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We consider initial-boundary conditions for coupled nonlinear wave equations with damping and source terms. We prove that the
solutions of the problem are unbounded when the initial data are large enough in some sense.

1. Introduction

In thiswork,we consider the following initial-boundary value
problem:

𝑢
𝑡𝑡
− Δ𝑢
𝑡
+




𝑢
𝑡






𝑝−1

𝑢
𝑡
= div (𝜌 (|∇𝑢|2) ∇𝑢) + 𝑓

1
(𝑢, V) ,

(𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

V
𝑡𝑡
− ΔV
𝑡
+




V
𝑡






𝑞−1 V
𝑡
= div (𝜌 (|∇V|2) ∇V) + 𝑓

2
(𝑢, V) ,

(𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

𝑢 (𝑥, 𝑡) = V (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

V (𝑥, 0) = V
0
(𝑥) , V

𝑡
(𝑥, 0) = V

1
(𝑥) , 𝑥 ∈ Ω,

(1)

where Ω is a bounded domain with smooth boundary 𝜕Ω in
𝑅
𝑛, 𝑛 = 1, 2, 3; 𝑝, 𝑞 ≥ 1; 𝑓

𝑖
: 𝑅
2
→ 𝑅 are given functions to

be specified later.
Throughout this paper, we define 𝜌 by

𝜌 (𝑠) = 𝑏
1
+ 𝑏
2
𝑠
𝑚
, 𝑠 ≥ 0, (2)

where 𝑏
1
, 𝑏
2
are nonnegative constants and 𝑏

1
+ 𝑏
2
> 0.

This type of problems not only is important from the the-
oretical point of view, but also arises in material science and
physics that deal with system of nonlinear wave equations.

Ye [1] obtained the local existence and the blowup of the
solution of problem (1), for 𝜌(𝑠) = 𝑠

𝑚. In the absence of the
strong damping (Δ𝑢

𝑡
and ΔV

𝑡
) terms, problem (1) becomes

𝑢
𝑡𝑡
+




𝑢
𝑡






𝑝−1

𝑢
𝑡
= div (𝜌 (|∇𝑢|2) ∇𝑢) + 𝑓

1
(𝑢, V) ,

V
𝑡𝑡
+




V
𝑡






𝑞−1 V
𝑡
= div (𝜌 (|∇V|2) ∇V) + 𝑓

2
(𝑢, V) .

(3)

Wu et al. [2] obtained the global existence and blowup of the
solution of problem (3) under some suitable conditions. Fei
and Hongjun [3] considered problem (3) and improved the
blowup result obtained in [2], for a large class of initial data in
positive initial energy, using the same techniques as in Payne
and Sattinger [4] and some estimates used firstly by Vitillaro
[5]. Recently, Pişkin and Polat [6, 7] studied the local and
global existence, energy decay, and blowup of the solution of
problem (3). Also, for more information about (1) and (3), see
[2, 3, 7].

The many problems associated with (1) are studied from
various aspects in many papers [8–13].

In this work, we will consider the blowup property in
infinity time, that is, exponential growth.

This work is organized as follows. In Section 2, we state
the local existence result. In Section 3, we establish that the
energy will grow up as an exponential as time goes to infinity,
provided that the initial data are large enough or 𝐸(0) < 𝐸

1
,

where 𝐸(0) and 𝐸
1
are defined in (9) and (15).
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2. Preliminaries

In this section, we introduce some notations and lemmas
and local existence theorem needed in the proof of our main
results. Let ‖ ⋅ ‖ and ‖ ⋅ ‖

𝑝
denote the usual 𝐿2(Ω) norm and

𝐿
𝑝
(Ω) norm, respectively.
Concerning the functions 𝑓

1
(𝑢, V) and 𝑓

2
(𝑢, V), we take

𝑓
1
(𝑢, V) = 𝑎 |𝑢 + V|2(𝑟+1) (𝑢 + V) + 𝑏 |𝑢|𝑟 𝑢 |V|𝑟+2 ,

𝑓
2
(𝑢, V) = 𝑎 |𝑢 + V|2(𝑟+1) (𝑢 + V) + 𝑏 |V|𝑟 V |𝑢|𝑟+2 ,

(4)

where 𝑎, 𝑏 > 0 are constants and 𝑟 satisfies

−1 < 𝑟 if 𝑛 ≤ 2,

−1 < 𝑟 ≤ 1 if 𝑛 = 3.

(5)

According to the above equalities they can easily verify that

𝑢𝑓
1
(𝑢, V) + V𝑓

2
(𝑢, V) = 2 (𝑟 + 2) 𝐹 (𝑢, V) , ∀ (𝑢, V) ∈ 𝑅2,

(6)

where

𝐹 (𝑢, V) =
1

2 (𝑟 + 2)

[𝑎 |𝑢 + V|2(𝑟+2) + 2𝑏 |𝑢V|𝑟+2] . (7)

We have the following result.

Lemma 1 (see [14]). There exist two positive constants 𝑐
0
and

𝑐
1
such that

𝑐
0
(|𝑢|
2(𝑟+2)

+ |V|2(𝑟+2)) ≤ 2 (𝑟 + 2) 𝐹 (𝑢, V)

≤ 𝑐
1
(|𝑢|
2(𝑟+2)

+ |V|2(𝑟+2))
(8)

is satisfied.

We define the energy function as follows:

𝐸 (𝑡) =

1

2

(




𝑢
𝑡






2

+




V
𝑡






2

)

+

1

2

∫

Ω

(𝑃 (|∇𝑢|
2
) + 𝑃 (|∇V|2)) 𝑑𝑥

− ∫

Ω

𝐹 (𝑢, V) 𝑑𝑥,

(9)

where 𝑃(𝑠) = ∫

𝑠

0
𝜌(𝜉)𝑑𝜉, 𝑠 ≥ 0.

Lemma 2 (see [7]). 𝐸(𝑡) is a nonincreasing function for 𝑡 ≥ 0

and

𝐸

(𝑡) = − (





∇𝑢
𝑡






2

+




∇V
𝑡






2

+




𝑢
𝑡






𝑝+1

𝑝+1
+




V
𝑡






𝑞+1

𝑞+1
) ≤ 0.

(10)

Lemma 3 (Sobolev-Poincare inequality [15]). Let 𝑝 be a
number with 2 ≤ 𝑝 < ∞ (𝑛 = 1, 2) or 2 ≤ 𝑝 ≤ 2𝑛/(𝑛−2) (𝑛 ≥

3), then there is a constant 𝐶
∗
= 𝐶
∗
(Ω, 𝑝) such that

‖𝑢‖
𝑝
≤ 𝐶
∗
‖∇𝑢‖ 𝑓𝑜𝑟 𝑢 ∈ 𝐻

1

0
(Ω) ; (11)

Next, we state the local existence theorem [1, 7].

Theorem 4 (local existence). Suppose that (5) holds. Then
there exist 𝑝, 𝑞 satisfying

1 ≤ 𝑝, 𝑞 𝑖𝑓 𝑛 ≤ 2,

1 ≤ 𝑝, 𝑞 ≤ 5 𝑖𝑓 𝑛 = 3,

(12)

and further (𝑢
0
, V
0
) ∈ (𝑊

1,2(𝑚+1)

0
(Ω) ∩ 𝐿

2(𝑟+2)
(Ω)) ×

(𝑊
1,2(𝑚+1)

0
(Ω) ∩ 𝐿

2(𝑟+2)
(Ω)), (𝑢

1
, V
1
) ∈ 𝐿

2
(Ω) × 𝐿

2
(Ω). Then

problem (1) has a unique local solution

𝑢, V ∈ 𝐶 ([0, 𝑇) ;𝑊1,2(𝑚+1)
0

(Ω) ∩ 𝐿
2(𝑟+2)

(Ω)) ,

𝑢
𝑡
∈ 𝐶 ([0, 𝑇) ; 𝐿

2
(Ω)) ∩ 𝐿

𝑝+1
(Ω × [0, 𝑇)) ,

V
𝑡
∈ 𝐶 ([0, 𝑇) ; 𝐿

2
(Ω)) ∩ 𝐿

𝑞+1
(Ω × [0, 𝑇)) .

(13)

3. Exponential Growth

In this section, we will prove that the energy is unbounded
when the initial data are large enough in some sense. Our
techniques of proof follow very carefully the techniques used
in [16].

Lemma 5 (see [3]). Suppose that (5) holds. Then there exists
𝜂 > 0 such that for any (𝑢, V) ∈ (𝑊1,2(𝑚+1)

0
(Ω) ∩ 𝐿

2(𝑟+2)
(Ω)) ×

(𝑊
1,2(𝑚+1)

0
(Ω) ∩ 𝐿

2(𝑟+2)
(Ω)) the inequality

‖𝑢 + V‖2(𝑟+2)
2(𝑟+2)

+ 2 ‖𝑢V‖𝑟+2
𝑟+2

≤ 𝜂 (∫

Ω

(𝑃 (|∇𝑢|
2
) + 𝑃 (|∇V|2)) 𝑑𝑥)

𝑟+2 (14)

holds.

For the sake of simplicity and to prove our result, we take
𝑎 = 𝑏 = 1 and introduce

𝐵 = 𝜂
1/2(𝑟+2)

, 𝛼
1
= 𝐵
−((𝑟+2)/(𝑟+1))

,

𝐸
1
= (

1

2

−

1

2 (𝑟 + 2)

) 𝛼
2

1
,

(15)

where 𝜂 is the optimal constant in (14). Next, we will state
a lemma which is similar to the one introduced firstly by
Vitillaro in [5] to study a class of a single wave equation.

Lemma 6 (see [3]). Suppose that (5) holds. Let (𝑢, V) be the
solution of problem (1). Assume further that 𝐸(0) < 𝐸

1
and

(∫

Ω

(𝑃 (




∇𝑢
0






2

) + 𝑃 (




∇V
0






2

)) 𝑑𝑥)

1/2

> 𝛼
1
. (16)
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Then there exists a constant 𝛼
2
> 𝛼
1
such that

(∫

Ω

(𝑃 (|∇𝑢|
2
) + 𝑃 (|∇V|2)) 𝑑𝑥)

1/2

≥ 𝛼
2
, (17)

(‖𝑢 + V‖2(𝑟+2)
2(𝑟+2)

+ 2 ‖𝑢V‖𝑟+2
𝑟+2
)

1/2(𝑟+2)

≥ 𝐵𝛼
2
, (18)

for all 𝑡 ∈ [0, 𝑇).

Theorem 7. Suppose that (5) and 2(𝑟 + 2) > max{𝑝 + 1, 𝑞 +
1} hold. Then any solution of problem (1) with initial data
satisfying

(∫

Ω

(𝑃 (




∇𝑢
0






2

) + 𝑃 (




∇V
0






2

)) 𝑑𝑥)

1/2

> 𝛼
1
, 𝐸 (0) < 𝐸

1
,

(19)

grows exponentially.

Proof. We set

𝐻(𝑡) = 𝐸
1
− 𝐸 (𝑡) , 𝑡 ≥ 0. (20)

From (10) and (20) we get

𝐻

(𝑡) = −𝐸


(𝑡) =





𝑢
𝑡






𝑝+1

𝑝+1
+




V
𝑡






𝑞+1

𝑞+1
≥ 0; (21)

hence we have𝐻(𝑡) ≥ 𝐻(0) = 𝐸
1
− 𝐸(0) > 0.

We consider the following functional:

𝐿 (𝑡) = 𝐻 (𝑡) + 𝜀∫

Ω

(𝑢𝑢
𝑡
+ VV
𝑡
) 𝑑𝑥 +

𝜀

2

(‖∇𝑢‖
2
+ ‖∇V‖2)

(22)

for small 𝜀 to be specified later.
Our goal is to show that 𝐿(𝑡) satisfies a differential

inequality of the form

𝐿

(𝑡) ≥ 𝐶𝐿 (𝑡) ∀𝑡 ≥ 0. (23)

This, of course, will lead to exponential growth.
By taking a derivative of (22) and using (1), it follows that

𝐿

(𝑡) = 𝐻


(𝑡) + 𝜀 (





𝑢
𝑡






2

+




V
𝑡






2

)

+ 𝜀∫

Ω

(𝑢𝑢
𝑡𝑡
+ VV
𝑡𝑡
) 𝑑𝑥

+ 𝜀∫

Ω

(∇𝑢∇𝑢
𝑡
+ ∇V∇V

𝑡
) 𝑑𝑥

= (




𝑢
𝑡






𝑝+1

𝑝+1
+




V
𝑡






𝑞+1

𝑞+1
) + 𝜀 (





𝑢
𝑡






2

+




V
𝑡






2

)

− 𝜀𝑏
1
(‖∇𝑢‖

2
+ ‖∇V‖2)

− 𝜀𝑏
2
(‖∇𝑢‖

2(𝑚+1)

2(𝑚+1)
+ ‖∇V‖2(𝑚+1)

2(𝑚+1)
)

− 𝜀∫

Ω

(𝑢𝑓
1
(𝑢, V) + V𝑓

2
(𝑢, V)) 𝑑𝑥

− 𝜀∫

Ω

(𝑢




𝑢
𝑡






𝑝−1

𝑢
𝑡
+ V 


V
𝑡






𝑞−1 V
𝑡
) 𝑑𝑥.

(24)

From (9) and (20), it follows that

− 𝑏
2
(‖∇𝑢‖

2(𝑚+1)

2(𝑚+1)
+ ‖∇V‖2(𝑚+1)

2(𝑚+1)
)

= 2 (𝑚 + 1)𝐻 (𝑡) − 2 (𝑚 + 1) 𝐸
1

+ (𝑚 + 1) (




𝑢
𝑡






2

+




V
𝑡






2

)

+ 𝑏
1
(𝑚 + 1) (‖∇𝑢‖

2
+ ‖∇V‖2)

− 2 (𝑚 + 1) ∫

Ω

𝐹 (𝑢, V) 𝑑𝑥.

(25)

Inserting (25) into (24), we get

𝐿

(𝑡) = (





𝑢
𝑡






𝑝+1

𝑝+1
+




V
𝑡






𝑞+1

𝑞+1
)

+ 𝜀 (𝑚 + 2) (




𝑢
𝑡






2

+




V
𝑡






2

)

+ 𝜀𝑏
1
𝑚(‖∇𝑢‖

2
+ ‖∇V‖2)

+ 𝜀 (1 −

𝑚 + 1

𝑟 + 2

) (‖𝑢 + V‖2(𝑟+2)
2(𝑟+2)

+ 2 ‖𝑢V‖𝑟+2
𝑟+2
)

+ 2𝜀 (𝑚 + 1)𝐻 (𝑡) − 2𝜀 (𝑚 + 1) 𝐸
1

− 𝜀∫

Ω

(𝑢




𝑢
𝑡






𝑝−1

𝑢
𝑡
+ V 


V
𝑡






𝑞−1 V
𝑡
) 𝑑𝑥.

(26)

Then using (18), we obtain

𝐿

(𝑡) ≥ (





𝑢
𝑡






𝑝+1

𝑝+1
+




V
𝑡






𝑞+1

𝑞+1
)

+ 𝜀 (𝑚 + 2) (




𝑢
𝑡






2

+




V
𝑡






2

)

+ 𝜀𝑏
1
𝑚(‖∇𝑢‖

2
+ ‖∇V‖2) + 2𝜀 (𝑚 + 1)𝐻 (𝑡)

+ 𝜀𝑐

(‖𝑢 + V‖2(𝑟+2)

2(𝑟+2)
+ 2 ‖𝑢V‖𝑟+2

𝑟+2
)

− 𝜀∫

Ω

(𝑢




𝑢
𝑡






𝑝−1

𝑢
𝑡
+ V 


V
𝑡






𝑞−1 V
𝑡
) 𝑑𝑥,

(27)

where 𝑐 = 1−(𝑚+1)/(𝑟+2)−2(𝑚+1)𝐸
1
(𝐵𝛼
2
)
−2(𝑟+2). It is clear

that 𝑐 > 0, since 𝛼
2
> 𝐵
−((𝑟+2)/(𝑟+1)). In order to estimate the

last two terms in (27), we use the following Young inequality:

𝑋𝑌 ≤

𝛿
𝑘
𝑋
𝑘

𝑘

+

𝛿
−𝑙
𝑌
𝑙

𝑙

, (28)

where 𝑋,𝑌 ≥ 0, 𝛿 > 0, 𝑘, 𝑙 ∈ 𝑅
+ such that 1/𝑘 + 1/𝑙 = 1.

Consequently, applying the above inequality we have

∫

Ω

𝑢𝑢
𝑡





𝑢
𝑡






𝑝−1

𝑑𝑥 ≤

𝛿
𝑝+1

1

𝑝 + 1

‖𝑢‖
𝑝+1

𝑝+1
+

𝑝𝛿
−((𝑝+1)/𝑝)

1

𝑝 + 1





𝑢
𝑡






𝑝+1

𝑝+1
,

∫

Ω

VV
𝑡





V
𝑡






𝑞−1

𝑑𝑥 ≤

𝛿
𝑞+1

2

𝑞 + 1

‖V‖𝑞+1
𝑞+1

+

𝑞𝛿
−((𝑞+1)/𝑞)

2

𝑞 + 1





V
𝑡






𝑞+1

𝑞+1
.

(29)
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Inserting estimates (29) into (27), we have

𝐿

(𝑡) ≥ 𝜀 (𝑚 + 2) (





𝑢
𝑡






2

+




V
𝑡






2

)

+ 𝜀𝑏
1
𝑚(‖∇𝑢‖

2
+ ‖∇V‖2) + 2𝜀 (𝑚 + 1)𝐻 (𝑡)

+ 𝜀𝑐
2
(‖𝑢‖
2(𝑟+2)

2(𝑟+2)
+ ‖V‖2(𝑟+2)
2(𝑟+2)

)

− 𝜀

𝛿
𝑝+1

1

𝑝 + 1

‖𝑢‖
𝑝+1

𝑝+1
+ (1 − 𝜀

𝑝𝛿
−((𝑝+1)/𝑝)

1

𝑝 + 1

)




𝑢
𝑡






𝑝+1

𝑝+1

− 𝜀

𝛿
𝑞+1

2

𝑞 + 1

‖V‖𝑞+1
𝑞+1

+ (1 − 𝜀

𝑞𝛿
−((𝑞+1)/𝑞)

2

𝑞 + 1

)




V
𝑡






𝑞+1

𝑞+1
,

(30)

where 𝑐
2
= 𝑐

𝑐
0
.

Since 2(𝑟 + 2) > max{𝑝 + 1, 𝑞 + 1}, from the embedding
𝐿
2(𝑟+2)

(Ω) → 𝐿
𝑝+1

(Ω) and embedding 𝐿
2(𝑟+2)

(Ω) →

𝐿
𝑝+1

(Ω), we have

‖𝑢‖
𝑝+1

𝑝+1
≤ 𝑐
3
‖𝑢‖
𝑝+1

2(𝑟+2)
,

‖V‖𝑞+1
𝑞+1

≤ 𝑐
4
‖V‖𝑞+1
2(𝑟+2)

(31)

for some positive constants 𝑐
3
and 𝑐
4
. Using the algebraic

inequality

𝑧
𝜐
≤ 𝑧 + 1 ≤ (1 +

1

𝑎

) (𝑧 + 𝑎) ,

∀𝑧 ≥ 0, 0 < 𝜐 ≤ 1, 𝑎 ≥ 0,

(32)

and since𝐻(𝑡) ≥ 𝐻(0), we get

‖𝑢‖
𝑝+1

2(𝑟+2)
≤ 𝑑 (‖𝑢‖

2(𝑟+2)

2(𝑟+2)
+ 𝐻 (0))

≤ 𝑑 (‖𝑢‖
2(𝑟+2)

2(𝑟+2)
+ 𝐻 (𝑡)) ,

(33)

where 𝑑 = 1 + 1/𝐻(0). Similarly

‖V‖𝑞+1
2(𝑟+2)

≤ 𝑑 (‖V‖2(𝑟+2)
2(𝑟+2)

+ 𝐻 (𝑡)) . (34)

Inserting (33) and (34) into (30), we have

𝐿

(𝑡) ≥ 𝜀 (𝑚 + 2) (





𝑢
𝑡






2

+




V
𝑡






2

)

+ 𝜀𝑏
1
𝑚(‖∇𝑢‖

2
+ ‖∇V‖2)

+ 𝜀(2 (𝑚 + 1) − 𝑑

𝛿
𝑝+1

1

𝑝 + 1

− 𝑑

𝛿
𝑞+1

2

𝑞 + 1

)𝐻 (𝑡)

+ 𝜀(𝑐
2
− 𝑑

𝛿
𝑝+1

1

𝑝 + 1

− 𝑑

𝛿
𝑞+1

2

𝑞 + 1

) (‖𝑢‖
2(𝑟+2)

2(𝑟+2)
+ ‖V‖2(𝑟+2)
2(𝑟+2)

)

+ (1 − 𝜀

𝑝𝛿
−((𝑝+1)/𝑝)

1

𝑝 + 1

)




𝑢
𝑡






𝑝+1

𝑝+1

+ (1 − 𝜀

𝑞𝛿
−((𝑞+1)/𝑞)

2

𝑞 + 1

)




V
𝑡






𝑞+1

𝑞+1
.

(35)

Now, once 𝛿
1
and 𝛿
2
are fixed, we can choose 𝜀 small enough

such that

1 − 𝜀

𝑝𝛿
−((𝑝+1)/𝑝)

1

𝑝 + 1

> 0, 1 − 𝜀

𝑞𝛿
−((𝑞+1)/𝑞)

2

𝑞 + 1

> 0,

𝐿 (0) = 𝐻 (0) + 𝜀∫

Ω

(𝑢
0
𝑢
1
+ V
0
V
1
) 𝑑𝑥 > 0.

(36)

Consequently (35) takes the form

𝐿

(𝑡) ≥ 𝜀 (𝑚 + 2) (





𝑢
𝑡






2

+




V
𝑡






2

)

+ 𝜀𝑏
1
𝑚(‖∇𝑢‖

2
+ ‖∇V‖2)

+ 𝜀(2 (𝑚 + 1) − 𝑑

𝛿
𝑝+1

1

𝑝 + 1

− 𝑑

𝛿
𝑞+1

2

𝑞 + 1

)𝐻 (𝑡)

+ 𝜀(𝑐
2
− 𝑑

𝛿
𝑝+1

1

𝑝 + 1

− 𝑑

𝛿
𝑞+1

2

𝑞 + 1

) (‖𝑢‖
2(𝑟+2)

2(𝑟+2)
+ ‖V‖2(𝑟+2)
2(𝑟+2)

)

≥ 𝜃 (




𝑢
𝑡






2

+




V
𝑡






2

+ 𝐻 (𝑡) + ‖∇𝑢‖
2

+ ‖∇V‖2 + ‖𝑢‖2(𝑟+2)
2(𝑟+2)

+ ‖V‖2(𝑟+2)
2(𝑟+2)

) ,

(37)

where 𝜃 = min{𝜀(𝑚 + 2), 𝜀𝑏
1
𝑚, (2(𝑚 + 1) − 𝑑(𝛿

𝑝+1

1
/(𝑝 + 1)) −

𝑑(𝛿
𝑞+1

2
/(𝑞 + 1))), 𝜀(𝑐

2
− 𝑑(𝛿
𝑝+1

1
/(𝑝 + 1)) − 𝑑(𝛿

𝑞+1

2
/(𝑞 + 1)))}.

Then we have

𝐿 (𝑡) ≥ 𝐿 (0) > 0, ∀𝑡 ≥ 0. (38)

On the other hand, applying Hölder inequality, we obtain








∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 + ∫

Ω

VV
𝑡
𝑑𝑥









≤ ‖𝑢‖




𝑢
𝑡





+ ‖V‖ 


V
𝑡






≤ 𝐶 (‖𝑢‖
2(𝑟+2)





𝑢
𝑡





+ ‖V‖
2(𝑟+2)





V
𝑡





) .

(39)

Young inequality gives








∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 + ∫

Ω

VV
𝑡
𝑑𝑥









≤

𝐶

2

(‖𝑢‖
2

2(𝑟+2)
+




𝑢
𝑡






2

+ ‖V‖2
2(𝑟+2)

+




V
𝑡






2

)

≤

𝐶

2

((‖𝑢‖
2(𝑟+2)

2(𝑟+2)
)

1/(𝑟+2)

+




𝑢
𝑡






2

+ (‖V‖2(𝑟+2)
2(𝑟+2)

)

1/(𝑟+2)

+




V
𝑡






2

) .

(40)

Since 𝑟 > −1, algebraic inequality (32) yields








∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 + ∫

Ω

VV
𝑡
𝑑𝑥









≤

𝐶

2

((1 +

1

𝐻 (0)

) (‖𝑢‖
2(𝑟+2)

2(𝑟+2)
+ 𝐻 (𝑡)) +





𝑢
𝑡






2

+(1 +

1

𝐻 (0)

) (‖V‖2(𝑟+2)
2(𝑟+2)

+ 𝐻 (𝑡)) +




V
𝑡






2

) .

(41)
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Note that

𝐿 (𝑡) ≤ 𝐻 (𝑡) + 𝜀∫

Ω

(𝑢𝑢
𝑡
+ VV
𝑡
) 𝑑𝑥

≤ 𝐻 (𝑡) +









∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 + ∫

Ω

VV
𝑡
𝑑𝑥









≤ 𝐶

(




𝑢
𝑡






2

+




V
𝑡






2

+ 𝐻 (𝑡) + ‖∇𝑢‖
2
+ ‖∇V‖2

+ ‖𝑢‖
2(𝑟+2)

2(𝑟+2)
+ ‖V‖2(𝑟+2)
2(𝑟+2)

) .

(42)

Combining with (37) and (42), we arrive at

𝐿

(𝑡) ≥ 𝐶𝐿 (𝑡) ∀𝑡 ≥ 0. (43)

Integrating differential inequality (43) between 0 and 𝑡 gives
the following estimate for 𝐿(𝑡):

𝐿 (𝑡) ≥ 𝐿 (0) 𝑒
𝐶𝑡
. (44)

The proof of Theorem 7 is completed.

Remark 8. When 𝐸(0) < 0, by setting 𝐻(𝑡) = −𝐸(𝑡), the
similar result is obtained by applying the same arguments in
the proof of Theorem 7.
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