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The system optimization is considered in cognitive radar system (CRS) with extended binary phase shift keying- (EBPSK-)
based multicarrier phase-coded (MCPC) signal. A novel radar working scheme is proposed to consider both target detection
and estimation. At the detection stage, the generalized likelihood ratio test (GLRT) threshold is deduced, and the GLRT
detection probability is given. At the estimation stage, an approach based on Kalman filtering (KF) is proposed to estimate target
scattering coefficients (TSC), and the estimation performance is improved significantly by exploiting the TSC temporal correlation.
Additionally, the optimal waveform is obtained to minimize the mean square error (MSE) of KF estimation. For the practical
consideration, iteration algorithms are proposed to optimize the EBPSK-based MCPC signal in terms of power allocation and
coding matrix. Simulation results demonstrate that the KF estimation approach can improve the estimation performance by 25%
compared with maximum a posteriori MAP (MAP) method, and the KF estimation performance can be further improved by
90% by optimizing the transmitted waveform spectrum. Moreover, by optimizing the power allocation and coding matrix of the
EBPSK-based MCPC signal, the KF estimation performances are, respectively, improved by 7% and 8%.

1. Introduction

The cognitive radar system (CRS) as the future trend of the
radar systems, compared with the traditional ones, mainly
includes three different aspects [1]: (1) CRS can sense the
targets and environment; (2) the transmitted waveform is
adaptively optimized to improve the detection and estimation
performance; (3) the transmitter, environment, and receiver
form a closed loop feedback system. Therefore, optimizing
the transmittedwaveformbased on theworking environment
becomes a popular research direction in the CRS [2–8].

For the modeling of CRS, a point is utilized to model the
target [9].The echowaveform from the point target is only the
delay orDoppler frequency shift of the original one.However,
when the size of target is large enough to occupy many
resolution cells, the echo signals from different scattering
cells are superimposed, and this type of target is modeled
as an extended target (ET) [10]. In addition, the target
impulse response (TIR), which is often referred to as the
high resolution range profile (HRRP) in the automatic target
recognition (ATR) problem [11], can be used to describe ET

based on the assumption of the linear time-invariant target
[12, 13]. However, the view angle between the target and
radar changes, and the ET does not satisfy this assumption.
Hence, an exponential correlation model is proposed to
describe this time dynamic characteristic, where the TIR
is stationary with time and uncorrelated among different
resolution cells, namely, wide sense stationary-uncorrelated
scattering (WSSUS). Therefore, the TIR of this type target
can be estimated by Kalman filtering (KF) [5, 14], where
only the estimation is taken into consideration and under the
present assumption of the target. However, the practical radar
systems should detect the target before estimating.

The performance of the target estimation and detection
can be significantly improved by optimizing the transmitted
waveform in the CRS. During the stage to estimate the
target scattering coefficients (TSC), which is essential the
Fourier transform of TIR, the performance can be improved
by optimizing the transmitted waveform to maximize the
mutual information (MI) between the echo signal and TSC
[12]. Furthermore, when the precise priori knowledge of
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the target cannot be obtained, an eigensubspace projection-
based method is proposed to enlarge the separation between
the echo signals from different targets in [15, 16]. During
the detection stage, in order to maximize the probability of
target detection, more power is concentrated on frequencies
with relatively large TSC in the additive white Gaussian
noise (AWGN) systems or relatively high ratio between the
target and clutter in the clutter interference systems [17–20].
However, these optimized waveforms have arbitrary nature
and are not conveniently generated in the practical radar
systems.

The multicarrier phase-coded (MCPC) signal is first
applied in the wideband radar systems by Levanon [21–23].
Furthermore, the MCPC waveform can achieve the optimal
target detection performancewith higher spectrum efficiency
than the linear frequency modulation (LFM) signal [24,
25]. Unlike the P3 or P4 signal, the MCPC signal has a
thumbtack-shaped ambiguity function and is easily generated
in the practical radar systems. However, the nonconstant
amplitude of MCPC waveform cannot take full advantage of
the nonlinear amplifier [26]. On the modulation of MCPC
waveform, an extended binary phase shift keying (EBPSK)
modulation proposed by Wu et al. is adopted in this work
[27, 28]. EBPSK is more flexible than BPSK, where a small
angle phase and jump time are utilized to distinguish the
modulation waveform of code 1 from that of code 0, which
tightens the spectrum of the transmitted waveform [25, 29,
30]. In the wireless communication system, reference [31] has
confirmed that EBPSK can achieve the same theoretical bit
error rate (BER) performance as BPSK and achieve higher
spectral efficiency with the same bit rate by tuning modula-
tion parameters. Therefore, we first utilize the EBPSK-based
MCPC signal in the CRS, since the tight spectrum is easy to
optimize.

In this work, the problem of system optimization is con-
sidered in the CRS with EBPSK-based MCPC signal, and we
propose a new radar working scheme, where both the target
detection and estimation are taken into account. During the
initial stage of the target detection, the generalized likelihood
ratio test (GLRT) algorithm based on constant false alarm
rate (CFAR) is utilized. In the presence of ET, the approach
based on KF is proposed to estimate TSC by exploiting the
temporal correlation, and the optimal spectrum is obtained
to minimize the trace of the mean square error (MSE) matrix
of KF estimation. In addition, the iteration algorithms are
proposed to optimize the amplitudes and coding matrix of
EBPSK-based MCPC signal, respectively.

The remainder of this work is organized as follows. In
Section 2, the system model of the CRS with EBPSK-based
MCPC signal and the new radarworking scheme are given. In
Section 3, we optimize this radar system, including the GLRT
target detection based on CFAR, the maximum a posteriori
probability (MAP) receive filter, the TSC estimation based
on KF, the optimal power allocation, and coding matrix.
Section 4 gives the simulation results. Finally, Section 5 con-
cludes this work.

The notations used in this work are defined as follows.
Symbols for matrices (upper case) and vectors (lower case)

Target (TSC/TIR)
h(t)

s(t)

n(t)

y(t)
+

Target detection
based on GLRT

Target estimation
for TSC

Target detection 

waveform
with optimized

Figure 1: The system model of cognitive radar with EBPSK-based
MCPC signal.

are in boldface. (⋅)𝐻, diag{⋅}, I
𝐿
, N(0,R), | ⋅ |, ‖ ⋅ ‖

2
, det(⋅),

E{⋅} and Tr{⋅} denote the conjugate transpose (Hermitian),
the diagonalmatrix, the identitymatrix of size𝐿, theGaussian
distribution with zero mean and covariance being R, the
absolute value, the ℓ

2
norm, the determinant of a matrix, the

expectation, and the trace of a matrix, respectively.

2. The System Model of Cognitive Radar with
EBPSK-Based MCPC Signal

The system model of cognitive radar considered in this work
to detect and estimate the ET is shown in Figure 1, where
the transmittedwaveform is EBPSK-basedMCPC signal 𝑠

𝑘
(𝑡)

and the TIR of ET is ℎ
𝑘
(𝑡) during the 𝑘th pulse.Then the echo

signal 𝑦
𝑘
(𝑡) can be described as

𝑦
𝑘 (𝑡) = 𝑠𝑘 (𝑡) ∗ ℎ𝑘 (𝑡) + 𝑛𝑘 (𝑡) , 𝑘 = 1, 2, 3, . . . , (1)

where∗ denotes the convolution operation, and 𝑛
𝑘
(𝑡) denotes

theAWGN.TheEBPSK-basedMCPC signal can be expressed
as

𝑠
𝑘 (𝑡) =

𝐿

∑

𝑙=1

𝑎
𝑘,𝑙

𝑅

∑

𝑟=1

𝑟
𝑘,𝑙𝑟 (𝑡) , (2)

where 𝑟
𝑘,𝑙𝑟
(𝑡) ≜ 𝐶

𝑘,𝑙𝑟
𝑠
1
(𝑡 − 𝑇

𝑠
𝑟, 𝑓
𝑙
) + (1 − 𝐶

𝑘,𝑙𝑟
)𝑠
0
(𝑡 −

𝑇
𝑠
𝑟, 𝑓
𝑙
), 𝐶
𝑘,𝑙𝑟

∈ {0, 1} denotes the entry at 𝑙th row and 𝑟th
column of the coding matrix C

𝑘
, 𝑎
𝑘,𝑙

denotes the amplitude
of the 𝑙th subcarrier, and 𝑓

𝑙
≜ 𝑓
𝑐
+ (𝑙 − 1)Δ𝑓 denotes

the carrier frequency of the 𝑙th subcarrier, 𝑓
𝑐
denotes the

carrier frequency of the first subcarrier, and Δ𝑓 denotes the
frequency interval between subcarriers. 𝑠

1
(𝑡, 𝑓) and 𝑠

0
(𝑡, 𝑓)

are the waveform of code 0 and 1 with EBPSK modulation,
respectively,

𝑠
0
(𝑡, 𝑓) = cos (2𝜋𝑓𝑡) , 0 ≤ 𝑡 ≤ 𝑇

𝑠

𝑠
1
(𝑡, 𝑓) =

{

{

{

− cos (2𝜋𝑓𝑡) , 0 ≤ 𝑡 ≤ 𝜏

cos (2𝜋𝑓𝑡) , 𝜏 ≤ 𝑡 ≤ 𝑇
𝑠
,

(3)

where 𝑇
𝑠
≜ 𝑁/𝑓

𝑐
(𝑁 = 1, 2, 3, . . .) denotes the time

interval of the waveform for one code and 𝜏 ≜ 𝐾/𝑓
𝑐
(𝐾 =

1, 2, 3, . . . , 𝐾 ≤ 𝑁) denotes the jump interval of the EBPSK
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modulation. Then we can get the spectrum of transmitted
waveform by the Fourier transform

𝑆
𝑘
(𝑓) =

𝐿

∑

𝑙=1

𝑎
𝑘,𝑙

𝑅

∑

𝑟=1

𝑅
𝑘,𝑙𝑟
(𝑓) exp (−𝑗2𝜋𝑓𝑇

𝑠
𝑟) , (4)

where 𝑅
𝑘,𝑙𝑟
(𝑓) ≜ 𝐶

𝑘,𝑙𝑟
𝑆
1
(𝑓, 𝑓
𝑙
) + (1 − 𝐶

𝑘,𝑙𝑟
)𝑆
0
(𝑓, 𝑓
𝑙
) and

𝑆
𝑖
(𝑓, 𝑓
𝑙
) (𝑖 ∈ {0, 1}) is the Fourier transform of 𝑠

𝑖
(𝑡, 𝑓
𝑙
); then

the spectrum of echo signal 𝑌(𝑓) is

𝑌
𝑘
(𝑓) = 𝐻

𝑘
(𝑓) 𝑆
𝑘
(𝑓) + 𝑁

𝑘
(𝑓) . (5)

The discrete form in the frequency domain can be obtained
as

y
𝑘
= S
𝑘
g
𝑘
+ n
𝑘
, (6)

where the length of y
𝑘
is 𝑀, n

𝑘
∼ N(0, 𝜎2

𝑛
I
𝑀
) denotes the

discrete Gaussian noise, 𝜎2
𝑛
denotes the variance of noise, y

𝑘

denotes the discrete form of 𝑌
𝑘
(𝑓), g

𝑘
denotes the TSC, that

is, the discrete form of 𝐻
𝑘
(𝑓), and the diagonal matrix S

𝑘
≜

diag{s
𝑘
}, where s

𝑘
is the discrete form of 𝑆

𝑘
(𝑓). According to

[14], the exponential correlation model of the TSC is

g
𝑘
= 𝑒
−𝑇/𝜏g
𝑘−1
+ u
𝑘−1
, (7)

where g
𝑘
denotes the TSC during the 𝑘th pulse,𝑇 denotes the

pulse repetition interval (PRI) in the radar system, 𝜏 denotes
the temporal decay constant, and u

𝑘−1
∼N(0, (1 − 𝑒−𝑇/𝜏)Σ

𝑔
)

follows the Gaussian distribution. When g
0
= 0,

g
𝑘
=

𝑘−1

∑

𝑚=1

𝑒
−𝑚𝑇/𝜏u

𝑘−1−𝑚
, (8)

and g
𝑘
∼ N(0,R

𝑘
≜ (1 − 𝑒

−2𝑇/𝜏
)Σ
𝑔
). To simplify the analysis

in this work, the correlation between the individual scatters
is small enough to assume that Σ

𝑔
is a diagonal matrix; then

𝜎
2

𝑘,𝐺𝑚
denotes the variance of𝑔

𝑘,𝑚
, where𝑔

𝑘,𝑚
is the𝑚th entry

of g
𝑘
.
This work proposes a new radar working scheme for the

CRS with EBPSK-based MCPC signal. As shown in Figure 2,
the target detection and estimation stages in this radar system
are described as follows.

(1) Initially, the nonoptimized EBPSK-based MCPC sig-
nal with power evenly distributed across all subcarri-
ers is transmitted, and the coding matrix is a random
±1matrix.

(2) The CRS detects the target via the method based on
GLRT, and the detection threshold is obtained by the
theory of CFAR. If the power of echo signal is greater
than threshold, then the CRS detects the presence of
target, otherwise not.

(3) When the GLRT detects the presence of target, we
propose an approach to estimate the TSC from the
echo signal based on KF.

(4) In order to improve the performance of KF estima-
tion, this work optimizes the EBPSK-based MCPC
signal in terms of power allocation among subcarriers
and coding matrix;

Start

based on GLRT

Target exists

Kalman filtering

Optimize the EBPSK-

Optimize the EBPSK-based
MCPC waveform to maximize

the SNR of echo signal

Target detection

Estimate the TSC via

based MCPC waveform

Figure 2: The proposed working scheme for the CRS with EBPSK-
based MCPC signal.

(5) With the knowledge of the estimated TSC, the signal-
to-noise ratio (SNR) of the echo signal can be further
improved, which attains a better detection probability
for the particular target.

More details to describe this working scheme will be given in
the following sections.

3. The Optimization of CRS with
EBPSK-Based MCPC Signal

3.1. The Initial Target Detection Based on GLRT. Assuming
that the target is present 𝐻

1
and absent 𝐻

0
, the echo

waveform is

𝐻
0
: y
𝑘
= n
𝑘
,

𝐻
1
: y
𝑘
= S
𝑘
g
𝑘
+ n
𝑘
.

(9)

With the Gaussian assuming of g
𝑘
and n

𝑘
, the distribution of

echo signal is also Gaussian, and the logarithmic likelihood
ratio is

𝑙 (y
𝑘
| g
𝑘
) ≜ ln

𝑝 (y
𝑘
| g
𝑘
, 𝐻
1
)

𝑝 (y
𝑘
| 𝐻
0
)

=
1

𝜎
2

𝑛

(2y𝐻
𝑘
− g𝐻
𝑘
S𝐻
𝑘
) S
𝑘
g
𝑘
,

(10)

where 𝑝(y
𝑘
| 𝐻
0
) is the conditional probability distri-

bution, and the constant term is eliminated in the second
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equation of (10). According to the GLRT theory, without the
knowledge of TIR, the detection process can be expressed as

{𝑙 (y
𝑘
) ≜ 𝑙 (y

𝑘
| g
𝑘
)}

𝐻
1

⋛

𝐻
0

𝜆, (11)

where

g
𝑘
= argmax

g
𝑘

𝑙 (y
𝑘
| g
𝑘
)

= argmax
g
𝑘

y𝑘 − S𝑘g𝑘
2
= S−1
𝑘
y
𝑘
.

(12)

Then we can obtain the GLRT detection

𝑙 (y
𝑘
) =

1

𝜎
2

𝑛

y𝐻
𝑘
y
𝑘

𝐻
1

⋛

𝐻
0

𝜆. (13)

Therefore, without the knowledge of TSC, the GLRT detec-
tion is equivalent to the energy detecting. If the energy ‖y

𝑘
‖
2

2

is greater than the threshold 𝜆𝜎2
𝑛
, the target exists, otherwise

not.
In the CRS, CFAR is adopted as the target detection

criterion, and the echo signal meets the 𝜒2 distribution with
𝑀 degrees of freedom when the target is absent, so the false
alarm rate is

𝑃
𝐹𝐴
= 𝑃 (𝑙 (y

𝑘
) | 𝐻
0
≥ 𝜆)

= 1 −
1

Γ (𝑀/2)
𝛾 (
𝑀

2
,
𝜆

2
) ,

(14)

where Γ(𝑥) is the gamma function and 𝛾(𝑠, 𝑡) is the lower
incomplete gamma function. When 𝜆 > 𝑀, the Chernoff
bound of false alarm rate can be expressed as

𝑃
𝐹𝐴
≤ (

𝜆

𝑀
exp(1 − 𝜆

𝑀
))

𝑀/2

. (15)

Since the right side of (15) is the Lambert 𝑊 function, the
solution is not easy to obtain, so we use the Taylor series to
approximate it, and we can get the detection threshold

𝜆 (𝑃
𝐹𝐴
) ≈ 𝑀𝑃

2/𝑀

𝐹𝐴
+𝑀(1 − 𝑃

2/𝑀

𝐹𝐴
) −

3𝑀

2
(1 − 𝑃

2/𝑀

𝐹𝐴
)

+
8𝑀

3
(1 − 𝑃

2/𝑀

𝐹𝐴
)
4

−
125𝑀

24
(1 − 𝑃

2/𝑀

𝐹𝐴
)
5

.

(16)

When the target is present, the process of target detection is

𝑙 (y
𝑘
) | 𝐻
1
=
1

𝜎
2

𝑛

(S
𝑘
g
𝑘
+ n
𝑘
)
𝐻
(S
𝑘
g
𝑘
+ n
𝑘
)

𝐻
1

⋛

𝐻
0

𝜆 (𝑃
𝐹𝐴
) . (17)

Since 𝑠
𝑘,𝑚
𝑔
𝑘,𝑚
+ 𝑛
𝑘,𝑚
∼ N(0, 𝑠2

𝑘,𝑚
𝜎
2

𝐺𝑚
+ 𝜎
2

𝑛
), where 𝑠

𝑘,𝑚
, 𝑔
𝑘,𝑚

,
and 𝑛
𝑘,𝑚

, respectively, denote the𝑚th entry of s
𝑘
, g
𝑘
, and n

𝑘
,

𝑥 ≜ 𝑙(y
𝑘
)|𝐻
1
meets generalized chi-squared distribution and

the probability density function is [32]

𝑓 (𝑥) =

𝑀

∑

𝑚=1

exp (−𝑥/𝜉2
𝑚
)

𝜉
2

𝑚
∏
𝑀

𝑖=1,𝑖 ̸=𝑚
(1 − (𝜉

2

𝑖
/𝜉
2

𝑚
))

, (18)

where 𝜉2
𝑚
= 1+(𝑠

2

𝑘,𝑚
𝜎
2

𝐺𝑚
/𝜎
2

𝑛
) and 𝜉2

𝑚
̸= 𝜉
2

𝑛
(∀𝑚 ̸= 𝑛). According

to the Neyman Pearson lemma, we can attain the probability
of GLRT detection based on CFAR

𝑃
𝐷
= ∫

∞

𝜆(𝑃
𝐹𝐴
)

𝑓 (𝑥) 𝑑𝑥

=

𝑀

∑

𝑚=1

exp (−𝜆 (𝑃
𝐹𝐴
) /𝜉
2

𝑚
)

∏
𝑀

𝑖=1,𝑖 ̸=𝑚
(1 − (𝜉

2

𝑖
/𝜉
2

𝑚
))

.

(19)

3.2. The TSC Estimation Based on MAP. After detecting the
presence of target, the TSC can be estimated from the echo
waveform. When MAP is adopted as the receiver filter, we
have

ĝ
𝑘
= argmax

g
𝑘

𝑝 (g
𝑘
| y
𝑘
) . (20)

According to Bayes’ theorem, we have

𝑝 (g
𝑘
| y
𝑘
) =

𝑝 (g
𝑘
, y
𝑘
)

𝑝 (y
𝑘
)
=
𝑝 (y
𝑘
| g
𝑘
) 𝑝 (g
𝑘
)

𝑝 (y
𝑘
)

, (21)

where 𝑝(y
𝑘
| g
𝑘
) and 𝑝(g

𝑘
) are both the function of Gaussian

distribution and the distribution of y
𝑘
is

𝑝 (y
𝑘
) = ∫𝑝 (y

𝑘
| g
𝑘
) 𝑝 (g
𝑘
) 𝑑g
𝑘
. (22)

We can obtain the posterior probability by substituting (22)
into (21) as
𝑝 (g
𝑘

 y𝑘)

=
𝑝 (y
𝑘
| g
𝑘
) 𝑝 (g
𝑘
)

𝑝 (y
𝑘
)

=

exp [g𝐻
𝑘
((1/𝜎

2

𝑛
) S𝐻
𝑘
(y
𝑘
− (1/2) S𝑘g𝑘) − (1/2)R−1𝑘 g𝑘)]

exp ((1/2𝜎4
𝑛
) y𝐻
𝑘
S
𝑘
B−𝐻
𝑘

S𝐻
𝑘
y
𝑘
)√det (𝜋B−1

𝑘
)

,

(23)

where B
𝑘
≜ (1/𝜎

2

𝑛
)S𝐻
𝑘
S
𝑘
+R−1
𝑘

and B−𝐻
𝑘
≜ (B𝐻
𝑘
)
−1. We can get

the optimization objective function by substituting (23) into
(20) as

ĝ
𝑘
= argmax

g
𝑘

{−
1

2
g𝐻
𝑘
B
𝑘
g
𝑘
+
1

𝜎
2

𝑛

(S
𝑘
g
𝑘
)
𝐻 y
𝑘
} . (24)

Therefore, the estimated TSC by MAP estimation is

ĝ
𝑘
=
1

𝜎
2

𝑛

B−1
𝑘
S𝐻
𝑘
y
𝑘
. (25)

The receiver filter can be written in the matrix form

Q
𝑘
≜
1

𝜎
2

𝑛

B−1
𝑘
S𝐻
𝑘
. (26)

Then the MSE matrix of the estimated TSC is

P = E {(ĝ
𝑘
− g
𝑘
) (ĝ
𝑘
− g
𝑘
)
𝐻
}

= Q
𝑘
(S
𝑘
R
𝑘
S𝐻
𝑘
+ 𝜎
2

𝑛
I
𝑀
)Q𝐻
𝑘

−
1

𝜎
2

𝑛

B−1
𝑘
S𝐻
𝑘
S
𝑘
R
𝑘
−
1

𝜎
2

𝑛

R
𝑘
S𝐻
𝑘
S
𝑘
B−𝐻
𝑘
+ R
𝑘
.

(27)
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(1) Set the pulse index 𝑘 = 1, and the initial TSC estimation is based on MAP, where the estimated
TSC ĝ

𝑘|𝑘
can be calculated from (25) and the MSE matrix P

𝑘|𝑘
can be obtained from (27).

Set the maximum number of pulses 𝐾max.
(2) Let 𝑘 = 𝑘 + 1;
(3) while 𝑘 ≤ 𝐾max and 𝑘 > 1 do
(4) According to the temporal correlation of TSC (4), the prediction of TSC is

ĝ
𝑘|𝑘−1

= 𝑒
−𝑇/𝜏ĝ
𝑘−1|𝑘−1

, (i)
where ĝ

𝑘−1|𝑘−1
is the estimated TSC during the (𝑘 − 1)th pulse;

(5) The MSE matrix of the predicted TSC is
P
𝑘|𝑘−1

= 𝑒
−2𝑇/𝜏P

𝑘−1|𝑘−1
+ (1 − 𝑒

−2𝑇/𝜏
)Σ
𝑔
; (ii)

(6) The KF gain matrix is defined as
Φ
𝑘
≜ P
𝑘|𝑘−1

S𝐻
𝑘
(𝜎
2

𝑛
Q
𝑘
+Q
𝑘
S
𝑘
P
𝑘|𝑘−1

S𝐻
𝑘
)
−1

; (iii)
(7) Update the estimated TSC

ĝ
𝑘|𝑘
= ĝ
𝑘|𝑘−1

+Φ
𝑘
(ĝ
𝑘
−Q
𝑘
S
𝑘
ĝ
𝑘|𝑘−1

), (iv)
where ĝ

𝑘
= Q
𝑘
y
𝑘
;

(8) Update the MSE matrix
P
𝑘|𝑘
= P
𝑘|𝑘−1

−Φ
𝑘
Q
𝑘
S
𝑘
P
𝑘|𝑘−1

; (v)
(9) Let 𝑘 = 𝑘 + 1.
(10) end while

Algorithm 1: The TSC estimation based on KF.

3.3. The TSC Estimation Based on KF. We proposed an
approach based on KF to estimate TSC according to the
temporal correlation of TSC, when the GLRT detects the
presence of target. Furthermore, we optimize the transmitted
waveform to further improve the estimation performance
by minimizing the trace of MSE matrix. The estimation
approach based on KF is described in Algorithm 1.

In order to improve the performance of KF estimation,
the trace of the MSE matrix P

𝑘|𝑘
is utilized to measure this

performance,

𝑓 (s
𝑘
) = Tr {P

𝑘|𝑘
} . (28)

The transmitted waveform should be optimized to minimize
the MSE at each iteration of KF, which is equivalent to the
following optimization problem:

s∗
𝑘
= argmins

𝑘

𝑓 (s
𝑘
)

s.t. Tr {S𝐻
𝑘
S
𝑘
} = 𝐸
𝑠

S
𝑘
= diag {s

𝑘
} ,

(29)

where 𝐸
𝑠
is the power of radar signal. The objective function

can be simplified as

𝑓 (s
𝑘
) = Tr {P

𝑘|𝑘
}

=

𝑀

∑

𝑚=1

𝑠𝑚


2
𝑃
2

𝑘|𝑘−1,𝑚

𝜎
2

𝑛
+ 𝑃
𝑘|𝑘−1,𝑚

𝑠𝑚


2
,

(30)

where 𝑃
𝑘|𝑘−1,𝑚

denotes the entry at𝑚th row and𝑚th column
of P
𝑘|𝑘
. Then we can get the Lagrangian function of this

optimization problem

𝑔 (s
𝑘
, 𝜁) = 𝑓 (s

𝑘
) − 𝜁(

𝑀

∑

𝑚=1

𝑠𝑚


2
− 𝐸
𝑠
) . (31)

Let the derivation of (31) equal 0;

𝜕𝑔 (s
𝑘
, 𝜁)

𝜕
𝑠𝑚


2
= 0. (32)

Therefore, the optimal spectrum of transmitted waveform
should satisfy the following condition:

𝑠
∗

𝑚



2
= max{0, 𝛼√𝜎2

𝑛
−

𝜎
2

𝑛

𝑃
𝑘|𝑘−1,𝑚

} , (33)

where 𝛼 is the constraint of transmitted power Tr(S𝐻
𝑘
S
𝑘
) = 𝐸
𝑠

and the optimal signal obtained in (34) is similar to thewater-
filling method in the communication systems [12].

3.4. The Optimization of EBPSK-Based MCPC Signal. In
the practical radar systems, the waveforms are generated
by setting the modulation parameters or choosing from the
preset waveforms, so it is difficult to attain the optimal
waveform calculated in Section 3.3. Therefore, we propose
a suboptimal signal by tuning the parameters of EBPSK-
based MCPC waveform in terms of power allocation among
subcarriers and coding matrix. In addition, the process
of waveform optimization is simple while maintaining the
estimation performance of TSC.

The optimal waveform obtained in (33) is referred as
s∗
𝑘
; then the best power allocation scheme for EBPSK-

based MCPC signal should approximate the spectrum to
this optimal one. Therefore, the MSE approximation can be
expressed as an optimization problem

s∗
𝑘
= argmax

s
𝑘

=



s
𝑘



2

−
s
∗

𝑘



2

2

2

, (34)

where s
𝑘
denotes EBPSK-based MCPC signal in the fre-

quency domain. Because of the sparsity of the EBPSK
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spectrum [30], we only need to consider the power allocation
in carrier frequencies of subcarriers. The amplitudes should
satisfy the following condition:

𝑎
∗

𝑚

𝑎
∗

𝑛

=


𝑠
∗

𝑘,𝑚



𝑠
∗

𝑘,𝑛



, (35)

where 𝑠∗
𝑘,𝑚

donates the𝑚th entry of s∗
𝑘
. The optimized power

allocation (35) of EBPSK-based MCPC signal can improve
the estimation performance of TSCviaKF, and the simulation
results will be given in Section 5.

We will also optimize the coding matrix in the following,
which can further reduce theMSEof the estimatedTSCbased
on KF. The optimal coding matrix should be the solution of
the following optimization problem:

C∗
𝑘
= argmin

C
𝑘


s̃𝐻
𝑘
x

s̃𝑘
2 ‖

x‖2

s.t. 𝐶
𝑙𝑟
∈ {0, 1} ,

(36)

where s̃
𝑘

denotes the discrete form the transmitted
waveform 𝑆

𝑘
(𝑓) = ∑

𝐿

𝑙=1
𝑎
𝑘,𝑙
∑
𝑅

𝑟=1
𝐶
𝑘,𝑙𝑟
𝑆
1
(𝑓, 𝑓
𝑙
) + (1 −

𝐶
𝑘,𝑙𝑟
)𝑆
0
(𝑓, 𝑓
𝑙
) exp(−𝑗2𝜋𝑓𝑇

𝑠
𝑟) and x denotes the optimal

reference signal, which will be obtained by the estimated
TSC and the target scattering model in the following.

When the estimation value of scattering coefficients is
ĝ
𝑘−1|𝑘−1

, the predicted value is

ĝ
𝑘|𝑘−1

= 𝑒
−𝑇/𝜏ĝ
𝑘−1|𝑘−1

. (37)

However, the real one is

g
𝑘
= 𝑒
−𝑇/𝜏g
𝑘−1
+ u
𝑘−1
. (38)

We should design the transmitted signal x, which minimizes
the estimationMSEwith the assumption of ĝ

𝑘−1
≈ g
𝑘−1

. Since
we have proposed the optimal power allocation scheme by
the water-filling method, the estimation scattering vector is
chosen as the optimal reference waveform, and (37) is the
optimization objective function. Let

x = ĝ
𝑘|𝑘−1

+ (1 + 𝑖)√
1

2
(1 − 𝑒

−2𝑇/𝜏
)Σ
𝑔
, (39)

where 𝑖 is the imaginary unit. A simple iteration algorithm
is proposed to calculate the optimal coding matrix, which is
described in Algorithm 2.

4. Simulation Results

4.1. The TSC Estimation Based on MAP. First, we simulate
the MSE of estimated TSC based on the MAP receiver filter
and compare the simulation results with the theoretical ones.
The parameters are set in Table 1, where the transmitted
waveform is the EBPSK-basedMCPC signal. In this work, all
the simulation parameter are given based on the published
literatures. For example, the parameters of EBPSK modula-
tion are according to [20, 21, 27–29], and the parameters for

Table 1: Simulation parameters.

Parameter Value
Carrier frequency 𝑓

𝑐
100MHz

Sample frequency 𝑓
𝑠

1 GHz
The parameter of EBPSK modulation 𝐾 2
The parameter of EBPSK modulation𝑁 20
The number of subcarriers 𝐿 16
The length of codes of each subcarrier𝑁

𝐶
32

Frequency interval Δ𝑓 20MHz
The SNR of echo signal [−20, 20] dB
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Figure 3: The estimation performance based on MAP.

the characteristics of target and radar are based on [5, 14].
Although the realistic data is not adopted in our work, the
simulation results are reliable and practicable.

Figure 3 depicts a comparison between theoretical and
simulation results of the normalized MSE of estimated TSC,
where the theoretical results are calculated by the trace of
MSE matrix in (28), and the normalized MSE is defined as

𝑒 (ĝ
𝑘
) ≜

ĝ𝑘 − g𝑘


2

2

g𝑘


2

2

. (40)

We can observe from this figure that the simulation and
theoretical results have a relatively high degree of agreement,
which verifies the efficiency to measure the estimation per-
formance of MAP by the trace of MSE matrix.

4.2. The TSC Estimation Based on KF. This subsection
gives the simulation results of the estimated TSC based on
KF, in which the simulation parameters are the same with
Section 4.1 except SNR = 5 dB, and the index of iteration is
from 1 to 50. Figure 4 demonstrates the normalized MSE
of estimated TSC, including the approach based on KF and
MAP. Apparently, the estimation performance is improved
about 25% by using the KF approach instead of MAP, since
the temporal correlation is exploited by KF. In addition,
the theoretical results given in (28) have high degree of
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(1) Initialize the coding matrix C∗ with a random ±1matrix,
and set the iteration index 𝑖 = 1 and the maximum number of iterations 𝐼max;

(2) while 𝑖 ≤ 𝐼max and the coding matrix changes do
(3) Let 𝑟 = 𝑖 mod 𝑀𝐿, 𝐶∗(⌊𝑟/𝑀⌋ + 1, 𝑟 − 𝑀⌊𝑟/𝑀⌋) = 1 − 𝐶∗(⌊𝑟/𝑀⌋ + 1, 𝑟 − 𝑀⌊𝑟/𝑀⌋),

where 𝐶∗(𝑚, 𝑛) denotes the entry at the𝑚th row and 𝑛th column of C∗;
(4) Generate the EBPSK-based MCPC waveform s̃

𝑖
with coding matrix C∗ and calculate

𝑧
𝑖
= ‖|̃s
𝑖
|
2
− |x|2‖2

2
; (vi)

(5) If 𝑧
𝑖
> 𝑧
𝑖−1
, 𝑖 = 𝑖 + 1, and go to Step 3,

otherwise, let 𝐶∗(⌊𝑟/𝑀⌋ + 1, 𝑟 − 𝑀⌊𝑟/𝑀⌋) = 1 − 𝐶∗(⌊𝑟/𝑀⌋ + 1, 𝑟 − 𝑀⌊𝑟/𝑀⌋), 𝑖 = 𝑖 + 1 and go to Step 3;
(6) Let 𝑖 = 𝑖 + 1.
(7) end while

Algorithm 2: The algorithm to optimize the coding matrix.
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Figure 4: The estimation of TSC based on KF.

agreement with the simulation results. Therefore, the trace
of MSE matrix can be utilized as an objective function,
which accurately describes the estimation performance of
KF, in the waveform optimization problem. However, during
the simulation, the decreasing normalized MSE of MAP
estimation is caused by the exponential correlation model
g
𝑘
= 𝑒
−𝑇/𝜏g
𝑘−1
+ u
𝑘−1

.
Figure 5 illustrates the spectrum of transmitted wave-

form, including the power uniform distributed EBPSK-
based MCPC signal and the optimal spectrum. The optimal
spectrum, which can minimize the trace of MSE matrix
and improve the estimation performance of KF approach, is
obtained by the water-filling method, where the parameter
𝛼 is determined by the dichotomy algorithm. In addition, as
shown in this figure, the variance of TSC is also given, which
is similar to the optimal spectrum. Therefore, more power
should be concentrated on the frequencies with relatively
large variance of TSC, which provides guidance on the
optimization of EBPSK-based MCPC signal.
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Figure 5: The optimized spectrum for the KF estimation.

Figure 6 shows the estimation performance of the meth-
ods based on MAP and KF, where the waveform with
optimal spectrum and the random one is compared. We can
observe that the simulated MSE and theoretical one have a
relatively high degree of agreement. Moreover, the accuracy
of estimation based on KF is more precise than the one based
onMAP. In addition, optimizing the spectrum of transmitted
waveform can further improve the estimation performance
both by the approaches based on MAP and KF though the
criterion of waveform optimization is the MSE matrix of
the KF estimation. The performance of MAP estimation is
improved by 90%, and the performance of KF estimation
is also improved by 90%. Moreover, the KF estimation with
optimized waveform is 18% better than the MAP one with
optimized waveform.

4.3. The Optimization of EBPSK-Based MCPC Signal.
Figure 7 depicts the spectrumof the optimal power allocation
for EBPSK-based MCPC signal, where the KF estimation
is adopted. The optimized power allocation shows that
more power should be concentrated on the frequencies with
relatively large variance of TSC. Therefore, we should design
the EBPSK-based MCPC signal to approximate the signal
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Figure 6: The comparison of estimation performance, including
(a) the MAP approach with nonoptimized waveform; (b) the MAP
approach with optimized waveform; (c) the KF approach with
nonoptimized waveform; (d) the KF approach with optimized
waveform.
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Figure 7: The spectrum of EBPSK-based MCPC signal with
optimized power allocation.

with optimal spectrum, which can be calculated in (33).
Figure 8 compares the normalized MSE of EBPSK-based
MCPC signal with optimized power allocation with the one
with uniform distributed power.We can observe that the esti-
mation performance in theCRS can be improved significantly
by optimizing the transmission power of each subcarrier,
where the KF estimation with optimized power allocation
of EBPSK-based MCPC signal achieves 7% better than the
one with uniform power allocation. Although the estimation
performance of the optimized EBPSK-based MCPC signal is
worse than the waveformwith optimal spectrum (33), we can
generate the optimal EBPSK-based MCPC signal by tuning
the amplitudes of each subcarrier, which is more simple and
convenient.
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Figure 8: The comparison of estimation performance by KF
approach, including (a) the EBPSK-based MCPC signal with uni-
form distributed power; (b) the EBPSK-based MCPC signal with
optimized power allocation; (c) the optimal signal.
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Figure 9: Optimize the power and coding matrix of the EBPSK-
based MCPC signal. The comparison of estimation performance by
KF approach, including (a) the EBPSK-based MCPC signal with
optimized power allocation and coding matrix; (b) the EBPSK-
basedMCPC signalwith optimized power allocation; (c) the optimal
signal.

Figure 9 compares the estimation performance of two
types of optimized EBPSK-based MCPC signal, where the
first one optimizes the power allocation and coding matrix
simultaneously, and the second one only optimizes the power
allocation. As the figure shows, the estimation performance
is improved 8% by simultaneously optimizing these two
parameters. Furthermore, the algorithm proposed in this
work to optimize the coding matrix is easy to realize.
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5. Conclusions

In this work, we have investigated the problem of system
optimization in the CRS with EBPSK-based MCPC signal,
and a new radar working scheme has been proposed to take
both the target detection and estimation into consideration.
At the detection stage, we have deduced the theoretical
threshold and the detection probability based on GLRT. At
the estimation stage, the TSC is estimated by the approach
based on KF. By exploiting the temporal correlation of TSC,
the estimation performance of KF is 25% better than that of
MAP. In addition, the transmitted waveform with optimal
spectrum is obtained, which can improve the estimation
performance of KF by 90%. For the practical consideration,
the iteration algorithms are proposed to optimize the EBPSK-
based MCPC signal in terms of power allocation and coding
matrix, which can achieve 7% and 8% performance improve-
ment, respectively. In the future work, we will put our force
on the system optimization of the temporal correlated CRS in
the presence of clutter and jam.
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