multiobjective optimization. Then these properties are used to solve some types of multiobjective linear
programming problems corresponding to Data Envelopment Analysis (DEA) models. The structures of the DEA efficient solution
sets of four most representative DEA models are developed. Further more, the relationships between efficiencies of the four DEA
models are deduced.

1. Introduction and Preliminaries

Multiobjective programming is the process of simultaneously
optimizing two or more conflicting objectives subject to
certain constraints (see [1–3]). Data Envelopment Analysis
(DEA) is a nonparametric method in operations research
and economics for the estimation of production frontiers.
It is used to empirically measure productive efficiency of
decision maker units DMU

1
, . . . ,DMU

𝑛
by solving the linear

programming [4–6]. Charnes et al. and Wei et al. estab-
lish the equivalence of (weak) DEA efficient solutions in
DEA model and (weak) Pareto solutions of multiobjective
linear programming [7–9]. There is a multiobjective linear
programming, corresponding to a DEA model, such that a
DMU

𝑗0
(1 ≤ 𝑗

0
≤ 𝑛) is (weak) DEA efficient if and only

if (𝑥
𝑗0

, 𝑦
𝑗0

) (associating with the DMU
𝑗0
) is a (weak) Pareto

efficient solution of the multiobjective linear programming
whose feasible region is the production possibility set (see
[10]).

In this paper, we propose a new representation for the
set of Pareto efficient (weak efficient) points. With the help
of the new representation, not only the properties of the set
of Pareto efficient (weak efficient) points which are given

in [1, 3, 11] can be proved more simply, but also more new
properties can be obtained. It is these new properties that
reveal the relationships between the set of solutions and dif-
ferentmultiobjective linear programmingswhich correspond
to different DEA models. Further, the relationships between
efficiencies of DMUs in different DEA models are obtained
by a new way. Wei et al. [10] develop a famous method to
translate production possibility sets in the intersection form
and in the sum form and find all DEA efficient DMUs. For
each of the four most representative DEA models, we offers
a simple way to get all DEA efficient DMUs by the binary
operations of sets.

Now let us recall the definition of efficiency and the
representation of the set of efficient points deduced by the
definition in vector optimization.

Definition 1 ([1], efficiency, weak efficiency). Given a non-
empty set 𝑀 and a cone 𝐾 with int𝐾 ̸= 0 in 𝑅

𝑛, 𝑥
0

∈ 𝑀 is
called a Pareto efficient (weak efficient) point of 𝑀, if there is
no 𝑦 ∈ 𝑀 with 𝑦 ̸= 𝑥

0
such that 𝑥

0
∈ 𝑦 + 𝐾 (𝑥

0
∈ 𝑦 + int𝐾).

The set of all Pareto efficient (weak efficient) points of 𝑀 is
denoted by 𝐸(𝑀, 𝐾) (𝐸

𝑤
(𝑀, 𝐾)).
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𝐸(𝑀, 𝐾) (𝐸
𝑤

(𝑀, 𝐾)) is called the efficient (weak efficient)
point set of 𝑀. By Definition 1, we have that

𝐸 (𝑀, 𝐾) = {𝑥 ∈ 𝑀 | there is no 𝑦 ∈ 𝑀,

𝑦 ̸= 𝑥 such that 𝑥 ∈ 𝑦 + 𝐾} ,

(1)

(𝐸
𝑤

(𝑀, 𝐾) = {𝑥 ∈ 𝑀 | there is no 𝑦 ∈ 𝑀

such that 𝑥 ∈ 𝑦 + int 𝐾}) .

(2)

In [2] when 𝐾 = 𝑅
𝑛

+
, the set is also described as follows:

𝐸 (𝑀, 𝐾) = {𝑥 ∈ 𝑀 | 𝑀 ∩ (𝑥 − 𝐾) = {𝑥}} , (3)

(𝐸
𝑤

(𝑀, 𝐾) = {𝑥 ∈ 𝑀 | 𝑀 ∩ (𝑥 − int 𝐾) = 0}) . (4)

Since 𝐾 = 𝑅
𝑛

+
is a convex pointed cone, (1) and (3) are

equivalent. So are (2) and (4). In Section 2, we give a new
representation of the efficient (weak efficient) point set, which
is expressed as the difference of two sets. The idea of the new
representation is motivated by the following facts in the area
of DEA:

(i) the structures of the production possibility sets and
the relationships between these sets (5);

(ii) the equivalence of Pareto efficiency in multiobjective
linear programming and DEA efficiency in DEA
model (Theorem 18);

(iii) the particularity of structures of the set of solutions to
the multiobjective linear programmings correspond-
ing to DEA models (detailed in Section 3).

For the four most representative DEA models 𝐶
2

𝑅, 𝐵𝐶
2,

𝐹𝐺, and 𝑆𝑇 (for the details about the models, see [4, 5]), each
of the DEA models associates with a production possibility
set which is also the feasible set of the multiobjective
linear programming corresponding to this DEA model. The
production possibility sets are denoted by 𝑇

𝐶
2
𝑅
, 𝑇
𝐵𝐶
2 , 𝑇
𝐹𝐺
,

and, 𝑇
𝑆𝑇
, respectively. The following relations hold (the

structures of these production possibility sets are presented
in Section 3):

(a) 𝑇
𝐶
2
𝑅

= 𝑇
𝐹𝐺

∪ 𝑇
𝑆𝑇

, (b) 𝑇
𝐵𝐶
2 = 𝑇
𝐹𝐺

∩ 𝑇
𝑆𝑇

,

(c) 𝑇
𝐶
2
𝑅

⊃ 𝑇
𝐹𝐺

⊃ 𝑇
𝐵𝐶
2 , (d) 𝑇

𝐶
2
𝑅

⊃ 𝑇
𝑆𝑇

⊃ 𝑇
𝐵𝐶
2 .

(5)

It is the specialty of the relations of the production possi-
bility sets and the equivalence of DEA efficiency and Pareto
efficiency that motivate us to propose a new representation
of (weak) efficient point set. Using the new representation,we
obtain some new properties of efficient point set 𝐸(𝑀, 𝐾),
when the set 𝑀 or 𝐾 is in form at union, intersection, sum,
or difference of two sets. By these properties, it is easier to get
the relationship between the DEA efficiency of the four DEA
models than before.

This paper is organized as follows. Section 2 introduces
the new representation of the efficient (weak efficient) point
set of a set, discusses some new properties of efficient point
set. Using the new expression of the set𝐸(𝑀, 𝐾) (𝐸

𝑤
(𝑀, 𝐾)),

most of these properties are proved by the binary operations

of sets. The multiobjective linear programming problems
corresponding to the four DEA models are studied in
Section 3.The structures of the efficient point sets and the effi-
cient solution sets of the multiobjective linear programming
problems are developed, and then the relationships between
DEA efficiencies of DMUs in four DEA models are revealed.
Section 4 is devoted to the conclusion.

The following notations are used in the paper.
Let 𝑀, 𝑀

1
, 𝑀
2
, and 𝐾 be sets in 𝑅

𝑛:

𝑀
1

+ 𝑀
2

= {𝑥
1

+ 𝑥
2

| 𝑥
1

∈ 𝑀
1
, 𝑥
2

∈ 𝑀
2
} ,

𝑀
1

\ 𝑀
2

= {𝑥 | 𝑥 ∈ 𝑀
1
, 𝑥 ∉ 𝑀

2
} ,

𝑀 = {𝑥 ∈ 𝑅
𝑛

| 𝑥 ∉ 𝑀} ,

𝐾
0

= 𝐾 \ {0} .

(6)

2. Some Properties of the Efficient Point Set

In this section, a new representation of 𝐸(𝑀, 𝐾) (𝐸
𝑤

(𝑀, 𝐾))
is presented.Thenwe prove that it is equivalent to the original
ones when 𝐾 is a cone. Lastly we focus on the properties
of 𝐸(𝑀, 𝐾), when 𝑀 or 𝐾 is in the form of the union,
intersection, sum, or difference of two sets.Most of the proofs
are completed by the binary operations of sets, which is a new
method in multiobjective optimization.

Definition 2. Given a nonempty set 𝑀 and a cone 𝐾 with
int 𝐾 ̸= 0 in 𝑅

𝑛, the efficient (weak efficient) point set of 𝑀

with respect to 𝐾 is defined by

𝐸 (𝑀, 𝐾) = 𝑀 \ (𝑀 + 𝐾
0
) , (7)

(𝐸
𝑤

(𝑀, 𝐾) = 𝑀 \ (𝑀 + int 𝐾)) . (8)

Clearly, the following result holds.

Theorem3. Equations (1) and (7) ((2) and (8)) are equivalent,
that is,

𝐸 (𝑀, 𝐾) = {𝑥 ∈ 𝑀 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑦 ∈ 𝑀, 𝑦 ̸= 𝑥

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∈ 𝑦 + 𝐾} = 𝑀 \ (𝑀 + 𝐾
0
) ,

(𝐸
𝑤

(𝑀, 𝐾) = {𝑥 ∈ 𝑀 | 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑦 ∈ 𝑀

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ∈ 𝑦 + int 𝐾}

= 𝑀 \ (𝑀 + int 𝐾)) .

(9)

Definition 2 gives a new representation of𝐸(𝑀, 𝐾) that is,
the efficient point set of a set 𝑀 is the difference between two
sets. Using this new representation, we prove the properties
of 𝐸(𝑀, 𝐾). Proposition 4 comes from Luc [1], Papageorgiou
[3], and Guerraggio et al. [11]. We give an easier proof of this
proposition.

Proposition 4. Assume that 𝑀, 𝑀
1
, and 𝑀

2
are nonempty

sets and 𝐾, 𝐾
1
, and 𝐾

2
are cones in 𝑅

𝑛, 𝜆 > 0. Then

(i) 𝐸(𝑀, 𝐾
2
) ⊆ 𝐸(𝑀, 𝐾

1
), if 𝐾

1
⊆ 𝐾
2
,
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(ii) 𝐸(𝜆𝑀, 𝐾) = 𝜆𝐸(𝑀, 𝐾),
(iii) 𝐸(𝑀

1
+ 𝑀
2
, 𝐾) ⊆ 𝐸(𝑀

1
, 𝐾) + 𝐸(𝑀

2
, 𝐾),

(iv) 𝐸(𝑀 + 𝐻, 𝐾) = 𝐸(𝑀, 𝐾), for any {0} ⊆ 𝐻 ⊆ 𝐾, 𝐾 is a
convex cone.

Proof. For convenience, let 𝐾
10

= 𝐾
1

\ {0}, and let 𝐾
20

=

𝐾
2

\ {0}. Since 𝐾
1

⊆ 𝐾
2
, we have 𝑀 + 𝐾

10
⊆ 𝑀 + 𝐾

20
. And

then

𝐸 (𝑀, 𝐾
2
) = 𝑀 \ (𝑀 + 𝐾

20
)

⊆ 𝑀 \ (𝑀 + 𝐾
10

) = 𝐸 (𝑀, 𝐾
1
) ,

(10)

𝐸 (𝜆𝑀, 𝐾) = (𝜆𝑀) \ (𝜆𝑀 + 𝐾
0
)

= (𝜆𝑀) \ (𝜆𝑀 + 𝜆𝐾
0
)

= (𝜆𝑀) \ 𝜆 (𝑀 + 𝐾
0
)

= 𝜆 [𝑀 \ (𝑀 + 𝐾
0
)] = 𝜆 [𝐸 (𝑀, 𝐾)] .

(11)

ByTheorem 3, it is sufficient to show that

(𝑀
1

+ 𝑀
2
) \ (𝑀

1
+ 𝑀
2

+ 𝐾
0
)

⊆ [𝑀
1

\ (𝑀
1

+ 𝐾
0
)] + [𝑀

2
\ (𝑀
2

+ 𝐾
0
)] ,

(12)

for all 𝑥 = 𝑥
1

+ 𝑥
2

∈ (𝑀
1

+ 𝑀
2
) \ (𝑀

1
+ 𝑀
2

+ 𝐾
0
), where

𝑥
1

∈ 𝑀
1
, 𝑥
2

∈ 𝑀
2
and 𝑥

1
+ 𝑥
2

∉ 𝑀
1

+ 𝑀
2

+ 𝐾
0
. Then 𝑥

1
∉

𝑀
1

+ 𝐾
0
, otherwise 𝑥

1
+ 𝑥
2

∈ 𝑀
1

+ 𝑀
2

+ 𝐾
0
, a contradiction.

Similarly 𝑥
2

∉ 𝑀
2

+ 𝐾
0
. Hence

𝑥 = 𝑥
1

+ 𝑥
2

∈ [𝑀
1

\ (𝑀
1

+ 𝐾
0
)] + [𝑀

2
\ (𝑀
2

+ 𝐾
0
)] .

(13)

Since 0 ∈ 𝐻 ⊆ 𝐾 and 𝐾 is a convex cone, we have 𝑀 ⊂

𝑀 + 𝐻, 𝐻 + 𝐾
0

= 𝐾
0
,

𝐸 (𝑀 + 𝐻, 𝐾) = (𝑀 + 𝐻) \ (𝑀 + 𝐻 + 𝐾
0
)

= (𝑀 + 𝐻) \ (𝑀 + 𝐾
0
) ⊃ 𝑀 \ (𝑀 + 𝐾

0
)

= 𝐸 (𝑀, 𝐾) .

(14)

On the other hand, For any 𝑥 ∈ 𝐸(𝑀 + 𝐻, 𝐾) = (𝑀 +

𝐻) \ (𝑀 + 𝐾
0
), 𝑥 = 𝑚 + ℎ, 𝑚 ∈ 𝑀, ℎ ∈ 𝐻. If ℎ ̸= 0, then

𝑥 ∈ (𝑀 + 𝐾
0
), a contradiction. Hence, 𝑥 ∈ 𝑀, 𝑥 ∉ 𝑀 + 𝐾

0
,

that is, 𝑥 ∈ 𝐸(𝑀, 𝐾).

A spacial case of (ii) in Proposition 4 is that

𝐸 (

𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑀 + ⋅ ⋅ ⋅ + 𝑀, 𝐾) = 𝐸 (𝑚𝑀, 𝐾) = 𝑚𝐸 (𝑀, 𝐾) , (15)

if 𝑀 is convex and 𝐾 is a cone.
Besides Proposition 4, we state the following properties.

Corollary 5. Consider the following:

(v) 𝐸 (𝑀, 𝐾
1

+ 𝐾
2
) ⊆ 𝐸 (𝑀, 𝐾

1
) ∩ 𝐸 (𝑀, 𝐾

2
) ,

(vi) 𝐸 (𝑀, 𝐾
1

∩ 𝐾
2
) ⊇ 𝐸 (𝑀, 𝐾

1
) ∪ 𝐸 (𝑀, 𝐾

2
) .

(16)

Proposition 6. Let 𝑀, 𝐺
1
, and 𝐺

2
be sets in 𝑅

𝑛. Then

𝑀 \ [𝑀 + (𝐺
1

∪ 𝐺
2
)
0
]

= [𝑀 \ (𝑀 + 𝐺
10

)] ∩ [𝑀 \ (𝑀 + 𝐺
20

)] .

(17)

Proof. It is obvious that (𝐺
1

∪ 𝐺
2
)
0

= 𝐺
10

∪𝐺
20
and𝑀+(𝐺

1
∪

𝐺
2
)
0

= 𝑀 + (𝐺
10

∪ 𝐺
20

) = (𝑀 + 𝐺
10

) ∪ (𝑀 + 𝐺
20

). Hence

𝑀 \ [𝑀 + (𝐺
1

∪ 𝐺
2
)
0
]

= 𝑀 \ [𝑀 + (𝐺
10

∪ 𝐺
20

)]

= 𝑀 \ [(𝑀 + 𝐺
10

) ∪ (𝑀 + 𝐺
20

)]

= 𝑀 ∩ (𝑀 + 𝐺
10

) ∪ (𝑀 + 𝐺
20

)

= (𝑀 ∩ 𝑀 + 𝐺
10

) ∩ (𝑀 ∩ 𝑀 + 𝐺
20

)

= [𝑀 \ (𝑀 + 𝐺
10

)] ∩ [𝑀 \ (𝑀 + 𝐺
20

)] .

(18)

Let 𝐺
1

= 𝐾
1
, and let 𝐺

2
= 𝐾
2
in Proposition 6. We have

Corollary 7.

Corollary 7. If 𝐾
1
and 𝐾

2
are cones, then

𝐸 (𝑀, 𝐾
1

∪ 𝐾
2
) = 𝐸 (𝑀, 𝐾

1
) ∩ 𝐸 (𝑀, 𝐾

2
) . (19)

In the following, we investigate some new properties of
the efficient set when 𝑀 is the union, intersection, sum, or
difference of two sets.

Lemma 8. If 𝐾 is a convex cone, then

𝐸 [𝑀
1

\ (𝑀
2

+ 𝐾) , 𝐾] ⊂ 𝐸 (𝑀
1
, 𝐾) . (20)

Proof. If 𝐸[𝑀
1
\ (𝑀
2
+ 𝐾), 𝐾] = 0, the result obviously holds.

Otherwise, for all 𝑥 ∈ 𝐸[𝑀
1

\ (𝑀
2

+ 𝐾), 𝐾], if 𝑥 ∉

𝐸(𝑀
1
, 𝐾), ∃𝑦

1
∈ 𝑀
1
, 𝑘 ∈ 𝐾 such that 𝑥 = 𝑦

1
+ 𝑘, 𝑘 ̸= 0,

where 𝑦
1

∈ 𝑀
1

= [𝑀
1

\ (𝑀
2

+ 𝐾)] ∪ [𝑀
1

∩ (𝑀
2

+ 𝐾)].
If 𝑦
1

∈ 𝑀
1

\ (𝑀
2

+ 𝐾), it contradicts that 𝑥 ∈ 𝐸[𝑀
1

\

(𝑀
2

+ 𝐾), 𝐾]. Hence 𝑦
1

∈ 𝑀
1

∩ (𝑀
2

+ 𝐾). ∃𝑦
2

∈ 𝑀
2
such

that 𝑦
1

∈ 𝑦
2
+𝐾, so 𝑥 ∈ 𝑦

1
+𝐾 ⊂ 𝑦

2
+𝐾 ⊂ 𝑀

2
+𝐾, which still

contradicts that 𝑥 ∈ 𝐸[𝑀
1

\ (𝑀
2

+ 𝐾), 𝐾]. In consequence,
𝑥 ∈ 𝐸(𝑀

1
, 𝐾).

A more accurate relationship between the two efficient
sets in Lemma 8 is described in the following proposition.

Proposition 9. If 𝐾 is a convex cone, then

𝐸 [𝑀
1

\ (𝑀
2

+ 𝐾) , 𝐾] = 𝐸 (𝑀
1
, 𝐾) \ (𝑀

2
+ 𝐾) . (21)

Proof. 𝐸[𝑀
1

\ (𝑀
2

+ 𝐾), 𝐾] ⊂ 𝐸(𝑀
1
, 𝐾) obtained by

Lemma 8.
Note that (𝑀

1
\ 𝑀
2

+ 𝐾) ∩ (𝑀
2

+ 𝐾) = 0, 𝐸[𝑀
1

\ (𝑀
2

+

𝐾), 𝐾] = 𝐸[𝑀
1

\ (𝑀
2

+ 𝐾), 𝐾] ∩ (𝑀
2

+ 𝐾). So 𝐸[𝑀
1

\ (𝑀
2

+

𝐾), 𝐾] = 𝐸[𝑀
1
\(𝑀
2
+𝐾), 𝐾]∩(𝑀

2
+ 𝐾) ⊂ 𝐸(𝑀

1
, 𝐾)\(𝑀

2
+

𝐾).
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Reciprocally, for all 𝑥 ∈ 𝐸(𝑀
1
, 𝐾) \ (𝑀

2
+ 𝐾), 𝑥 ∈

𝐸(𝑀
1
, 𝐾), 𝑥 ∉ 𝑀

2
+ 𝐾. If 𝑥 ∉ 𝐸[𝑀

1
\ (𝑀
2

+ 𝐾), 𝐾],
∃𝑦 ∈ 𝑀

1
\ (𝑀
2

+ 𝐾) with 𝑥 ̸= 𝑦 such that 𝑥 ∈ 𝑦 + 𝐾, in
contradiction to 𝑥 ∈ 𝐸(𝑀

1
, 𝐾). Therefore,

𝐸 (𝑀
1
, 𝐾) \ (𝑀

2
+ 𝐾) ⊂ 𝐸 [𝑀

1
\ (𝑀
2

+ 𝐾) , 𝐾] . (22)

Usually 𝐸(𝑀
1

\ 𝑀
2
, 𝐾) ̸= 𝐸(𝑀

1
, 𝐾) \ 𝑀

2
, is what

Example 10 shows.

Example 10. Consider the following:

𝑀
1

= {(𝑥, 𝑦) ∈ 𝑅
2

| 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1} ,

𝑀
2

= {(𝑥, 𝑦) ∈ 𝑅
2

| 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1 − 𝑥} ,

𝑀
1

\ 𝑀
2

= {(𝑥, 𝑦) ∈ 𝑅
2

| 0 ≤ 𝑥 ≤ 1, 1 − 𝑥 ≤ 𝑦 ≤ 1} ,

𝐸 (𝑀
1
, 𝑅
+

2
) = {(0, 0)} ,

𝐸 (𝑀
1

\ 𝑀
2
, 𝑅
+

2
)

= {(𝑥, 𝑦) | 𝑥 + 𝑦 = 1, 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1} .

(23)

About the efficient point set of differences between two
sets 𝑀

1
and 𝑀

2
, Proposition 11 gives the conclusion, without

requiring 𝐾 to be a convex but a cone.

Proposition 11. Consider the following:

𝐸 (𝑀
1

\ 𝑀
2
, 𝐾) ⊇ [𝐸 (𝑀

1
, 𝐾) \ 𝑀

2
] ∪ [E (𝑀

2
, 𝐾) \ 𝑀

1
]

(24)

Proof. We have

𝐸 (𝑀
1

\ 𝑀
2
, 𝐾) = (𝑀

1
\ 𝑀
2
) \ [(𝑀

1
\ 𝑀
2
) + 𝐾
0
]

= (𝑀
1

∩ 𝑀
2
) ∩ (𝑀

1
∩ 𝑀
2
) + 𝐾
0

⊇ (𝑀
1

∩ 𝑀
2
) ∩ (𝑀

1
+ 𝐾
0
) ∩ (𝑀

2
+ 𝐾
0
)

= (𝑀
1

∩ 𝑀
2
) ∩ [𝑀

1
+ 𝐾
0

∪ (𝑀
2

+ 𝐾
0
)]

= [(𝑀
1

∩ 𝑀
2
) ∩ (𝑀

1
+ 𝐾
0
)]

∪ [(𝑀
1

∩ 𝑀
2
) ∩ (𝑀

2
+ 𝐾
0
)]

= [𝐸 (𝑀
1
, 𝐾) ∩ 𝑀

2
] ∪ [𝐸 (𝑀

2
, 𝐾) ∩ 𝑀

1
]

= [𝐸 (𝑀
1
, 𝐾) \ 𝑀

2
] ∪ [𝐸 (𝑀

2
, 𝐾) \ 𝑀

1
] .

(25)

Remark 12. In the previouslymentioned proposition, if (𝑀
1
∩

𝑀
2
) + 𝐾
0

= (𝑀
1

+ 𝐾
0
) ∩ (𝑀

2
+ 𝐾
0
), the equation holds.

Propositions 13 and 15 present the properties of the
efficient point sets; when 𝑀 is the union or intersection of
two sets, respectively, 𝐾 is not required to be a convex.

Proposition 13. Consider the following:

𝐸 (𝑀
1

∪ 𝑀
2
, 𝐾) = [𝐸 (𝑀

1
, 𝐾) \ (𝑀

2
+ 𝐾
0
)]

∪ [𝐸 (𝑀
2
, 𝐾) \ (𝑀

1
+ 𝐾
0
)] .

(26)

Proof. We have

𝐸 (𝑀
1

∪ 𝑀
2
, 𝐾) = (𝑀

1
∪ 𝑀
2
) \ [(𝑀

1
∪ 𝑀
2
) + 𝐾
0
]

= (𝑀
1

∪ 𝑀
2
) ∩ (𝑀

1
∪ 𝑀
2
) + 𝐾
0

= (𝑀
1

∪ 𝑀
2
) ∩ (𝑀

1
+ 𝐾
0
) ∪ (𝑀

2
+ 𝐾
0
)

= (𝑀
1

∪ 𝑀
2
) ∩ 𝑀

1
+ 𝐾
0

∩ 𝑀
2

+ 𝐾
0

= (𝑀
1

∩ 𝑀
1

+ 𝐾
0

∩ 𝑀
2

+ 𝐾
0
)

∪ (𝑀
2

∩ 𝑀
2

+ 𝐾
0

∩ 𝑀
1

+ 𝐾
0
)

= [𝐸 (𝑀
1
, 𝐾) \ (𝑀

2
+ 𝐾
0
)]

∪ [𝐸 (𝑀
2
, 𝐾) \ (𝑀

1
+ 𝐾
0
)] .

(27)

Remark 14. It is obvious that if 𝐸(𝑀
1
, 𝐾) ∩ (𝑀

2
+ 𝐾
0
) = 0

and 𝐸(𝑀
2
, 𝐾) ∩ (𝑀

1
+ 𝐾
0
) = 0, then

𝐸 (𝑀
1

∪ 𝑀
2
, 𝐾) = 𝐸 (𝑀

1
, 𝐾) ∪ 𝐸 (𝑀

2
, 𝐾) . (28)

Proposition 15. Consider the following:

𝐸 (𝑀
1

∩ 𝑀
2
, 𝐾) ⊇ [𝐸 (𝑀

1
, 𝐾) ∩ 𝑀

2
] ∪ [𝐸 (𝑀

2
, 𝐾) ∩ 𝑀

1
] .

(29)

Proof. Notice that (𝑀
1

∩ 𝑀
2
) + 𝐾
0

⊆ (𝑀
1

+ 𝐾
0
) ∩ (𝑀

2
∩ 𝐾
0
).

𝐸 (𝑀
1

∩ 𝑀
2
, 𝐾) = (𝑀

1
∩ 𝑀
2
) \ [(𝑀

1
∩ 𝑀
2
) + 𝐾
0
]

⊇ (𝑀
1

∩ 𝑀
2
) \ [(𝑀

1
+ 𝐾
0
) ∩ (𝑀

2
+ 𝐾
0
)]

= (𝑀
1

∩ 𝑀
2
) ∩ (𝑀

1
+ 𝐾
0
) ∩ (𝑀

2
+ 𝐾
0
)

= (𝑀
1

∩ 𝑀
2
) ∩ [𝑀

1
+ 𝐾
0

∪ 𝑀
2

+ 𝐾
0
]

= [(𝑀
1

∩ 𝑀
2
) ∩ 𝑀

1
+ 𝐾
0
]

∪ [(𝑀
1

∩ 𝑀
2
) ∩ 𝑀

2
+ 𝐾
0
]

= [𝐸 (𝑀
1
, 𝐾) ∩ 𝑀

2
] ∪ [𝐸 (𝑀

2
, 𝐾) ∩ 𝑀

1
] .

(30)

Remark 16. (i) Usually the equality does not hold in
Proposition 15. Let 𝑀

1
= {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 𝑦 ≤ 1},

𝑀
2

= {(𝑥, 𝑦) | 0 ≤ 𝑥 − 1/2 ≤ 𝑦 ≤ 1}. Then

𝐸 (𝑀
1

∩ 𝑀
2
, 𝐾) = {(1/2, 1/2)} ,

[𝐸 (𝑀
1
, 𝐾) ∩ 𝑀

2
] ∪ [𝐸 (𝑀

2
, 𝐾) ∩ 𝑀

1
] = 0,

(31)
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(ii) for Proposition 15, if (𝑀
1

∩ 𝑀
2
) + 𝐾
0

= (𝑀
1

+ 𝐾
0
) ∩

(𝑀
2

+ 𝐾
0
), then

𝐸 (𝑀
1

∩ 𝑀
2
, 𝐾) = [𝐸 (𝑀

1
, 𝐾) ∩ 𝑀

2
] ∪ [𝐸 (𝑀

2
, 𝐾) ∩ 𝑀

1
] ,

(32)

(iii) since𝑀
1
\𝑀
2

= 𝑀
1
∩𝑀
2
, Proposition 11 can be obtained

by Proposition 15.

3. Efficiency of Four Most Representative
DEA Models

For each of DEA models, Charnes et al. and Wei et al.
(e.g., see [5, 7, 9]) establish an associative multiobjective
linear programming model and prove that a DMU

𝑗0
is DEA

efficient if and only if (𝑥
𝑗0

, 𝑦
𝑗0

) (associating with the DMU
𝑗0
)

is a Pareto efficient solution of the multiobjective linear
programming problem (for the details about DEA efficient of
DMUs in DEA model, see [4, 5] and the references therein).
This beautiful conclusion provides the multiobjective linear
programming as an efficient tool to solve DEA problems.
So the key point now is to find all efficient solutions of the
multiobjective linear programming problems. This section
offers a simple way to do this.

By the results of Section 2, in the following, we investi-
gate the multiobjective linear programming problems corre-
sponding to the four DEAmodels and develop the structures
of the efficient point sets and the efficient solution sets
of these programmings. Based on these, the relationships
between the DEA efficiency of the four DEA models are
obtained.

Denote 𝑥
𝑗

= (𝑥
1𝑗

, . . . , 𝑥
𝑚𝑗

) > 0(𝑥
𝑗

∈ 𝑅
𝑚

) to be the input
vector for the 𝑗th decision making unit (DMU

𝑗
), and 𝑦

𝑗
=

(𝑦
1𝑗

, . . . , 𝑦
𝑠𝑗

) > 0 (𝑦
𝑗

∈ 𝑅
𝑠

), to be the output vector for the
𝑗th decision making unit, for 𝑗 = 1, . . . , 𝑛. For convenience
the notations 𝑥

0
= 𝑥
𝑗0

, 𝑦
0

= 𝑦
𝑗0
, for 1 ≤ 𝑗

0
≤ 𝑛 are given. Let

𝐶 = 𝑅
𝑚

+
⊂ 𝑅
𝑚, and let 𝐷 = 𝑅

𝑠

+
⊂ 𝑅
𝑠. The orderings in 𝑅

𝑚

and 𝑅
𝑠 are defined by 𝐶 and 𝐷, respectively. 𝐾 = {(𝑐, 𝑑) | 𝑐 ∈

𝐶, 𝑑 ∈ 𝐷}, 𝐾
1

= {(𝑐, −𝑑)𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷}, 𝐾
0

= 𝐾 \ {0}, and
𝐾
10

= 𝐾
1

\ {0. The production possibility set 𝑇, 𝑇 ⊂ {(𝑥, 𝑦) |

𝑥 ∈ 𝑅
𝑚

, 𝑦 ∈ 𝑅
𝑠

, 𝑥 ≥ 0, 𝑦 ≥ 0}, is based on postulate sets
which are presented with a brief explanation (see [4, 5]). The
four most representative models are, briefly, 𝐶

2

𝑅, 𝐵𝐶
2

, 𝐹𝐺,
and 𝑆𝑇, which correspond to different production possibility
sets 𝑇

𝐶
2
𝑅
, 𝑇
𝐵𝐶
2 , 𝑇
𝐹𝐺
, and 𝑇

𝑆𝑇
, respectively, [4–10]

𝑇
𝐶
2
𝑅

=

{

{

{

(𝑥, 𝑦) |

𝑛

∑

𝑗=1

𝑥
𝑗
𝜆
𝑗

≤ 𝑥,

𝑛

∑

𝑗=1

𝑦
𝑗
𝜆
𝑗

≥ 𝑦 ≥ 0, 𝜆
𝑗

≥ 0, 𝑗 = 1, . . . , 𝑛

}

}

}

,

𝑇
𝐵𝐶
2 =

{

{

{

(𝑥, 𝑦) |

𝑛

∑

𝑗=1

𝑥
𝑗
𝜆
𝑗

≤ 𝑥,

𝑛

∑

𝑗=1

𝑦
𝑗
𝜆
𝑗

≥ 𝑦 ≥ 0,

𝑛

∑

𝑗=1

𝜆
𝑗

= 1, 𝜆
𝑗

≥ 0, 𝑗 = 1, . . . , 𝑛

}

}

}

,

𝑇
𝐹𝐺

=

{

{

{

(𝑥, 𝑦) |

𝑛

∑

𝑗=1

𝑥
𝑗
𝜆
𝑗

≤ 𝑥,

𝑛

∑

𝑗=1

𝑦
𝑗
𝜆
𝑗

≥ 𝑦 ≥ 0,

𝑛

∑

𝑗=1

𝜆
𝑗

≤ 1, 𝜆
𝑗

≥ 0, 𝑗 = 1, . . . , 𝑛

}

}

}

,

𝑇
𝑆𝑇

=

{

{

{

(𝑥, 𝑦) |

𝑛

∑

𝑗=1

𝑥
𝑗
𝜆
𝑗

≤ 𝑥,

𝑛

∑

𝑗=1

𝑦
𝑗
𝜆
𝑗

≥ 𝑦 ≥ 0,

𝑛

∑

𝑗=1

𝜆
𝑗

≥ 1, 𝜆
𝑗

≥ 0, 𝑗 = 1, . . . , 𝑛

}

}

}

.

(33)

Obviously, the following equalities and inclusions hold:

(a) 𝑇
𝐶
2
𝑅

= 𝑇
𝐹𝐺

∪ 𝑇
𝑆𝑇

, (b) 𝑇
𝐵𝐶
2 = 𝑇
𝐹𝐺

∩ 𝑇
𝑆𝑇

,

(c) 𝑇
𝐶
2
𝑅

⊇ 𝑇
𝐹𝐺

⊇ 𝑇
𝐵𝐶
2 , (d) 𝑇

𝐶
2
𝑅

⊇ 𝑇
𝑆𝑇

⊇ 𝑇
𝐵𝐶
2 .

(34)

For distinguishing the DEA efficiency of DMUs in DEA
models, according to the equivalence of DEA efficiency in
DEA models and Pareto efficiency in multiobjective linear
programming obtained by Charnes et al. and Wei et al., we
introduce the multiobjective linear programming problem
corresponding to DEA models in the following. For the
details about DEA models, see [7, 8].

Consider multiobjective linear programming problem:

𝑉-min (𝑥, −𝑦) ,

s.t. (𝑥, 𝑦) ∈ 𝑇.

(𝑉𝑃)

For 𝑇 = 𝑇
𝐶
2
𝑅
, 𝑇
𝐵𝐶
2 , 𝑇
𝐹𝐺
, or 𝑇

𝑆𝑇
, the four multiobjective

linear programming problems 𝑉𝑃
𝐶
2
𝑅
, 𝑉𝑃
𝐵𝐶
2 , 𝑉𝑃
𝐹𝐺
, and 𝑉𝑃

𝑆𝑇

correspond to the four DEA models respectively.

Definition 17. (𝑥
0
, 𝑦
0
) is called an Pareto efficient (weak

efficient) solution of (𝑉𝑃), if there is no (𝑥, 𝑦) ∈ 𝑇, (𝑥, 𝑦) ̸=

(𝑥
0
, 𝑦
0
) such that

(𝑥, −𝑦) ≤ (𝑥
0
, −𝑦
0
) ,

((𝑥, −𝑦) < (𝑥
0
, −𝑦
0
)) .

(35)

Since 𝐾 defines the ordering in 𝑅
𝑚+𝑠

(⊃ 𝑇), the previous
inequality can be written as

(𝑥
0
, −𝑦
0
) ∈ (𝑥, −𝑦) + 𝐾

0
,

((𝑥
0
, −𝑦
0
) ∈ (𝑥, −𝑦) + int 𝐾) .

(36)
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When 𝐾 is a convex pointed cone, all conclusions in
Section 2 hold for multiobjective programming problem
(𝑉𝑃).Theorem 18 provides the equivalency of DEA efficiency
of DMUs and the Pareto efficiency of the points correspond-
ing to the DMUs. Consequently, the structures of the sets of
efficient solutions to DEA models are obtained by solving
the multiobjective programmings. Then the relationships
between the DEA efficiencies of DMUs in DEA models are
deduced.

Theorem 18 (see [5]). A DMU
𝑗0

is DEA efficient if and only if
(𝑥
0
, 𝑦
0
) is a Pareto efficient solution of (𝑉𝑃).

For convenience, we denote by DMU
0
DMU

𝑗0
. In the fol-

lowing, we investigate the structures of the efficient point sets
and the efficient solution sets of the four vector optimization
problems. Let

𝑀
0

= {(𝑥
𝑗
, −𝑦
𝑗
) | 𝑗 = 1, . . . , 𝑛} ,

𝑇
0

= {(𝑥
𝑗
, 𝑦
𝑗
) | 𝑗 = 1, . . . , 𝑛} ,

𝑀
𝐶
2
𝑅

= {(𝑥, −𝑦) | (𝑥, 𝑦) ∈ 𝑇
𝐶
2
𝑅
} ,

𝑀
𝐵𝐶
2 = {(𝑥, −𝑦) | (𝑥, 𝑦) ∈ 𝑇

𝐵𝐶
2} ,

𝑀
𝐹𝐺

= {(𝑥, −𝑦) | (𝑥, 𝑦) ∈ 𝑇
𝐹𝐺

} ,

𝑀
𝑆𝑇

= {(𝑥, −𝑦) | (𝑥, 𝑦) ∈ 𝑇
𝑆𝑇

} .

(37)

The relations (𝑎), (𝑏), (𝑐), and (𝑑) imply:

(𝑎) 𝑀
𝐶
2
𝑅

= 𝑀
𝐹𝐺

∪ 𝑀
𝑆𝑇

,

(𝑏) 𝑀
𝐵𝐶
2 = 𝑀

𝐹𝐺
∩ 𝑀
𝑆𝑇

,

(𝑐) 𝑀
𝐶
2
𝑅

⊇ 𝑀
𝐹𝐺

⊇ 𝑀
𝐵𝐶
2 ,

(𝑑) 𝑀
𝐶
2
𝑅

⊇ 𝑀
𝑆𝑇

⊇ 𝑀
𝐵𝐶
2 .

(38)

As an example, consider the multiobjective linear pro-
gramming problem (𝑉𝑃

𝐶
2
𝑅
). Let 𝐸

𝐶
2
𝑅
denote the efficient

point set, and let 𝑆
𝐶
2
𝑅
denote the efficient solution set. Note

that

(𝑥, −𝑦) ≤ (𝑥
0
, −𝑦
0
) ⇐⇒ (𝑥

0
, −𝑦
0
) ∈ (𝑥, −𝑦) + 𝐾. (39)

By Definitions 2 and 17,

𝐸
𝐶
2
𝑅

= 𝑀
0

\ (𝑀
𝐶
2
𝑅

+ 𝐾
0
) . (40)

Since

(𝑥
0
, −𝑦
0
) ∈ (𝑥, −𝑦) + 𝐾

0
⇐⇒ (𝑥

0
, 𝑦
0
) ∈ (𝑥, 𝑦) + 𝐾

10
, (41)

we have

𝑆
𝐶
2
𝑅

= 𝑇
0

\ (𝑇
𝐶
2
𝑅

+ 𝐾
10

) . (42)

Similar argument is applied to other three multiobjective
linear programming problems. Therefore the following two
theorems hold.

Theorem 19. Consider the following:

(𝑎) 𝐸
𝐶
2
𝑅

= 𝑀
0

\ (𝑀
𝐶
2
𝑅

+ 𝐾
0
) ,

(𝑏) 𝐸
𝐵𝐶
2 = 𝑀

0
\ (𝑀
𝐵𝐶
2 + 𝐾
0
) ,

(𝑐) 𝐸
𝐹𝐺

= 𝑀
0

\ (𝑀
𝐹𝐺

+ 𝐾
0
) ,

(𝑑) 𝐸
𝑆𝑇

= 𝑀
0

\ (𝑀
𝑆𝑇

+ 𝐾
0
) .

(43)

Theorem 20. Consider the following:

(𝑎) 𝑆
𝐶
2
𝑅

= 𝑇
0

\ (𝑇
𝐶
2
𝑅

+ 𝐾
10

) ,

(𝑏) 𝑆
𝐵𝐶
2 = 𝑇
0

\ (𝑇
𝐵𝐶
2 + 𝐾
10

) ,

(𝑐) 𝑆
𝐹𝐺

= 𝑇
0

\ (𝑇
𝐹𝐺

+ 𝐾
10

) ,

(𝑑) 𝑆
𝑆𝑇

= 𝑇
0

\ (𝑇
𝑆𝑇

+ 𝐾
10

) .

(44)

Inclusions (𝑐), (𝑑) andTheorem 20 imply Theorem 21.

Theorem 21. Consider the following:

(i) 𝑆
𝐶
2
𝑅

⊆ 𝑆
𝐹𝐺

⊆ 𝑆
𝐵𝐶
2 ,

(ii) 𝑆
𝐶
2
𝑅

⊆ 𝑆
𝑆𝑇

⊆ 𝑆
𝐵𝐶
2 .

(45)

Theorem 21 shows the relationships between the solutions
of the four vector optimization problems. Therefore, by
Theorem 18, the relationships between DEA efficiencies of
DMUs in DEA models are as the following:

(i) if DMU
0
is 𝐶
2

𝑅 DEA efficient, then it is 𝐹𝐺 DEA
efficient. If 𝐷𝑀𝑈

0
is 𝐹𝐺 DEA efficient, then it is 𝐵

2

𝐶

DEA efficient;
(ii) if DMU

0
is 𝐶
2

𝑅 DEA efficient, then it is 𝑆𝑇 DEA
efficient. If 𝐷𝑀𝑈

0
is 𝑆𝑇 DEA efficient, then it is 𝐵

2

𝐶

DEA efficient.

By Proposition 13, along with the equality (𝑎) and (𝑎), we
obtain followingTheorem 22.

Theorem 22. Consider the following:

𝐸
𝐶
2
𝑅

= [𝑀
0

\ (𝑀
𝐹𝐺

+ K
0
)] \ (𝑀

𝑆𝑇
+ 𝐾
0
)

= [𝑀
0

\ (𝑀
𝑆𝑇

+ 𝐾
0
)] \ (𝑀

𝐹𝐺
+ 𝐾
0
)

= 𝐸
𝐹𝐺

\ (𝑀
𝑆𝑇

+ 𝐾
0
) = 𝐸
𝑆𝑇

\ (𝑀
𝐹𝐺

+ 𝐾
0
) .

(46)

ByTheorem 22, we conclude that if𝐸
𝐶
2
𝑅

̸= 𝜙, then𝐸
𝐹𝐺

̸= 𝜙

and 𝐸
𝑆𝑇

̸= 𝜙; by (𝑎), (𝑐), and (𝑑), we declaim that if 𝐷𝑀𝑈
0
is

𝐶
2

𝑅 DEA efficient, then it is also 𝐹𝐺 DEA efficient and 𝑆𝑇

DEA efficient.
Proposition 15 and (𝑏) infer Theorem 23.

Theorem 23. Consider the following:

𝐸
𝐵𝐶
2 ⊇ (𝐸

𝐹𝐺
∩ 𝑀
𝑆𝑇

) ∪ (𝐸
𝑆𝑇

∩ 𝑀
𝐹𝐺

) . (47)
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Consider that 𝐸
𝐹𝐺

= 𝑀
0

\ (𝑀
𝐹𝐺

+ 𝐾
0
), and 𝑀

0
⊂ 𝑀
𝑆𝑇
,

if 𝐸
𝐹𝐺

̸= 𝜙, then 𝐸
𝐹𝐺

∩ 𝑀
𝑆𝑇

̸= 𝜙. Similarly, 𝐸
𝑆𝑇

∩ 𝑀
𝐹𝐺

̸= 𝜙.
Therefore, the following consequences are obtained:

(i) if DMU
0
is 𝑆𝑇 DEA efficient, then it is also 𝐵𝐶

2

DEA efficient;
(ii) if DMU

0
is 𝐹𝐺 DEA efficient, then it is also 𝐵𝐶

2

DEA efficient.

4. Conclusion

In this paper, Definition 2 presents a new representation to
𝐸(𝑀, 𝐾). Then some new properties of 𝐸(𝑀, 𝐾) are deduced
by the new representation (Propositions 6 to 15 and their
corollaries). Most of the properties are proved by mean of
the binary operations of sets, which is a new method in
multiobjective optimization. These conclusions are used to
deal with the multiobjective linear programming problems
corresponding to the four most representative DEA models.
We investigate the structures of the efficient solution set of
the four DEA models (Theorems 19 and 20) and deduce the
relationships between DEA efficient solution sets of the four
DEAmodels (Theorems 21 and 22). For each of the four DEA
models, byTheorem 20, 𝑆 = 𝑇

0
\(𝑇+𝐾

10
); that is, all the DEA

efficient DMUs are obtained by the binary operations of sets.
Therefore, this is a simple way to get all DEA efficient DMUs
theoretically. By using the new representation, it may be able
to discuss the effects uponDEA efficiency of DMUs when the
number of the DMUs changes in DEA models.
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