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IC lead frame scraps with about 18.01% tin, 34.33% nickel, and 47.66% iron in composition are industrial wastes of IC lead frame
production. The amount of thousand tons of frame scraps in Taiwan each year is treated as scrap irons. Ni-Zn ferrites used in
high frequent inductors and filters are produced from Ni-Zn ferrite powders by pressing and sintering. The amount of several ten
thousand tons of ferrites of Ni

1−𝑋
Zn
𝑋
Fe
2
O
4
in compositions is consumed annually in the whole world. Therefore, these IC lead

frame scraps will be used in this research as raw materials to fabricate magnetic ferrite powders and combined subsequently with
titanium sulfate and urea to produce magnetic photocatalysts by coprecipitation for effective waste utilization.The prepared Ni-Zn
ferrite powder and magnetic photocatalyst (Ni-Zn ferrite/TiO

2
) were characterized by ICP, XRF, XRD, EDX, SEM, SQUID, and

BET. The photocatalytic activity of synthesized magnetic photocatalysts was tested by FBL dye wastewater degradation. TOC and
ADMI measurement for degradation studies were carried out, respectively. Langmuir-Hinshelwood kinetic model of the prepared
magnetic TiO

2
proved available for the treatments. Wastes are transformed to valuable magnetic photocatalysts in this research to

solve the separation problem of wastewater and TiO
2
photocatalysts by magnetic field.

1. Introduction

Wastewaters from textile and dyeing industries are highly col-
ored by various nonbiodegradable dyes which cause serious
environmental problems [1]. Advanced oxidation processes
such as UV/H

2
O
2
[2], ozonation [3–5], Fenton processes [5–

8], ozone/Fenton [9], and TiO
2
and modified TiO

2
[10–17]

are promising alternatives for the mineralization of textile
dyes or other pollutants. Among them, semiconductor TiO

2
’s

simultaneous photocatalytic oxidation and reduction show
significant potential due to being photoreactive, nontoxic,
chemically and biologically inert, photostable, and lower in
cost. Among different advanced oxidation processes (AOPs),
a brand new AOP, sonolysis or hybrid AOP, combined with
sonolysis has drawn increasing attention as it generates
⋅OH free radical through transient cavitation by ultrasound
irradiation [18–20]. Cavitation is essentially the nucleation,
growth, and transient implosive collapse of gas bubbles
driven by ultrasound wave.

The well-known nickel-zinc ferrite is of special techno-
logical significance, particularly at high frequencies, because

of its high resistivity and low eddy current losses. Several
methods are conventionally used for the synthesis of these
nanosized ferrites such as ceramic [21, 22], sol-gel [23, 24],
coprecipitation [25], hydrothermal method [26, 27], citrate
precursor method [28, 29], and autocombustion method [29,
30]. Sonochemical approach is considerably new to synthe-
size ferrite in which ferrite nanoparticles are prepared by
ultrasound irradiation or sonication of the reaction mixture
[31].

Despite existing technologies, separation difficulty of
nanosized TiO

2
particles from treated wastewater still

remains. Fixed-film-TiO
2
systems are undermined due to

immobility while magnetic TiO
2
offers to overcome this

limitation. For example, Chen and Zhao [32] reported a
magnetically separable photocatalyst of TiO

2
/SiO
2
/𝛾-Fe
2
O
3

prepared by solid phase synthesis. The addition of a SiO
2

membrane between the 𝛾-Fe
2
O
3
core and the TiO

2
shell

weakened the adverse effects of 𝛾-Fe
2
O
3
on the photocatalysis

of TiO
2
. Photocatalysts in Chen and Zhao’s article showed

good photocatalytic activity and could be separated from the
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solution with magnetic field. Gao et al. [33] synthesized a
magnetically separated photocatalyst of TiO

2
/𝛾-Fe
2
O
3
by sol-

gel method.The sample sintered at 500∘C displayed the high-
est degradation activity for acridine dye aqueous solution,
with the optimal TiO

2
supporting amount approximating

50%. Fu et al. [34] successfully prepared TiO
2
/NiCuZn ferrite

composite powder as a magnetic photocatalyst. The core
NiCuZn ferrite powder was synthesized with the waste mate-
rial from steel and electroplating industries. TiO

2
nanocrystal

shell was prepared by sol-gel hydrolysis of titanium iso-
propoxide with NiCuZn ferrite powder followed by heat
treatment. In their study, the optimumdosage of themagnetic
photocatalyst was 2.67 g/L to treat methylene blue solution.

Recently we produced MnZn ferrite powders [35], which
are used in power transformers and inductors, from spent
alkali-manganese batteries in order to solve their heavymetal
contamination problem. Comparing with MnZn ferrite, Ni-
Zn ferrite is easier to be prepared. Lower temperature
and no protecting atmosphere are needed during sintering.
Therefore Ni-Zn ferrite was chosen to produce magnetic
photocatalysts from IC lead frame scrap and waste pickling
acid. Both ferrites solve the different heavy metals pollution
problems and transform into useful magnetic photocata-
lysts.

In this research, a simple magnetic photocatalyst prepa-
ration was undertaken. First, Ni-Zn magnetic ferrite powder
was prepared from IC lead frame scraps and ferrous sulfate
containing spent acid solution from steel plants by coprecip-
itation. Then, the magnetic powder was added to a titanium
sulfate solution and the hydroxides of titanium were precipi-
tated at desired pHwith urea solution. After filtration, drying,
and grinding, the precipitates were sintered at 500∘C under
N
2
atmosphere to form the magnetic photocatalyst, Ni-Zn

ferrite/TiO
2
. The degradations of simulated FBL (Everdirect

Supra Turquoise Blue) dye wastewater were carried out by
applying self-prepared magnetic photocatalysts under UVA
irradiation. Also L-H kinetic model was studied.

2. Materials and Methods

2.1. Preparation of Magnetic Ni-Zn Ferrite Powder and Mag-
netic Photocatalyst. Nitric acid was added sequentially to the
small piece of lead frame scraps to dissolve nickel and iron.
When hydrolysis was complete, tins were all precipitated as
Sn(OH)

4
and the filtrate contained Ni+2 and Fe+2 ions. After

detinning and according to the nickel concentration, waste
acids from steel industry containing iron and reagent of zinc
nitrate were added to the solution to adjust the solution
composition as Ni

1−𝑋
Zn
𝑋
Fe
2
O
4
, where 𝑋 is chosen as 0.5.

NaOH solution is then added to adjust the solution pH value
to alkali. Subsequently, all Fe, Ni, and Zn ions in the solution
were transformed into hydroxide forms and suspended in the
solution.The solution was pumped with air to oxidize ferrous
ion and heated for several hours. All hydroxides were reacted
and precipitated from the solution as ferrite powders. Ni-Zn
ferrite powderswere filtered, washed, calcined, and dried.The
designed composition was Ni : Zn : Fe = 0.5 : 0.5 : 2.0 bymoles
and Ni : Zn : Fe = 16.9 : 18.8 : 64.3 by weight percentages or

NiO : ZnO : Fe
2
O
3
= 9.4 : 10.2 : 80.4 byweight. Corresponding

reactions are shown in the following:

5Sn + 4HNO3 + 8H2O 󳨀→ 5Sn (OH)4 + 2N2 (1)

5 (Fe,Ni) + 12HNO3 󳨀→ 5 (Fe,Ni) (NO3)2 +N2

+ 6H2O
(2)

Ni (NO3)2(aq) + Fe (NO3)3(aq) + Zn (NO3)2(aq)

+ 7NaOH
(aq) 󳨀→ Ni (OH)

2
+ Fe (OH)

3

+ Zn (OH)
2
+ 7NaNO3

(3)

(1 − 𝑋)Ni (OH)
2
+ 2Fe (OH)

3

+ 𝑋Zn (OH)
2
󳨀→ Ni

1−𝑋
Zn
𝑋
Fe2O4 + 4H2O

(4)

Experimental treatment with photocatalyst-TiO
2
alone for

dye wastewater is proved to be very efficient. Besides, the
secondary pollution by other advanced treatment methods
can be eliminated. But there still exists the separation problem
of solids (TiO

2
) and liquids (wastewater). Therefore, used

in this study were titanium sulfate, urea, and Ni-Zn ferrite
powder to produce modified titanium dioxide photocatalyst
by coprecipitation.The ratio of Ni-Zn ferrite powder to TiO

2

was 1 : 1 (wt%). Finally magnetic photocatalyst powder was
obtained by filtration, drying, grinding, and calcination at
500∘C. The same procedure was used for the preparation of
TiO
2
except the step of no addition of magnetic Ni-Zn ferrite

powder. Related reactions were

(NH2)2 CO + 3H2O 󳨀→ 2NH4OH + CO2 (5)

Ti (SO4)2 + 4NH4OH 󳨀→ Ti (OH)
4
+ 2 (NH4)2 SO4 (6)

Ti (OH)4 󳨀→ TiO2 + 2H2O (7)

The characterizations of the prepared Ni-Zn ferrite
powders and modified magnetic photocatalysts, Ni-Zn
ferrite/TiO

2
, were investigated by ICP, XRF, XRD, SEM,

SQUID, and BET measurements. TOC and ADMI values
can be applied for the treatment of dye wastewater under
UVA irradiation with the self-prepared TiO

2
and Ni-Zn

ferrite/TiO
2
magnetic photocatalysts.

2.2. Characterization. Thecrystalline structures of bothmag-
netic powder and magnetic photocatalyst were examined by
XRD (X-ray diffractometer, XRD-6000, Shimadzu, Japan).
Their M-H loops were measured by SQUID (supercon-
ducting quantum interference device, MPM57, Quantum
Design, USA). Particle chemical compositions were analyzed
by ICP (ICAP 9000, USA) and XRF (X-ray fluorescence,
XEPOS/XEPO1, Spectro Co., Germany). Their microstruc-
tures were observed by SEM (scanning electron microscopy,
S-3000N, Hitachi, Japan). The specific area was measured by
BET surface area analyzer (Brunauer-Emmett-Teller, Model-
ASAP 2012, Micromeritics, USA).

2.3. Photocatalytic Degradation. Photocatalytic reactions
were carried out by mixing 1 L of FBL dye solution and 5 g
of magnetic Ni-Zn ferrite/TiO

2
photocatalysts inside a 2 L
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Table 1: Analysis of IC lead frame scraps by ICP.

Element Fe Ni Sn
Concentration (ppm) 25325 18246 9571
Wt% 47.66% 34.33% 18.01%

Table 2: Analysis of filtrate after detinning by ICP.

Element Fe Ni
Concentration (ppm) 20364.75 14936.60
Weight % 57.69% 42.31%
Molarity (mole/L) 0.36 0.25

photoreactor with a Teflon agitator under UVA irradiation
for 8 hrs. The structure of the FBL dye was shown in [8].
The initial dye concentrations were COD = 100, 200, 300,
and 400mg/L for each experiment. After photoreaction
and filtration by 0.45 𝜇m MFS, TOC (total organic carbon,
Model 1010, O.I. Analytical, USA) and ADMI color values
(American Dye Manufacturers Institute, Model DR/4000V,
HACH, USA) were measured for each sample. COD was
determined by potassium dichromate titration as described
in Standard Methods [36]. UVA intensities were measured
by a radiometer (Lutron Co., Taiwan) and expressed as
𝐼av (mW/cm2).

3. Results and Discussion

3.1. Characterization of Magnetic Photocatalyst of Ni-Zn
Ferrite/TiO

2
. The compositions of IC lead frame scraps and

filtrate after detinning are shown in Tables 1 and 2, respec-
tively.

XRF analyses of Ni-Zn ferrite powders and Ni-Zn
ferrite/TiO

2
are shown in Table 3. It is clear that the exper-

imental values of magnetic powders from wastes are close to
the quantity of the predetermined value. SEM micrographs
suggest that particles of magnetic Ni-Zn ferrite powders
agglomerate. The particle size is around 0.3 𝜇m by DLS
(dynamic light scattering) analysis [37]. TiO

2
is precipitated

on the surface of the secondary particle and its size is approx-
imately 469.7 nm as shown in Figure 1. EDX diagrams of
Ni-Zn ferrite powders and Ni-Zn ferrite/TiO

2
photocatalyst

indicate the presence of Ni, Zn, Fe, and titanium as shown in
Figure 2. X-ray diffraction patterns of Ni-Zn ferrite powders
and magnetic photocatalysts in Figure 3 reveal the spinel
cubic ferrites and the anatase form of TiO

2
. All peaks in

the pattern match well with the Joint Committee of Powder
Diffraction Standard (JCDDS). A small amount of hematite
also exists in the specimens.The surface area of Ni-Zn ferrite
powder by BET measurement is 17m2/g and that of Ni-Zn
ferrite/TiO

2
rises to 61m2/g, which shows more active sites

for photoreaction.
The self-prepared TiO

2
follows the same coprecipita-

tion without the addition of Ni-Zn ferrite powder and
the corresponding SEM and EDX diagrams are shown in
Figures 4 and 5. The particle size is around 1 𝜇m–4.8 𝜇m and
BET is 116 (m2/g) while BET of commercial TiO

2
(7 nm) is

231 (m2/g).

Figure 1: SEM diagram of Ni-Zn ferrite/TiO
2
(×30000).

3.2. Magnetic Property. Magnetic properties of Ni-Zn ferrite
powders and Ni-Zn ferrite/TiO

2
are presented in Figure 6 as

magnetic hysteresis loops by SQUID.The saturationmagneti-
zation (Ms) ofNi-Zn ferrite powder andNi-Zn ferrite/TiO

2
is

64.43 and 17.05 emu/g and the corresponding coercive forces
(Hc) are 6.13 and 7.66Oe, respectively. Due to the minimal
hysteresis and small Hc, the prepared magnetic materials are
all soft magnetic and the magnetic photocatalysts made up
fromwastes can be recycled by appliedmagnetic field because
of the magnetic property. The small coercivity of the ferrite
mainly comes from the soft magnetic properties of the Ni-
Zn ferrite, which has very low crystal and shape anisotropy
constant, and is not due to size effect [38]. The saturation
magnetization of the ferrite (Ni

0.5
Zn
0.5
Fe
2
O
4
) prepared here

is 64.43 emu/g, and the literature values are about 70 emu/g
[39], depending on the preparation conditions.They are quite
comparable.

3.3. Photodegradation. Photodegradations of simulated FBL
dyewastewater at initial CODs of 100, 200, 300, and 400mg/L
under UVA irradiation with self-produced magnetic photo-
catalysts fromwastes are shown in Figures 7 and 8.The degra-
dation efficiencies increase as the pollutant concentrations
decrease. For dilute pollution of FBL dye (COD = 100 ppm),
TOC removal can reach 84.22% and color or ADMI removal
reaches 81.68%. The photodegradations by self-prepared
TiO
2
, commercial TiO

2
, and Ni-Zn ferrite/TiO

2
are also

summarized and compared in Table 4. Ni-Zn ferrite/TiO
2

from wastes is very close to the commercial TiO
2
(20 nm) in

treatment efficiency by treating dilute simulated dyewastewa-
ter.The treatment efficiency of the self-preparedTiO

2
is better

than that of the commercial TiO
2
(20 nm).

3.4. Langmuir-Hinshelwood Kinetic Model (L-H Model). L-H
model can be expressed by the following equation:

𝑟 = −
𝑑𝐶

𝑑𝑡
=
𝑘
𝑟
𝐾𝐶

1 + 𝐾𝐶
=
𝑘
𝑑
𝐶

1 + 𝐾𝐶
, (8)

where 𝑘
𝑟
is the photocatalytic reaction constant [mg/(L-

min)], 𝑘
𝑑
is the apparent degradation rate constant (min−1),

and 𝐶 is the dye concentration, TOC (mg/L). Combining
zero-order and first-order reactions, L-H model becomes
[40]

− ln( 𝐶
𝐶
0

) + 𝐾 (𝐶
0
− 𝐶) = 𝐾

𝑟
𝐾𝑡. (9)
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Table 3: XRF analysis of magnetic materials (Ni0.5Zn0.5Fe2O4 and Ni-Zn ferrite/TiO
2
).

Items Fe
2
O
3
(wt%) NiO (wt%) ZnO (wt%) TiO

2
(wt%)

Ni0.5Zn0.5Fe2O4 (designed value) 80.4 wt% 9.4wt% 10.20wt% —
Ni0.5Zn0.5Fe2O4 (experimental) 79.71 wt% 9.5 wt% 10.78wt% —
Ni -Zn ferrite/TiO

2
(500∘C) (experimental) 28.58 wt% 2.58wt% 3.63wt% 65.22wt%
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Figure 3: XRD diagram of Ni-Zn ferrite powder (a) and Ni-Zn ferrite/TiO
2
(500∘C) (b).

Figure 4: SEM images of self-prepared photocatalyst of TiO
2

(×10000).

Let C = 0.715C
0
, t = t
0.715

; the equation becomes

𝑡
0.715
=
0.3354

𝑘
𝑟
𝐾
+
0.285𝐶

0

𝑘
𝑟

. (10)

Plotting t
0.715

against 0.285C
0
brings about a straight line

as shown in Figure 9. From the slope and intercept, kinetic
constants can be calculated.

Constants obtained from L-H model are 𝑘
𝑟
=

3.1614 (mg/Lmin), 𝑘
𝑑
= 0.3212 (min−1), and 𝐾 = (𝑘

𝑑
/𝑘
𝑟
) =

0.1016 (L/mg). The result shows that L-H kinetic model
fits well for the photodegradation of FBL simulated dye
wastewater with the self-prepared Ni-Zn ferrite/TiO

2
.
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Table 4: Ultimate TOC and ADMI removal % of various TiO
2
(COD = 100 ppm, dosage = 5 g) under UVA irradiation (𝐼av = 1.324 W/cm2).

Photocatalyst Ni-Zn ferrite/TiO
2

Self-prepared TiO
2

Commercial TiO
2
(7 nm) Commercial TiO

2
(20 nm)

TOC removal (%) 84.22% 91.71% 95.96% 84.40%
ADMI removal (%) 81.68% 93.04% 97.79% 87.66%
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4. Conclusions

The following conclusions can be drawn:

(1) Magnetic ferrite powder of Ni
0.5

Zn
0.5
Fe
2
O
4
was suc-

cessfully prepared by coprecipitation from industrial
wastes of IC lead frame and waste acids of steel
industry.

(2) Magnetic photocatalyst of Ni-Zn ferrite/TiO
2
was

also successfully fabricated from prepared magnetic
ferrite powder, Ti (SO

4
)
2
, and urea by the same

coprecipitation. By XRD analysis, TiO
2
in magnetic

photocatalyst shows the crystal structure of anatase
form.

(3) By SQUID analysis, the saturationmagnetism (Ms) of
the prepared magnetic photocatalysts is 17.05 emu/g
with the coercive force (Hc) of 7.66Oe, which proves
that the magnetic photocatalyst is soft magnetic
material and can be recycled by magnetic field.

0 50 100 150 200 250 300 350 400 450 500

(Iav = 1.324mW/cm2)

(min)

0

10

20

30

40

50

60

70

80

90

100

TO
C 

re
m

ov
al

 (%
)

FBL COD = 100ppm
FBL COD = 200ppm

FBL COD = 300ppm
FBL COD = 400ppm

Figure 7: TOC removal % versus time with Ni-Zn ferrite/TiO
2

(COD|
𝑡=0

= 100–400 ppm) to treat FBL dye (dosage = 5 g/L; 𝐼av =
0.1324mW/cm2).

0 50 100 150 200 250 300 350 400 450 500

(Iav = 1.324mW/cm2)

(min)

0

10

20

30

40

50

60

70

80

90

A
D

M
I r

em
ov

al
 (%

)

FBL COD = 100ppm
FBL COD = 200ppm

FBL COD = 300ppm
FBL COD = 400ppm

Figure 8: ADMI removal % versus time with Ni-Zn ferrite/TiO
2

(COD|
𝑡=0

= 100–400 ppm) to treat FBL dye (dosage = 5 g/L; 𝐼av =
0.1324mW/cm2).

(4) The degradation of FBL dye shows that TOC and
ADMI removal efficiencies are quite close for the
prepared Ni-Zn ferrite/TiO

2
and the commercial

20 (nm) TiO
2
. The magnetic photocatalysts can solve

the separation problem betweenwastewater and TiO
2

photocatalysts by magnetic field.
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.

(5) L-H kinetic model fits well for the self-prepared
magnetic photocatalysts of Ni-Zn ferrite/TiO

2
, which

can be used successfully in AOP.
(6) Quite consequential is the transformation of haz-

ardous wastes to valuable magnetic ferrite powders
and magnetic photocatalysts and the processes stud-
ied not only recycle wastes to solve the global pollu-
tion problem but also tell the possibility of turning
profits.
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