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This paper analyzes a finite buffer size discrete-time 𝐺𝑒𝑜/𝐺/1/𝑁 queue with multiple working vacations and different input rate.
Using supplementary variable technique and embedded Markov chain method, the queue-length distribution solution in the form
of formula at arbitrary epoch is obtained. Some performance measures associated with operating cost are also discussed based
on the obtained queue-length distribution. Then, several numerical experiments follow to demonstrate the effectiveness of the
obtained formulae. Finally, a state-dependent operating cost function is constructed to model an express logistics service center.
Regarding the service rate during working vacation as a control variable, the optimization analysis on the cost function is carried
out by using parabolic method.

1. Introduction

Discrete-time queues with classical vacation policies have
been explored more in depth during the last few decades
due to their widespread application in telecommunication
system, electronic information network, production system,
and so on (see Takagi [1], Tian et al. [2], Alfa [3], and the
references therein). In the queueing systems with classical
vacation policies, the server is assumed completely inactive
(does not provide any service) during his vacation time.
Motivated by the study of reconfigurable wavelength-division
multiplexing optical access network, Servi and Finn [4]
developed a different vacation policy against the classical one,
working vacation (WV), in which the server did not stop
service for customers; instead, he remained semiactive. From
then on, a large number of researchers were attracted to study
queueing systems with working vacation policy. By using
matrix-analytic method, Li et al. [5], Li and Tian [6], and Li
[7] studied the discrete-time 𝐺𝐼/𝐺𝑒𝑜/1 queues with working
vacations. Yi [8] considered disasters in 𝐺𝑒𝑜/𝐺/1 queue with
working vacations. Li et al. [9] andGao and Liu [10] added the
bach-arrival schedule to a discrete-time queue with working
vacations. On the basis of working-vacation 𝐺𝑒𝑜/𝐺/1 queue,

Goswami and Selvaraju [11] extended the working-vacation
policy to queueingmodel withMarkovian arrival process and
general phase-type distributed service time.

These mentioned research works all concentrated on
working-vacation queueing models with infinite buffer size;
however, the finite buffer size counterparts received little
attention. In real situations, queues with finite buffer size are
more suitable than queues with infinite buffer space as it is
used to store arrived customers if server is busy. Among the
existing references, very few papers considered the working-
vacation queue with finite buffer size; see Goswami and
Samanta [12], Yu et al. [13], Yu et al. [14], Zhang and Hou
[15], Gao et al. [16], and Banerjee et al. [17]. Nevertheless, the
existing research topics with finite buffer size and working
vacations mentioned above all concentrate on 𝐺𝐼/𝐺𝑒𝑜/1/𝑁
queueing system and its different varieties. We note that the
finite buffer 𝐺𝑒𝑜/𝐺/1/𝑁 queue with working vacations has
not been studied up to now. It motivates us to fill this gap.

In addition, as far as the queueing systems with working
vacations are concerned, the assumption assumes in general
that the customers arrive in system at a fixed rate. However,
the customer’s choice of entering into system or not usually
depends on the system’s status what they see at the arrival
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epoch. For example, in a make-to-order production system
where the system information such as server’s status and
queue length is fully observable to an arriving customer,
the arriving customer with rate of 𝜆 may choose to leave
the system when he finds that the server is not active, or
the service rate is lower than the normal rate, or too many
customers accumulate in front of the server, and so on.
Thus, we assume in this paper that the customers arrive in
system at different rates. Consequently, the changeable arrival
rate of order brings influence on some critical performance
measures associatedwith operating cost such as queue length,
waiting times, delay probability for an order, and blocking
probability (see Bhaskar and Lallement [18]).

On account of the introduction mentioned above, we
study the finite buffer𝐺𝑒𝑜/𝐺/1 queue with working vacations
and different arrival rates, denoted by 𝐺𝑒𝑜

𝜆1 ,𝜆2/𝐺(𝑀𝑊𝑉)/

1/𝑁. Using supplementary variable method and embedded
Markov chain techniques, the queue-length distribution in
the form of formula at arbitrary epoch is obtained. Some
performance measures associated with operating cost are
also discussed under the achievement of the queue-length
distribution solution. To demonstrate the effectiveness of the
achieved formulae, a numerical experiment is carried out
with respect to a state-dependent operating cost function.

The rest of this paper is organized as follows. Section 2
describes the queueing model. Section 3 analyzes the queue-
length distribution at arbitrary epoch. In Section 4, various
performance measures are obtained. Section 5 focuses on
the numerical performance characteristics. To demonstrate
the application of the model studied in this paper, Section 6
constructs a state-dependent cost function from an express
logistics service center and discusses a cost minimization
problem concerning the function. Finally, some conclusions
and topics for future research are mentioned in Section 7.

2. Model Description

We consider a discrete-time single server queue with vaca-
tions, in which a potential customer arrives in time interval
(𝑛
−
, 𝑛) with delayed access and departs in (𝑛, 𝑛

+
) (we call it

LAS-DA discipline). Upon the server working at a normal
service rate, customers arrive in system according to a
Bernoulli process with parameter of 𝜆1 ∈ (0, 1). We denote
the arrival interval in this case by random variable 𝜏

(1); that
is, 𝑃{𝜏

(1)
= 𝑗} = 𝜆1𝜆

𝑗−1
1 , where 𝜆1 = 1 − 𝜆1; in another case,

when the server is on vacation, customers arrive in system
according to another Poison process with parameter of 𝜆2 ∈

(0, 1).The arrival intervals in this case are denoted by 𝜏
(2); that

is, 𝑃{𝜏
(2)

= 𝑗} = 𝜆2𝜆
𝑗−1
2 .

Service and Vacation Rules. The server serves the waiting
customers (if there is any) according to FCFS (first come,
first served) discipline. The service begins with a normal rate
when the first customer arrives in system and ends when
the system becomes empty. We call this time interval the
“normal busy period.” The duration of the service time for a
customer, denoted by 𝜒

(𝑏), is a random variable with arbitrary
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Figure 1: Various time epochs in a late arrival system with delayed
access (LAS-DA).

probability mass function (PMF) 𝑔
(𝑏)

𝑗
= 𝑃{𝜒

(𝑏)
= 𝑗}, 𝑗 ≥ 1,

probability generating function (PGF) 𝐺(𝑏)(𝑧) = ∑
∞

𝑗=1 𝑔
(𝑏)

𝑗
𝑧
𝑗,

and finite mean service time 𝐸[𝜒
(𝑏)

] = 𝛼1. When the system
becomes empty, the server takes multiple working vacations
[2]. The length of a working vacation, denoted by 𝑉, is
geometrically distributed with PMF 𝑃{𝑉 = 𝑘} = VV𝑘−1. The
length of the service time for a customer during working
vacation period, denoted by 𝜒

(V), is also a random variable
following another arbitrary distribution with PMF 𝑔

(V)
𝑗

=

𝑃{𝜒
(V)
𝑖

= 𝑗}, 𝑗 ≥ 1 and PGF 𝐺
(V)

(𝑧) = ∑
∞

𝑗=1 𝑔
(V)
𝑗

𝑧
𝑗 and finite

mean service time 𝐸[𝜒
(V)

] = 𝛼2 > 𝛼1. If the server finds that
the system is nonempty upon comes back from a working
vacation, he returns the service rate to the normal level and
restarts the service interrupted at the end of vacation from
the beginning; otherwise, he takes the next working vacation.
To avoid confusion, the different time epochs at which events
occur are shown in Figure 1. Finally, we assume the service,
arrival, and the vacations are mutually independent.

To describe the system state, the following random
variables are introduced:

𝑁(𝑛
+
): queue length (including the customer in

service) at epoch 𝑛
+;

𝑋(𝑛
+
): remaining service time of the customer being

served at epoch 𝑛
+;

𝜂(𝑛
+
) = {0, server is in working vacation at epoch 𝑛

+;
1, server is in normal busy period at epoch 𝑛

+
}.

Let 𝑀(𝑛
+
) = {𝑁(𝑛

+
), 𝜂(𝑛
+
), 𝑋(𝑛

+
)}; then 𝑀(𝑛

+
) is a Markov

process with state space 𝑆 = {(0, 0)} ∪ {(𝑖, 𝑗, 𝑘), 1 ≤ 𝑖 ≤ 𝑁; 𝑗 =

0, 1; 𝑘 ≥ 1}. We define the joint probabilities by

𝑃0,0 (𝑛
+
) = 𝑃 {𝑁 (𝑛

+
) = 0, 𝜂 (𝑛

+
) = 0} ,

𝑃𝑖,𝑗 (𝑛
+
, 𝑘) = 𝑃 {𝑁 (𝑛

+
) = 𝑖, 𝜂 (𝑛

+
) = 𝑗, 𝑋 (𝑛

+
) = 𝑘} ,

1 ≤ 𝑖 ≤ 𝑁; 𝑗 = 0, 1; 𝑘 ≥ 1.

(1)

As 𝑛 → +∞, the mentioned probabilities above are denoted
by 𝑃0,0 and 𝑃𝑖,𝑗(𝑘), 𝑖 = 1, . . . , 𝑁; 𝑗 = 0, 1; 𝑘 ≥ 1, respectively.
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3. The Queue-Length Solutions in
the Form of Formula

In this section, by combining embedded Markov chain and
supplementary variable methods, the queue-length distribu-
tion at arbitrary epoch is obtained.

3.1. Steady State Queue Length at an Arbitrary Epoch 𝑛
+.

Firstly, we develop the usual Chapman-Kolmogorov (C-K)
difference equations by regarding the remaining service time
as the supplementary variable. Generally, using one-step
transition probability, the system can get to the state of (𝑖, 0, 𝑘)
(assume at epoch 𝑛) from four types of the up-step state
(assume at epoch 𝑛 − 1): one is from state of (𝑖 − 1, 0, 𝑘 + 1)
by probability 𝜆2V; that is, the system is in vacation and
one customer arrives during time interval ((𝑛 − 1)+, 𝑛+]; the
second is from state of (𝑖 + 1, 0, 1) by probability 𝜆2V𝑔

(V)
𝑘
;

that is, the system is in vacation and no customer arrives
during time interval ((𝑛 − 1)+, 𝑛+], and the customer being
served at epoch (𝑛 − 1)+ completes his service at 𝑛+; the third
is from state of (𝑖, 0, 1) by probability 𝜆2V𝑔

(V)
𝑘
; that is, the

system is in vacation and one customer arrives during time
interval ((𝑛−1)+, 𝑛+], and the customer being served at epoch
(𝑛−1)+ completes his service at 𝑛+; the last one is from state of
(𝑖, 0, 𝑘+1) by probability 𝜆2V, that is, the system is in vacation
and no customer arrives during time interval ((𝑛 − 1)+, 𝑛+].
So, under steady state (𝑛 → +∞), we get

𝑃𝑖,0 (𝑘) = 𝜆2V𝑃𝑖−1,0 (𝑘 + 1) + 𝜆2V𝑔
(V)
𝑘

𝑃𝑖+1,0 (1)

+ 𝜆2V𝑔
(V)
𝑘

𝑃𝑖,0 (1) + 𝜆2V𝑃𝑖,0 (𝑘 + 1) ,

2 ≤ 𝑖 ≤ 𝑁 − 2.

(2)

Let 𝑖 = 0, 1, 𝑁 − 1, 𝑁, respectively; we get the degenerate
equations

𝑃0,0 = 𝜆2𝑃0,0 +𝜆2𝑃1,0 (1) + 𝜆1𝑃1,1 (1) , (3)

𝑃1,0 (𝑘) = 𝜆2V𝑃1,0 (𝑘 + 1) + 𝜆2V𝑔
(V)
𝑘

𝑃0,0

+𝜆2V𝑔
(V)
𝑘

𝑃1,0 (1) + 𝜆2V𝑔
(V)
𝑘

𝑃2,0 (1) ,
(4)

𝑃𝑁−1,0 (𝑘) = 𝜆2V𝑃𝑁−2,0 (𝑘 + 1) + V𝑔(V)
𝑘

𝑃𝑁,0 (1)

+ 𝜆2V𝑔
(V)
𝑘

𝑃𝑁−1,0 (1)

+ 𝜆2V𝑃𝑁−1,0 (𝑘 + 1) ,

(5)

𝑃𝑁,0 (𝑘) = 𝜆2V𝑃𝑁−1,0 (𝑘 + 1) + V𝑃𝑁,0 (𝑘 + 1) . (6)

Similarly, we also obtain the C-K equations when system is in
normal busy period:

𝑃1,1 (𝑘) = 𝜆2V𝑔
(𝑏)

𝑘
𝑃0,0 +𝜆1𝑔

(𝑏)

𝑘
𝑃1,1 (1)

+ 𝜆1𝑃1,1 (𝑘 + 1) + 𝜆1𝑔
(𝑏)

𝑘
𝑃2,1 (1)

+ 𝜆2V𝑔
(𝑏)

𝑘
𝑃1,0 (1) + 𝜆2V𝑔

(𝑏)

𝑘
𝑃2,0 (1)

+ 𝜆2V𝑔
(𝑏)

𝑘

∞

∑

𝑡=2
𝑃1,0 (𝑡) ,

𝑃𝑖,1 (𝑘) = 𝜆1𝑔
(𝑏)

𝑘
𝑃𝑖,1 (1) + 𝜆1𝑔

(𝑏)

𝑘
𝑃𝑖+1,1 (1)

+ 𝜆1𝑃𝑖,1 (𝑘 + 1) + 𝜆1𝑃𝑖−1,1 (𝑘 + 1)

+ 𝜆2V𝑔
(𝑏)

𝑘
𝑃𝑖,0 (1) + 𝜆2V𝑔

(𝑏)

𝑘
𝑃𝑖+1,0 (1)

+ 𝜆2V𝑔
(𝑏)

𝑘

∞

∑

𝑡=2
𝑃𝑖,0 (𝑡)

+ 𝜆2V𝑔
(𝑏)

𝑘

∞

∑

𝑡=2
𝑃𝑖−1,0 (𝑡) , 2 ≤ 𝑖 ≤ 𝑁 − 2,

𝑃𝑁−1,1 (𝑘) = 𝜆1𝑔
(𝑏)

𝑘
𝑃𝑁−1,1 (1) + 𝑔

(𝑏)

𝑘
𝑃𝑁,1 (1)

+ 𝜆1𝑃𝑁−1,1 (𝑘 + 1) + 𝜆1𝑃𝑁−2,1 (𝑘 + 1)

+ 𝜆2V𝑔
(𝑏)

𝑘
𝑃𝑁−1,0 (1) + V𝑔(𝑏)

𝑘
𝑃𝑁,0 (1)

+ 𝜆2V𝑔
(𝑏)

𝑘

∞

∑

𝑡=2
𝑃𝑁−1,0 (𝑡)

+ 𝜆2V𝑔
(𝑏)

𝑘

∞

∑

𝑡=2
𝑃𝑁−2,0 (𝑡) ,

𝑃𝑁,1 (𝑘) = 𝑃𝑁,1 (𝑘 + 1) + 𝜆1𝑃𝑁−1,1 (𝑘 + 1)

+ V𝑔(𝑏)
𝑘

∞

∑

𝑡=2
𝑃𝑁,0 (𝑡)

+ 𝜆2V𝑔
(𝑏)

𝑘

∞

∑

𝑡=2
𝑃𝑁−1,0 (𝑡) .

(7)

Define the 𝑧-transforms of 𝑃𝑖,0(𝑘) and 𝑃𝑖,1(𝑘), respectively:

𝑃
∗

𝑖,0 (𝑢) =

∞

∑

𝑘=1
𝑃𝑖,0 (𝑘) 𝑢

𝑘
, 𝑖 = 1, 2, . . . , 𝑁,

𝑃
∗

𝑖,1 (𝑢) =

∞

∑

𝑘=1
𝑃𝑖,1 (𝑘) 𝑢

𝑘
, 𝑖 = 1, 2, . . . , 𝑁.

(8)

We propose the following notations:

𝑃𝑖,0 = lim
𝑢→ 1−

𝑃
∗

𝑖,0 (𝑢) = 𝑃
∗

𝑖,0 (1) , 𝑖 = 1, 2, . . . , 𝑁;

𝑃𝑖,1 = lim
𝑢→ 1−

𝑃
∗

𝑖,1 (𝑢) = 𝑃
∗

𝑖,1 (1) , 𝑖 = 1, 2, . . . , 𝑁.

(9)
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Multiplying (2) and (4)–(7) by 𝑢
𝑘 and summing over 𝑘 from

1 to ∞, we obtain after some simplification

(1−
𝜆2V
𝑢

)𝑃
∗

1,0 (𝑢) = − 𝜆2V𝑃1,0 (1) + V𝐺(V) (𝑢) [𝜆2𝑃0,0

+𝜆2𝑃1,0 (1) + 𝜆2𝑃2,0 (1)] ,

(1−
𝜆2V
𝑢

)𝑃
∗

𝑖,0 (𝑢) =
𝜆2V
𝑢

𝑃
∗

𝑖−1,0 (𝑢) − 𝜆2V𝑃𝑖−1,0 (1)

− 𝜆2V𝑃𝑖,0 (1) + V𝐺(V) (𝑢) [𝜆2𝑃𝑖+1,0 (1) + 𝜆2𝑃𝑖,0 (1)] ,

𝑖 = 2, 3, . . . , 𝑁 − 2,

(1−
𝜆2V
𝑢

)𝑃
∗

𝑁−1,0 (𝑢) =
𝜆2V
𝑢

𝑃
∗

𝑁−2,0 (𝑢)

− 𝜆2V𝑃𝑁−2,0 (1) − 𝜆2V𝑃𝑁−1,0 (1) + V𝐺(V) (𝑢)

⋅ [𝑃𝑁,0 (1) + 𝜆2𝑃𝑁−1,0 (1)] ,

(1−
V
𝑢
)𝑃
∗

𝑁,0 (𝑢) =
𝜆2V
𝑢

𝑃
∗

𝑁−1,0 (𝑢) − 𝜆2V𝑃𝑁−1,0 (1)

− V𝑃𝑁,0 (1) ,

(1−
𝜆1
𝑢

)𝑃
∗

1,1 (𝑢) = − 𝜆1𝑃1,1 (1) +𝐺
(𝑏)

(𝑢) [𝜆2V𝑃0,0

+𝜆1𝑃1,1 (1) + 𝜆1𝑃2,1 (1) + 𝜆2V𝑃1,0 (1) + 𝜆2V𝑃2,0 (1)

+ 𝜆2V
∞

∑

𝑡=2
𝑃1,0 (𝑡)] ,

(1−
𝜆1
𝑢

)𝑃
∗

𝑖,1 (𝑢) =
𝜆1
𝑢

𝑃
∗

𝑖−1,1 (𝑢) − 𝜆1𝑃𝑖−1,1 (1)

− 𝜆1𝑃𝑖,1 (1) +𝐺
(𝑏)

(𝑢) [𝜆1𝑃𝑖,1 (1) + 𝜆1𝑃𝑖+1,1 (1)

+ 𝜆2V𝑃𝑖,0 (1) + 𝜆2V𝑃𝑖+1,0 (1) + 𝜆2V
∞

∑

𝑡=2
𝑃𝑖,0 (𝑡)

+ 𝜆2V
∞

∑

𝑡=2
𝑃𝑖−1,0 (𝑡)] , 𝑖 = 2, 3, . . . , 𝑁 − 2,

(1−
𝜆1
𝑢

)𝑃
∗

𝑁−1,1 (𝑢) =
𝜆1
𝑢

𝑃
∗

𝑁−2,1 (𝑢) − 𝜆1𝑃𝑁−2,1 (1)

− 𝜆1𝑃𝑁−1,1 (1) +𝐺
(𝑏)

(𝑢) [𝜆1𝑃𝑁−1,1 (1) + 𝑃𝑁,1 (1)

+ 𝜆2V𝑃𝑁−1,0 (1) + V𝑃𝑁,0 (1) + 𝜆2V
∞

∑

𝑡=2
𝑃𝑁−1,0 (𝑡)

+ 𝜆2V
∞

∑

𝑡=2
𝑃𝑁−2,0 (𝑡)] ,

(1−
1
𝑢
)𝑃
∗

𝑁,1 (𝑢) =
𝜆1
𝑢

𝑃
∗

𝑁−1,1 (𝑢) − 𝜆1𝑃𝑁−1,1 (1)

− 𝑃𝑁,1 (1) + V𝐺(𝑏) (𝑢) [
∞

∑

𝑡=2
𝑃𝑁,0 (𝑡)

+ 𝜆2

∞

∑

𝑡=2
𝑃𝑁−1,0 (𝑡)] .

(10)

Adding (10) over all possible values of 𝑖 (𝑖 = 1, 2, . . . , 𝑁) and
using (3), we get

(1−
V
𝑢
)

𝑁

∑

𝑖=1
𝑃
∗

𝑖,0 (𝑢) = V𝐺(V) (𝑢) [
𝑁

∑

𝑖=1
𝑃𝑖,0 (1)

+ 𝜆1𝑃1,1 (1)] − V
𝑁

∑

𝑖=1
𝑃𝑖,0 (1) ,

(11)

𝑁

∑

𝑖=1
𝑃
∗

𝑖,1 (𝑢) =
𝑢

𝑢 − 1
{𝐺
(𝑏)

(𝑢)

⋅ [

𝑁

∑

𝑖=1
𝑃𝑖,1 (1) + V

𝑁

∑

𝑖=1
𝑃𝑖,0 − V𝜆1𝑃1,1 (1)] −

𝑁

∑

𝑖=1
𝑃𝑖,1 (1)} .

(12)

Setting 𝑢 = 1 in (11), we have

𝜆1𝑃1,1 (1) =
V
V

𝑁

∑

𝑖=1
𝑃𝑖,0. (13)

Substituting (13) into (11) and letting 𝑢 = V lead to

𝑁

∑

𝑖=1
𝑃𝑖,0 =

V [1 − 𝐺
(V)

(V)]
V𝐺(V) (V)

𝑁

∑

𝑖=1
𝑃𝑖,0 (1) . (14)

Calculating limit on both sides of (12) as 𝑢 → 1− after
substituting (13) into (12) yields

𝑁

∑

𝑖=1
𝑃𝑖,1 = 𝛼1

𝑁

∑

𝑖=1
𝑃𝑖,1 (1) , (15)

where 𝛼1 = 𝐸[𝜒
(𝑏)

], 𝑖 = 1, 2, . . ..
Substituting (14) and (15) into the normalization condi-

tion, 𝑃0,0 + ∑
𝑁

𝑖=1 𝑃𝑖,0 + ∑
𝑁

𝑖=1 𝑃𝑖,1 = 1, we get

𝑃0,0 +
V [1 − 𝐺

(V)
(V)]

V𝐺(V) (V)

𝑁

∑

𝑖=1
𝑃𝑖,0 (1) + 𝛼1

𝑁

∑

𝑖=1
𝑃𝑖,1 (1) = 1. (16)

From (3), (13), (14), and (16), the terms of ∑
𝑁

𝑖=1 𝑃𝑖,0(1) and
∑
𝑁

𝑖=1 𝑃𝑖,1(1) can be expressed by 𝑃0,0 and 𝑃1,0(1) as follows:

𝑁

∑

𝑖=1
𝑃𝑖,0 (1) =

[𝜆2𝑃0,0 − 𝜆2𝑃1,0 (1)] 𝐺
(V)

(V)
1 − 𝐺(V) (V)

,

𝑁

∑

𝑖=1
𝑃𝑖,1 (1) =

1
𝛼1V

[V− (V+𝜆2V) 𝑃0,0 +𝜆2V𝑃1,0 (1)] .

(17)
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Let 𝑟
+, 𝑟 = 1, 2, . . . be the departure epoch and let 𝐿𝑟

denote the queue length immediately after the epoch 𝑟
+.𝑃𝑑𝑟
𝑖,𝑗

=

𝑃{𝐿(𝑟
+
) = 𝑖; 𝜂(𝑟

+
) = 𝑗} denotes the joint probability of 𝐿(𝑟+)

and 𝜂(𝑟
+
)with steady state 𝑃

𝑑

𝑖,𝑗
= lim𝑟→+∞𝑃

𝑑
𝑟

𝑖,𝑗
, 0 ≤ 𝑖 ≤ 𝑁− 1;

𝑗 = 0, 1.
For 𝑃𝑑𝑟
𝑖,0 , 0 ≤ 𝑖 ≤ 𝑁 − 1, we have

𝑃
𝑑
𝑟

0,0 = 𝑃 {𝐿 (𝑟
+
) = 0; 𝜂 (𝑟

+
) = 0} = 𝜆2𝑃 {𝑁 ((𝑟 − 1)+)

= 1; 𝜂 ((𝑟 − 1)+) = 0 | 𝑋 ((𝑟 − 1)+) = 1}

+ 𝜆1𝑃 {𝑁 ((𝑟 − 1)+) = 1; 𝜂 ((𝑟 − 1)+)

= 1 | 𝑋 ((𝑟 − 1)+) = 1} = 𝜆2
𝑃1,0 ((𝑟 − 1)+ , 1)

𝑃 {𝑋 ((𝑟 − 1)+) = 1}

+ 𝜆1
𝑃1,1 ((𝑟 − 1)+ , 1)

𝑃 {𝑋 ((𝑟 − 1)+) = 1}
,

𝑃
𝑑
𝑟

𝑖,0 = 𝑃 {𝐿 (𝑟
+
) = 𝑖; 𝜂 (𝑟

+
) = 0} = V𝜆2𝑃 {𝑁 ((𝑟 − 1)+)

= 𝑖 + 1; 𝜂 ((𝑟 − 1)+) = 0 | 𝑋 ((𝑟 − 1)+) = 1}

+ V𝜆2𝑃 {𝑁 ((𝑟 − 1)+) = 𝑖; 𝜂 ((𝑟 − 1)+)

= 0 | 𝑋 ((𝑟 − 1)+) = 1} = V𝜆2
𝑃𝑖+1,0 ((𝑟 − 1)+ , 1)

𝑃 {𝑋 ((𝑟 − 1)+) = 1}

+ V𝜆2
𝑃𝑖,0 ((𝑟 − 1)+ , 1)

𝑃 {𝑋 ((𝑟 − 1)+) = 1}
, 1 ≤ 𝑖 ≤ 𝑁 − 2,

𝑃
𝑑
𝑟

𝑁−1,0 = 𝑃 {𝐿 (𝑟
+
) =𝑁− 1; 𝜂 (𝑟

+
) = 0}

= V𝑃 {𝑁 ((𝑟 − 1)+) =𝑁; 𝜂 ((𝑟 − 1)+)

= 0 | 𝑋 ((𝑟 − 1)+) = 1} + V𝜆2𝑃 {𝑁 ((𝑟 − 1)+) =𝑁

− 1; 𝜂 ((𝑟 − 1)+) = 0 | 𝑋 ((𝑟 − 1)+) = 1} = V

⋅
𝑃𝑁,0 ((𝑟 − 1)+ , 1)

𝑃 {𝑋 ((𝑟 − 1)+) = 1}
+ V𝜆2

𝑃𝑁−1,0 ((𝑟 − 1)+ , 1)
𝑃 {𝑋 ((𝑟 − 1)+) = 1}

.

(18)

Calculating limit on both sides of (18) as 𝑟 → +∞ leads to

𝑃
𝑑

0,0 =
𝜆2𝑃1,0 (1) + 𝜆1𝑃1,1 (1)

∑
𝑁

𝑖=1 𝑃𝑖,0 (1) + ∑
𝑁

𝑖=1 𝑃𝑖,1 (1)
, (19)

𝑃
𝑑

𝑖,0 =
V𝜆2𝑃𝑖+1,0 (1) + V𝜆2𝑃𝑖,0 (1)
∑
𝑁

𝑖=1 𝑃𝑖,0 (1) + ∑
𝑁

𝑖=1 𝑃𝑖,1 (1)
, 1 ≤ 𝑖 ≤ 𝑁 − 2, (20)

𝑃
𝑑

𝑁−1,0 =
V𝑃𝑁,0 (1) + V𝜆2𝑃𝑁−1,0 (1)
∑
𝑁

𝑖=1 𝑃𝑖,0 (1) + ∑
𝑁

𝑖=1 𝑃𝑖,1 (1)
. (21)

Similarly, for 𝑃𝑑
𝑖,1, 1 ≤ 𝑖 ≤ 𝑁 − 1, we have

𝑃
𝑑

𝑖,1

=
𝜆1𝑃𝑖+1,1 (1) + 𝜆1𝑃𝑖,1 (1) + 𝜆2V𝑃𝑖+1,0 (1) + 𝜆2V𝑃𝑖,0 (1)

∑
𝑁

𝑖=1 𝑃𝑖,0 (1) + ∑
𝑁

𝑖=1 𝑃𝑖,1 (1)
,

1 ≤ 𝑖 ≤ 𝑁 − 2,

(22)

𝑃
𝑑

𝑁−1,1

=
𝑃𝑁,1 (1) + 𝜆1𝑃𝑁−1,1 (1) + V𝑃𝑁,0 (1) + 𝜆2V𝑃𝑁−1,0 (1)

∑
𝑁

𝑖=1 𝑃𝑖,0 (1) + ∑
𝑁

𝑖=1 𝑃𝑖,1 (1)
.

(23)

From (3), (17), and (19), we get

𝑁

∑

𝑖=1
𝑃𝑖,0 (1) +

𝑁

∑

𝑖=1
𝑃𝑖,1 (1) =

𝜆2𝑃0,0

𝑃
𝑑

0,0
, (24)

𝑃1,0 (1) =

1 + 𝑃0,0 [𝜆2𝛼1 (Δ − 1/𝑃𝑑0,0) − 1]

𝜆2𝛼1Δ
, (25)

𝑃1,1 (1) =

𝑃0,0 (1 + 𝜆2𝛼1/𝑃
𝑑

0,0) − 1

𝜆1𝛼1Δ
, (26)

where Δ = 𝐺
(V)

(V)/(1 − 𝐺
(V)

(V)) − V/𝛼1V.
In order to find the solution of𝑃𝑖,𝑗, wewould adoptmatrix

equations to express (20)–(23). Firstly, some vector notations
are introduced as follows:

P0 (1) = [𝑃2,0 (1) , 𝑃3,0 (1) , . . . , 𝑃𝑁,0 (1)]
𝑇
,

P1 (1) = [𝑃2,1 (1) , 𝑃3,1 (1) , . . . , 𝑃𝑁,1 (1)]
𝑇
,

P
𝑑

0 = [𝑃
𝑑

1,0, 𝑃
𝑑

2,0, . . . , 𝑃
𝑑

𝑁−1,0]
𝑇

,

P
𝑑

1 = [𝑃
𝑑

1,1, 𝑃
𝑑

2,1, . . . , 𝑃
𝑑

𝑁−1,1]
𝑇

,

P0 = [𝑃1,0, 𝑃2,0, . . . , 𝑃𝑁,0]
𝑇
,

P1 = [𝑃0,0, 𝑃1,1, . . . , 𝑃𝑁−1,1]
𝑇
.

(27)

Using (24), the group equations of (20)-(21) and (22)-(23) are
expressed in matrix form, respectively:

A𝑁−1P0 (1) =
𝜆2𝑃0,0

V𝑃𝑑0,0
⋅P
𝑑

0 −X1, (28)

V ⋅A𝑁−1P0 (1) +B𝑁−1P1 (1) =
𝜆2𝑃0,0

𝑃
𝑑

0,0
⋅P
𝑑

1 −X2, (29)

where

X1 = [𝜆2𝑃1,0 (1) , 0, . . . , 0]
𝑇
,

X2

= [
𝜆1𝜆2𝑃0,0

𝜆1
+(𝜆2V−

𝜆1𝜆2

𝜆1
)𝑃1,0 (1) , 0, . . . , 0]

𝑇

;

(30)
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𝑃1,0(1) is determined by (28):

A𝑁−1 =

(
(
(
(
(
(

(

𝜆2

𝜆2 𝜆2

𝜆2 𝜆2

d d

𝜆2 𝜆2

𝜆2 1

)
)
)
)
)
)

)𝑁−1

,

B𝑁−1 =

(
(
(
(
(
(

(

𝜆1

𝜆1 𝜆1

𝜆1 𝜆1

d d

𝜆1 𝜆1

𝜆1 1

)
)
)
)
)
)

)𝑁−1

.

(31)

Solving the simultaneous matrix equations (28) and (29)
leads to

P0 (1) = 𝐴
−1
𝑁−1 [

𝜆2𝑃0,0

V𝑃𝑑0,0
⋅P
𝑑

0 −X1] , (32)

P1 (1) = 𝐵
−1
𝑁−1 [

𝜆2𝑃0,0

V𝑃𝑑0,0
(VP𝑑1 − VP𝑑0) + VX1 −X2] . (33)

Let 𝑢 = 1 in (10); we have

(1−𝜆2V) 𝑃1,0

= (2𝜆2 − 1) V𝑃1,0 (1) + 𝜆2V𝑃2,0 (1) + 𝜆2V𝑃0,0,
(34)

(1−𝜆2V) 𝑃𝑖,0 −𝜆2V𝑃𝑖−1,0

= −𝜆2V𝑃𝑖−1,0 (1) + (2𝜆2 − 1) V𝑃𝑖,0 (1)

+ V𝜆2𝑃𝑖+1,0 (1) , 𝑖 = 2, 3, . . . , 𝑁 − 2,

(35)

(1−𝜆2V) 𝑃𝑁−1,0 −𝜆2V𝑃𝑁−2,0

= −𝜆2V𝑃𝑁−2,0 (1) + (2𝜆2 − 1) V𝑃𝑁−1,0 (1)

+ V𝑃𝑁,0 (1) ,

(36)

V𝑃𝑁,0 −𝜆2V𝑃𝑁−1,0 = −𝜆2V𝑃𝑁−1,0 (1) − V𝑃𝑁,0 (1) , (37)

𝜆1𝑃1,1 −𝜆2V𝑃0,0

= 𝜆2V𝑃1,0 + (2𝜆1 − 1) 𝑃1,1 (1) + 𝜆1𝑃2,1 (1)

+ (2𝜆2 − 1) V𝑃1,0 (1) + 𝜆2V𝑃2,0 (1) ,

(38)

𝜆1𝑃𝑖,1 −𝜆1𝑃𝑖−1,1

= 𝜆2V𝑃𝑖,0 +𝜆2V𝑃𝑖−1,0 −𝜆1𝑃𝑖−1,1 (1)

+ (2𝜆1 − 1) 𝑃𝑖,1 (1) + 𝜆1𝑃𝑖+1,1 (1) − 𝜆2V𝑃𝑖−1,0 (1)

+ (2𝜆2 − 1) V𝑃𝑖,0 (1) + 𝜆2V𝑃𝑖+1,0 (1) ,

𝑖 = 2, 3, . . . , 𝑁 − 2,

(39)

𝜆1𝑃𝑁−1,1 −𝜆1𝑃𝑁−2,1

= 𝜆2V𝑃𝑁−1,0 +𝜆2V𝑃𝑁−2,0 −𝜆1𝑃𝑁−2,1 (1)

+ (2𝜆1 − 1) 𝑃𝑁−1,1 (1) + 𝑃𝑁,1 (1)

− 𝜆2V𝑃𝑁−2,0 (1) + (2𝜆2 − 1) V𝑃𝑁−1,0 (1)

+ V𝑃𝑁,0 (1) ,

(40)

−𝜆1𝑃𝑁−1,1

= V𝑃𝑁,0 +𝜆2V𝑃𝑁−1,0 −𝜆1𝑃𝑁−1,1 (1) − 𝑃𝑁,1 (1)

− 𝜆2V𝑃𝑁−1,0 (1) − V𝑃𝑁,0 (1) .

(41)

The equations of (34)–(37) and (38)–(41) are expressed by the
following matrix forms, respectively:

H𝑁P0 = F𝑁(
𝑃1,0 (1)
P0 (1)

) ⋅ V+𝜆2VX3, (42)

C𝑁P1 = A𝑁P0 ⋅ V+E𝑁(
𝑃1,1 (1)
P1 (1)

) + F𝑁(
𝑃1,0 (1)
P0 (1)

)

⋅ V,

(43)

where 𝑃1,0(1) and 𝑃1,1(1) are determined by (25) and (26),
respectively:

X3 = [𝑃0,0, 0, . . . , 0]
𝑇
,

C𝑁 =
(
(

(

−𝜆2V 𝜆1

−𝜆1 𝜆1

d d

−𝜆1 𝜆1

−𝜆1

)
)

)𝑁

,

H𝑁 =
(
(
(

(

1 − 𝜆2V

−𝜆2V 1 − 𝜆2V

d d

−𝜆2V 1 − 𝜆2V

−𝜆2V V

)
)
)

)𝑁

,
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F𝑁

=

(
(
(
(
(
(

(

2𝜆2 − 1 𝜆2

−𝜆2 2𝜆2 − 1 𝜆2

d d d

−𝜆2 2𝜆2 − 1 𝜆2

−𝜆2 2𝜆2 − 1 1
−𝜆2 −1

)
)
)
)
)
)

)𝑁

,

E𝑁

=

(
(
(
(
(
(

(

2𝜆1 − 1 𝜆1

−𝜆1 2𝜆1 − 1 𝜆1

d d d

−𝜆1 2𝜆1 − 1 𝜆1

−𝜆1 2𝜆1 − 1 1
−𝜆1 −1

)
)
)
)
)
)

)𝑁

.

(44)

Substituting (25)-(26) and (32)-(33) into (42)-(43), respec-
tively, and solving the simultaneous matrix equations (42)-
(43), we have

P0

= VH−1
𝑁
F𝑁D
−1
𝑁

(

1 + 𝑃0,0𝜆2𝛼1 (Δ − 1/𝑃𝑑0,0) − 𝑃0,0

𝜆2𝛼1Δ
𝜆2𝑃0,0

V𝑃𝑑0,0
⋅ P𝑑0 − X1

)

+𝜆2VH
−1
𝑁
X3,

(45)

P1 = C
−1
𝑁

(VVA𝑁H
−1
𝑁

+ VI𝑁)

⋅ F𝑁D
−1
𝑁

(

1 + 𝑃0,0𝜆2𝛼1 (Δ − 1/𝑃𝑑0,0) − 𝑃0,0

𝜆2𝛼1Δ
𝜆2𝑃0,0

V𝑃𝑑0,0
⋅ P𝑑0 − X1

)

+C
−1
𝑁
E𝑁M
−1
𝑁

(

𝑃0,0 (1 + 𝜆2𝛼1/𝑃
𝑑

0,0) − 1

𝜆1𝛼1Δ
𝜆2𝑃0,0

V𝑃𝑑0,0
(VP𝑑1 − VP𝑑0) + VX1 − X2

)

+𝜆2VVC
−1
𝑁
A𝑁H
−1
𝑁
X3,

(46)

where D𝑁 = (
1
A
𝑁−1

)
𝑁
, M𝑁 = (

1
B
𝑁−1

)
𝑁
, I𝑁 is an identity

matrix of degree 𝑁, and the remaining notations are
consistent with the previous ones.

One may note that if we could obtain the queue-length
distribution at departure epoch,P𝑑0 ,P

𝑑

1 , and𝑃
𝑑

0,0, the arbitrary
epoch probabilities, 𝑃𝑖,0 (0 ≤ 𝑖 ≤ 𝑁) and 𝑃𝑖,1 (1 ≤ 𝑖 ≤ 𝑁), can
be derived from (45) and (46). Its main steps are introduced
as follows:

(a) Gain the probabilities of 𝑃1,1(1) and P1(1) expressed
by 𝑃0,0 after substituting𝑃

𝑑

0,0,P
𝑑

0 , andP
𝑑

1 into (26) and
(33), respectively.

(b) Obtain the arbitrary epoch probabilities of P0 and P1
expressed by 𝑃0,0 from (45) and (46) as well as the
arbitrary epoch probability of 𝑃𝑁,1 expressed by 𝑃0,0
from the normalization condition 𝑃0,0 + ∑

𝑁

𝑖=1 𝑃𝑖,0 +

∑
𝑁

𝑖=1 𝑃𝑖,1 = 1.

(c) Get the value of 𝑃0,0 after substituting 𝑃1,1(1), P1(1),
P1, and 𝑃𝑁,1 into (15).

(d) Achieve the values of P0 and P1 after substituting the
value of 𝑃0,0 back into (45) and (46), as well as the
value of 𝑃𝑁,1 through normalization condition.

So, in the following subsection, using the embedded
Markov chain technique, we investigate the queue-length
distribution at a departure epoch.

3.2. Steady State Queue Length at a Departure Epoch 𝑛
+. Let

𝐿𝑟 denote the queue length immediately after the departure
epoch 𝑟

+ and define the variable of 𝐽𝑟:

𝐽𝑟 =
{

{

{

0, the departure epoch 𝑟
+ locates in a working vacation,

1, the departure epoch 𝑟
+ locates in a normal busy period.

(47)

Thus, {(𝐿𝑟, 𝐽𝑟), 𝑟 ≥ 1} is a two-dimensional Markov chain
with state space Ω = {(𝑖, 𝑠), 0 ≤ 𝑖 ≤ 𝑁 − 1; 𝑠 = 0, 1}. Denote
the one step transition probability by 𝑝(𝑖,𝑠1)(𝑗,𝑠2)

= 𝑃{𝐿𝑟+1 =

𝑗, 𝐽𝑟+1 = 𝑠2 | 𝐿𝑟 = 𝑖, 𝐽𝑟 = 𝑠1} and define 𝑆
(1)
𝑖

= ∑
𝑖

𝑘=1 𝜏
(1)
𝑘
,

𝑆
(1)
0 = 0; 𝑆(2)

𝑖
= ∑
𝑖

𝑘=1 𝜏
(2)
𝑘
, 𝑆(2)0 = 0, where the random variables

of 𝜏
(𝑖)

𝑘
, 𝑖 = 1, 2, denote the arrival intervals with the same

distribution as 𝜏
(𝑖), 𝑖 = 1, 2. Then the one step transition

probability matrix (TPM), denoted by Q = (𝑝(𝑖,𝑠1)(𝑗,𝑠2)
)2𝑁−1,

will be obtained in the following work.
(1)The state transition (𝑖, 0) → (𝑗, 0) (1 ≤ 𝑖 ≤ 𝑁− 1; 𝑖 −

1 ≤ 𝑗 ≤ 𝑁 − 1; 𝑗 ̸= 0) occurs if the length of vacation (or
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remaining vacation) is greater than a service time in working
vacation; that is,𝜒(V) < 𝑉, and 𝑗+1−𝑖 customers arrive during
the service time 𝜒

(V); that is, 𝑆(2)
𝑗+1−𝑖 ≤ 𝜒

(V)
< 𝑆
(2)
𝑗+2−𝑖; then it gets

𝜃𝑗+1−𝑖 ≜ 𝑝(𝑖,0)(𝑗,0)

= 𝑃 {𝜒
(V)

<𝑉; 𝑆
(2)
𝑗+1−𝑖 ≤𝜒

(V)
< 𝑆
(2)
𝑗+2−𝑖}

=

∞

∑

𝑚=max{1,𝑗+1−𝑖}
𝑔
(V)
𝑚

(
𝑚

𝑗 + 1 − 𝑖
) 𝜆
𝑗+1−𝑖
2 𝜆

𝑚−(𝑗+1−𝑖)
2 V𝑚,

𝑖 − 1 ≤ 𝑗 ≤ 𝑁 − 2, 𝑗 ̸= 0,

𝜃𝑁−𝑖 ≜ 𝑝(𝑖,0)(𝑁−1,0)

=

∞

∑

𝑘=𝑁−𝑖

𝑃 {𝜒
(V)

<𝑉; 𝑆
(2)
𝑘

≤𝜒
(V)

< 𝑆
(2)
𝑘+1}

=

∞

∑

𝑘=𝑁−𝑖

∞

∑

𝑚=𝑘

𝑔
(V)
𝑚

(
𝑚

𝑘
)𝜆
𝑘

2𝜆
𝑚−𝑘

2 V𝑚.

(48)

Similarly, for 1 ≤ 𝑗 ≤ 𝑁 − 1, we have

𝜉𝑗 ≜ 𝑝(0,0)(𝑗,0) = V ⋅ 𝑃 {𝜒
(V)

<𝑉; 𝑆
(2)
𝑗

≤𝜒
(V)

< 𝑆
(2)
𝑗+1}

=

∞

∑

𝑚=𝑗

𝑔
(V)
𝑚

(
𝑚

𝑗
)𝜆
𝑗

2𝜆
𝑚−𝑗

2 V𝑚+1 = V ⋅ 𝜃𝑗,

1 ≤ 𝑗 ≤ 𝑁 − 2,

𝜉𝑁−1 ≜ 𝑝(0,0)(𝑁−1,0)

= V ⋅

∞

∑

𝑘=𝑁−1
𝑃 {𝜒
(V)

<𝑉; 𝑆
(2)
𝑘

≤𝜒
(V)

< 𝑆
(2)
𝑘+1}

=

∞

∑

𝑘=𝑁−1

∞

∑

𝑚=𝑘

𝑔
(V)
𝑚

(
𝑚

𝑘
)𝜆
𝑘

2𝜆
𝑚−𝑘

2 V𝑚+1 = V ⋅ 𝜃𝑁−1.

(49)

(2) The state transition (1, 1) → (0, 0) occurs if no cus-
tomer arrives during a service time in normal busy period;
that is, 𝜏(1) > 𝜒

(𝑏). So we have

𝜔 ≜ 𝑝(1,1)(0,0) = 𝑃 {𝜏
(1)

>𝜒
(𝑏)

} =

∞

∑

𝑚=1
𝑔
(𝑏)

𝑚
𝜆
𝑚

1 . (50)

(3)The state transition (1, 0) → (0, 0) occurs if the length
of vacation (or remaining vacation) is not less than a service
time in working vacation and no customer arrives during the
service time; that is, 𝜒(V) ≤ 𝑉; 𝜏(2) > 𝜒

(V), or the length
of vacation (or remaining vacation) is less than a service
time in working vacation and no customer arrives during

the vacation time and the normal service time follows the
vacation; that is, 𝜒(V) > 𝑉; 𝜏(2) > 𝑉; 𝜏(1) > 𝜒

(𝑏). Then we have

𝛿1 ≜ 𝑝(1,0)(0,0)

= 𝑃 {𝜒
(V)

≤𝑉; 𝜏
(2)

>𝜒
(V)

}

+𝑃 {𝜒
(V)

>𝑉; 𝜏
(2)

>𝑉; 𝜏
(1)

>𝜒
(𝑏)

}

=

∞

∑

𝑚=1
𝑔
(V)
𝑚

𝜆
𝑚

2 V
𝑚−1

+

∞

∑

𝑚=1
VV𝑚−1𝑃 {𝜒

(V)
>𝑚} 𝜆

𝑚

2

∞

∑

𝑛=1
𝑔
(𝑏)

𝑛
𝜆
𝑛

1.

(51)

(4) The state transition (0, 0) → (0, 0) occurs under
two cases. First, the vacation does not end immediately after
the first arrival epoch behind the previous departure and
the length of vacation (or remaining vacation) is not less
than a service time in working vacation and no customer
arrives during the service time, or the length of vacation (or
remaining vacation) is less than a service time in working
vacation and no customer arrives during the vacation time
and the service time in normal busy period follows the
vacation. Second, the vacation just ends immediately after the
first arrival epoch behind the previous departure (thus, the
first arrival will obtain a normal service) and no arrival occurs
during the normal service time. Then we have

𝛿0 ≜ 𝑝(0,0)(0,0)

= V ⋅ 𝑃 {𝜒
(V)

≤𝑉; 𝜏
(2)

>𝜒
(V)

} + V

⋅ 𝑃 {𝜒
(V)

>𝑉; 𝜏
(2)

>𝑉; 𝜏
(1)

>𝜒
(𝑏)

} + V

⋅ 𝑃 {𝜏
(1)

>𝜒
(𝑏)

}

=

∞

∑

𝑚=1
𝑔
(V)
𝑚

𝜆
𝑚

2 V
𝑚

+

∞

∑

𝑚=1
VV𝑚𝑃 {𝜒

(V)
>𝑚} 𝜆

𝑚

2

∞

∑

𝑛=1
𝑔
(𝑏)

𝑛
𝜆
𝑛

1

+

∞

∑

𝑚=1
𝑔
(𝑏)

𝑚
𝜆
𝑚

1 V = V ⋅ 𝛿1 + V ⋅ 𝜔.

(52)

(5)The state transition (𝑖, 1) → (𝑗, 1) (1 ≤ 𝑖 ≤ 𝑁− 1; 𝑖 −

1 ≤ 𝑗 ≤ 𝑁 − 1; 𝑗 ̸= 0) occurs if 𝑗 + 1 − 𝑖 customers arrive
during a service time in normal busy period; that is, 𝑆(1)

𝑗+1−𝑖 ≤

𝜒
(𝑏)

< 𝑆
(1)
𝑗+2−𝑖. It yields

𝛽𝑗+1−𝑖 ≜ 𝑝(𝑖,1)(𝑗,1) = 𝑃 {𝑆
(1)
𝑗+1−𝑖 ≤𝜒

(𝑏)
< 𝑆
(1)
𝑗+2−𝑖}

=

∞

∑

𝑚=max{1,𝑗+1−𝑖}
𝑔
(𝑏)

𝑚
(

𝑚

𝑗 + 1 − 𝑖
) 𝜆
𝑗+1−𝑖
1 𝜆

𝑚−(𝑗+1−𝑖)
1 ,

𝑖 − 1 ≤ 𝑗 ≤ 𝑁 − 2, 𝑗 ̸= 0,

𝛽𝑁−𝑖 ≜ 𝑝(𝑖,1)(𝑁−1,1) =
∞

∑

𝑘=𝑁−𝑖

𝑃 {𝑆
(1)
𝑘

≤𝜒
(𝑏)

< 𝑆
(1)
𝑘+1}

=

∞

∑

𝑘=𝑁−𝑖

∞

∑

𝑚=𝑘

𝑔
(𝑏)

𝑚
(
𝑚

𝑘
)𝜆
𝑘

1𝜆
𝑚−𝑘

1 .

(53)
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(6)The state transition (𝑖, 0) → (𝑗, 1) (1 ≤ 𝑖 ≤ 𝑁− 1; 𝑖 −

1 ≤ 𝑗 ≤ 𝑁 − 1; 𝑗 ̸= 0) occurs if the length of vacation (or
remaining vacation) is less than a service time in working
vacation; that is, 𝜒(V) > 𝑉, and 𝑗 + 1 − 𝑖 customers arrive
during the vacation time and the service time in normal busy
period (assuming that 𝑘 customers arrive during the vacation
and 𝑗 + 1 − 𝑖 − 𝑘 customers arrive during the service time in
normal busy period); that is, 𝑆(2)

𝑘
≤ 𝑉 < 𝑆

(2)
𝑘+1; 𝑆
(1)
𝑗+1−𝑖−𝑘 ≤ 𝜒

(𝑏)
<

𝑆
(1)
𝑗+2−𝑖−𝑘, or the length of vacation (or remaining vacation)
equals a service time in working vacation and 𝑗 + 1 − 𝑖

customers arrive during the service time; that is, 𝜒(V) = 𝑉;
𝑆
(2)
𝑗+1−𝑖 ≤ 𝜒

(V)
< 𝑆
(2)
𝑗+2−𝑖. Then it leads to

𝛾𝑗+1−𝑖 ≜ 𝑝(𝑖,0)(𝑗,1) =

𝑗+1−𝑖

∑

𝑘=0
𝑃 {𝜒
(V)

>𝑉; 𝑆
(2)
𝑘

≤𝑉< 𝑆
(2)
𝑘+1;

𝑆
(1)
𝑗+1−𝑖−𝑘 ≤𝜒

(𝑏)
< 𝑆
(1)
𝑗+2−𝑖−𝑘} +𝑃 {𝜒

(V)
=𝑉; 𝑆

(2)
𝑗+1−𝑖

≤𝜒
(V)

< 𝑆
(2)
𝑗+2−𝑖} =

𝑗+1−𝑖

∑

𝑘=0

∞

∑

𝑛=max{1,𝑘}
VV𝑛−1𝑃 {𝜒

(V)
> 𝑛}

⋅(

𝑛

𝑘

)𝜆
𝑘

2𝜆
𝑛−𝑘

2 ⋅ 𝛽𝑗+1−𝑖−𝑘 + 𝜃𝑗+1−𝑖 ⋅
V
V
,

𝑖 − 1 ≤ 𝑗 ≤ 𝑁 − 2, 𝑗 ̸= 0,

𝛾𝑁−𝑖 ≜ 𝑝(𝑖,0)(𝑁−1,1) =
∞

∑

𝑘=𝑁−𝑖

𝑃 {𝜒
(V)

>𝑉;

𝑘 customers arrive during the length of 𝜒
(𝑏)

+𝑉}+

∞

∑

𝑘=𝑁−𝑖

𝑃 {𝜒
(V)

=𝑉;

𝑘 customers arrive during the length of 𝜒
(V)

}

=

𝑁−𝑖−1
∑

𝑘=0

∞

∑

𝑟=𝑁−𝑖−𝑘

𝑃 {𝜒
(V)

>𝑉; 𝑆
(2)
𝑘

≤𝑉< 𝑆
(2)
𝑘+1; 𝑆

(1)
𝑟

≤𝜒
(𝑏)

< 𝑆
(1)
𝑟+1} +

∞

∑

𝑘=𝑁−𝑖

𝑃 {𝜒
(V)

≥𝑉; 𝑆
(2)
𝑘

≤𝑉< 𝑆
(2)
𝑘+1}

=

𝑁−𝑖−1
∑

𝑘=0

∞

∑

𝑛=max{1,𝑘}
VV𝑛−1𝑃 {𝜒

(V)
> 𝑛}(

𝑛

𝑘

)𝜆
𝑘

2𝜆
𝑛−𝑘

2

⋅ 𝛽𝑁−𝑖−𝑘 +

∞

∑

𝑘=𝑁−𝑖

∞

∑

𝑚=𝑘

VV𝑚−1𝑃 {𝜒
(V)

≥𝑚}

⋅(

𝑚

𝑘

)𝜆
𝑘

2𝜆
𝑚−𝑘

2 .

(54)

Similarly, for 1 ≤ 𝑗 ≤ 𝑁 − 1, we have

𝜂𝑗 ≜ 𝑝(0,0)(𝑗,1) = V ⋅

𝑗

∑

𝑘=0
𝑃 {𝜒
(V)

>𝑉; 𝑆
(2)
𝑘

≤𝑉< 𝑆
(2)
𝑘+1; 𝑆

(1)
𝑗−𝑘

≤𝜒
(𝑏)

< 𝑆
(1)
𝑗−𝑘+1} + V ⋅ 𝑃 {𝜒

(V)
=𝑉; 𝑆

(2)
𝑗

≤𝑉< 𝑆
(2)
𝑗+1} + V

⋅ 𝑃 {𝑆
(1)
𝑗

≤𝜒
(𝑏)

< 𝑆
(1)
𝑗+1} =

𝑗

∑

𝑘=0

∞

∑

𝑛=max{1,𝑘}
VV𝑛𝑃 {𝜒

(V)
> 𝑛}

⋅(

𝑛

𝑘

)𝜆
𝑘

2𝜆
𝑛−𝑘

2 ⋅

∞

∑

𝑚=max{1,𝑗−𝑘}
𝑔
(𝑏)

𝑚
(

𝑚

𝑗 − 𝑘

)𝜆
𝑗−𝑘

1 𝜆
𝑚−(𝑗−𝑘)

1

+

∞

∑

𝑚=max{1,𝑗}
VV𝑚𝑔(V)
𝑚

(

𝑚

𝑗

)𝜆
𝑗

2𝜆
𝑚−𝑗

2 + V

⋅

∞

∑

𝑚=𝑗

𝑔
(𝑏)

𝑚
(

𝑚

𝑗

)𝜆
𝑗

1𝜆
𝑚−𝑗

1 = V ⋅ 𝛾𝑗 + V ⋅ 𝛽𝑗, 1 ≤ 𝑗 ≤ 𝑁 − 2,

𝜂𝑁−1 ≜ 𝑝(0,0)(𝑁−1,1) = V ⋅

∞

∑

𝑘=𝑁−1
𝑃 {𝜒
(V)

>𝑉;

𝑘 customers arrive during the length of 𝜒
(𝑏)

+𝑉}+ V

⋅

∞

∑

𝑘=𝑁−1
𝑃 {𝜒
(V)

=𝑉;

𝑘 customers arrive during the length of 𝜒
(V)

} + V

⋅

∞

∑

𝑘=𝑁−1
𝑃 {𝑘 customers arrive during the length of 𝜒

(𝑏)
}

= V ⋅

𝑁−2
∑

𝑘=0

∞

∑

𝑟=𝑁−1−𝑘
𝑃 {𝜒
(V)

>𝑉; 𝑆
(2)
𝑘

≤𝑉< 𝑆
(2)
𝑘+1; 𝑆

(1)
𝑟

≤𝜒
(𝑏)

< 𝑆
(1)
𝑘+1} + V ⋅

∞

∑

𝑘=𝑁−1
𝑃 {𝜒
(V)

≥𝑉; 𝑆
(2)
𝑘

≤𝑉< 𝑆
(2)
𝑘+1} + V

⋅

∞

∑

𝑘=𝑁−1
𝑃 {𝑆
(1)
𝑘

≤𝜒
(𝑏)

< 𝑆
(1)
𝑘+1}

=

𝑁−2
∑

𝑘=0

∞

∑

𝑟=𝑁−1−𝑘

∞

∑

𝑛=max{1,𝑘}
VV𝑛𝑃 {𝜒

(V)
> 𝑛}(

𝑛

𝑘

)𝜆
𝑘

2𝜆
𝑛−𝑘

2

⋅

∞

∑

𝑚=𝑟

𝑔
(𝑏)

𝑚
(

𝑚

𝑟

)𝜆
𝑟

1𝜆
𝑚−𝑟

1 +

∞

∑

𝑘=𝑁−1

∞

∑

𝑚=𝑘

VV𝑚𝑃 {𝜒
(V)

≥𝑚}

⋅(

𝑚

𝑘

)𝜆
𝑘

2𝜆
𝑚−𝑘

2 + V ⋅

∞

∑

𝑘=𝑁−1

∞

∑

𝑚=𝑘

𝑔
(𝑏)

𝑚
(

𝑚

𝑘

)𝜆
𝑘

1𝜆
𝑚−𝑘

1 = V

⋅ 𝛾𝑁−1 + V ⋅ 𝛽𝑁−1.

(55)
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To obtain the TPM Q, some additional notations are
introduced as follows:

Y𝑖 = (𝜉𝑖, 𝜂𝑖) , 1 ≤ 𝑖 ≤ 𝑁 − 1;

Γ = (𝛿1, 𝜔)
𝑇
;

R𝑖 = (
𝜃𝑖 𝛾𝑖

0 𝛽𝑖

) , 0 ≤ 𝑖 ≤ 𝑁 − 1.

(56)

Using lexicographical sequence for the states, the struc-
ture ofQ is given by

Q =

(
(
(
(
(
(
(
(
(

(

𝛿0 Y1 ⋅ ⋅ ⋅ Y𝑁−4 Y𝑁−3 Y𝑁−2 Y𝑁−1
Γ R1 ⋅ ⋅ ⋅ R𝑁−4 R𝑁−3 R𝑁−2 R𝑁−1

R0 ⋅ ⋅ ⋅ R𝑁−5 R𝑁−4 R𝑁−3 R𝑁−2

d
.
.
.

.

.

.
.
.
.

.

.

.

R0 R1 R2 R3

R0 R1 R2

R0 R1

)
)
)
)
)
)
)
)
)

)

. (57)

Let P𝑑 = (𝑃
𝑑

0,0, 𝑃
𝑑

1,0, 𝑃
𝑑

1,1, . . . , 𝑃
𝑑

𝑁−1,0, 𝑃
𝑑

𝑁−1,1)
𝑇 be a

column vector of departure epoch probabilities; e =

(1, 1, . . . , 1)1×(2𝑁−1) is a row vector of dimension of 2𝑁 −

1; then we have the system linear equations {QTP𝑑 =

P𝑑; eP𝑑 = 1}, which can be directly converted into the
following equations:

(
QT

− I2𝑁−1

e
) ⋅P
𝑑
= (

O(2𝑁−1)×1
1

) , (58)

where I2𝑁−1 is an identity square matrix with (2𝑁 − 1)
dimensions and O(2𝑁−1)×1 is a column vector with 2𝑁 − 1
dimensions and all of its’ entries are equal to zero.

Subsequently, the queue-length probabilities at depar-
ture epoch, that is, P𝑑, are obtained by using software of
MATLAB. Moreover, we finally work out the queue-length
distribution at arbitrary epoch.

3.3. Steady State Queue Length at Other Epochs. To find the
queue-length distributions at a potential arrival epoch 𝑛

−,
prearrival epoch, arbitrary epoch 𝑛, and outside observer’s
observation epoch, we define the following additional nota-
tions.

𝑃
−

𝑗,0 or𝑃
−

𝑗,1 is the steady state probability of 𝑗 customers
waiting in system at an arbitrary epoch 𝑛

− during a
working vacation or normal busy period.

𝑃
(𝑎)

𝑗,0 (𝑠
−
) or 𝑃

(𝑎)

𝑗,1 (𝑠
−
) is the transient probability of 𝑗

customers waiting in system at a prearrival epoch 𝑠
−

during a working vacation or normal busy period:

𝑃
(𝑎)

𝑗,0 ≜ lim
𝑠→∞

𝑃
(𝑎)

𝑗,0 (𝑠
−
) , (59)

𝑃
(𝑎)

𝑗,1 ≜ lim
𝑠→∞

𝑃
(𝑎)

𝑗,1 (𝑠
−
) . (60)

𝑃
(𝑜)

𝑗,0 or 𝑃
(𝑜)

𝑗,1 is the steady state probability of 𝑗 cus-
tomers waiting in system at an outside observer’s
observation epoch during a working vacation or
normal busy period.

𝑃
(𝑒)

𝑗,0 or 𝑃
(𝑒)

𝑗,1 is the steady state probability of 𝑗 cus-
tomers waiting in system at an arbitrary epoch 𝑛

during a working vacation or normal busy period.

From Figure 1, it is clear that

𝑃
(𝑜)

𝑗,0 = 𝑃
−

𝑗,0 = 𝑃𝑗,0, 0 ≤ 𝑗 ≤ 𝑁,

𝑃
(𝑜)

𝑗,1 = 𝑃
−

𝑗,1 = 𝑃𝑗,1, 0 ≤ 𝑗 ≤ 𝑁.

(61)

The prearrival epoch probabilities are determined by the
following relations:

𝑃
(𝑎)

𝑗,0 = lim
𝑠→∞

𝑃
(𝑎)

𝑗,0 (𝑠
−
) = lim
𝑠→∞

𝑃 {𝑁 (𝑠
−
) = 𝑗; 𝜂 (𝑠

−
) = 0 | A customer arrives in time interval (𝑠

−
, 𝑠)}

= lim
𝑠→∞

𝑃 {𝑁 (𝑠
−
) = 𝑗; 𝜂 (𝑠

−
) = 0; A customer arrives in time interval (𝑠

−
, 𝑠)}

𝑃 {A customer arrives in time interval (𝑠−, 𝑠)}
=

𝜆2𝑃𝑗,0

𝜆2 ∑
𝑁

𝑗=0 𝑃𝑗,0 + 𝜆1 ∑
𝑁

𝑗=1 𝑃𝑗,1
,

0 ≤ 𝑗 ≤ 𝑁.

(62)

Similarly, we have

𝑃
(𝑎)

𝑗,1
=

𝜆1𝑃𝑗,1

𝜆2 ∑
𝑁

𝑗=0 𝑃𝑗,0 + 𝜆1 ∑
𝑁

𝑗=1 𝑃𝑗,1
, 1 ≤ 𝑗 ≤ 𝑁. (63)

We can derive the conclusion of 𝑃(𝑎)
𝑗,𝑖

= 𝑃𝑗,𝑖 from (62) and
(63) under the condition of 𝜆1 = 𝜆2; it means the GASTA

(geometric arrivals see time average) property does not hold
if 𝜆1 ̸= 𝜆2.

The relations between 𝑃
(𝑒)

𝑗,𝑖
and 𝑃𝑗,𝑖 can also be conducted

by considering the arbitrary epochs 𝑛 and 𝑛
− in Figure 1:

𝑃
(𝑒)

0,0 = 𝜆2𝑃0,0,

𝑃
(𝑒)

𝑗,0 = 𝜆2𝑃𝑗,0 +𝜆2𝑃𝑗−1,0, 1 ≤ 𝑗 ≤ 𝑁 − 1,
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𝑃
(𝑒)

𝑁,0 = 𝑃𝑁,0 +𝜆2𝑃𝑁−1,0,

𝑃
(𝑒)

1,1 = 𝜆1𝑃1,1,

𝑃
(𝑒)

𝑗,1 = 𝜆1𝑃𝑗,1 +𝜆1𝑃𝑗−1,1, 2 ≤ 𝑗 ≤ 𝑁 − 1,

𝑃
(𝑒)

𝑁,1 = 𝑃𝑁,1 +𝜆1𝑃𝑁−1,1.

(64)

Thus the arbitrary epoch (𝑛) probabilities are determined
by (64).

4. Performance Evaluation

Performance measures of the queueing system can easily be
obtained based on the achieved queue-length distribution in
Section 3.

4.1. Blocking Probability. Blocking probability of customer
(denoted by 𝑃loss) is pretty important in a finite buffer
queueing system:

𝑃loss = 𝑃
(𝑎)

𝑁,0 +𝑃
(𝑎)

𝑁,1, (65)

where 𝑃
(𝑎)

𝑁,0 and 𝑃
(𝑎)

𝑁,1 are given by (62) and (63), respectively.

4.2. Average Queue Length. From (61), three sorts of average
queue length are presented, respectively, as follows:

(1) Average queue length is as follows:

𝑁
(𝑜)

=

𝑁

∑

𝑗=1
𝑗𝑃𝑗,0 +

𝑁

∑

𝑗=1
𝑗𝑃𝑗,1. (66)

(2) Average queue length during working vacation is as
follows:

𝑁
(𝑜)

1 =

𝑁

∑

𝑗=1
𝑗𝑃𝑗,0. (67)

(3)Average queue length during normal busy period is as
follows:

𝑁
(𝑜)

2 =

𝑁

∑

𝑗=1
𝑗𝑃𝑗,1. (68)

4.3. Average Sojourn Time for a Customer. Denoting the
average sojourn time by 𝑆 and using Little’s rule, we have

𝑆 =
𝑁
(𝑜)

𝜆𝑒

, (69)

where𝜆𝑒 = (1−𝑃loss)(𝜆2 ∑
𝑁

𝑗=0 𝑃𝑗,0+𝜆1 ∑
𝑁

𝑗=1 𝑃𝑗,1) is the effective
average arrival rate.

5. Discussion of Numerical
Performance Characteristics

In this section, some numerical conclusions in the form of
table or graph are reported. Moreover, using the MATLAB

Table 1: System queue length distribution at various epochs when
service time is geometric with 𝛼1 = 4, 𝛼2 = 7.1429, 𝜆1 = 0.22,
𝜆2 = 0.12, ] = 0.025, and 𝑁 = 15.

𝑗 𝑃
(𝑜)

𝑗,0
𝑃
(𝑜)

𝑗,1 𝑃
(𝑎)

𝑗,0
𝑃
(𝑎)

𝑗,1
𝑃
(𝑒)

𝑗,0
𝑃
(𝑒)

𝑗,1

0 0.1925 0.1347 0.1694
1 0.1267 0.0384 0.0886 0.0492 0.1346 0.0300
2 0.0717 0.0543 0.0502 0.0696 0.0783 0.0508
3 0.0406 0.0583 0.0284 0.0748 0.0443 0.0574
4 0.0230 0.0564 0.0161 0.0723 0.0251 0.0568
5 0.0130 0.0517 0.0091 0.0663 0.0142 0.0527
6 0.0073 0.0461 0.0051 0.0591 0.0080 0.0473
7 0.0041 0.0404 0.0029 0.0518 0.0045 0.0417
8 0.0023 0.0350 0.0016 0.0449 0.0025 0.0362
9 0.0013 0.0301 0.0009 0.0386 0.0014 0.0312
10 0.0008 0.0258 0.0006 0.0331 0.0009 0.0267
11 0.0004 0.0221 0.0003 0.0283 0.0005 0.0230
12 0.0003 0.0189 0.0002 0.0242 0.0003 0.0200
13 0.0002 0.0162 0.0001 0.0208 0.0002 0.0168
14 0.0001 0.0138 0.0000 0.0177 0.0001 0.0143
15 0.0001 0.0081 0.0000 0.0104 0.0001 0.0111
𝑁
(𝑜)

= 3.8425, 𝑁(𝑜)
1

= 0.6730, 𝑁(𝑜)
2

= 3.1695, 𝑃loss = 0.0105,
𝑆 = 22.397.

software package, the effects of some parameters on the
blocking probability and average sojourn time are also inves-
tigated.

5.1. Numerical Illustration of the System Performance
Measures. To illustrate the effectiveness of the queue-length
solutions obtained in Section 3, the numerical results of
queue-length distributions under some certain cases are
given in Tables 1 and 2. And, the corresponding blocking
probability, average queue length, and average sojourn time
are given at the bottom of the tables. At the same time, the
queue-length distributions in the form of graphs are also
demonstrated in Figures 2(a) and 2(b).

5.2. Sensitivity Analysis. Figures 3(a) and 3(b) give the
numerical illustrations of the effects of 𝑁 on the blocking
probability and average sojourn time under three kinds of
service time distributions; that is, (1) service time is deter-
ministic: {𝑔(𝑏)4 = 1}, {𝑔(V)6 = 1} with other parameters: 𝜆1 =

0.23, 𝜆2 = 0.15, and V = 0.008; (2) service time is geometric
with average service times: 𝛼1 = 3.3333, 𝛼2 = 5, and other
parameters: 𝜆1 = 0.2, 𝜆2 = 0.1, V = 0.008; (3) service time
is arbitrary: {𝑔(𝑏)3 = 0.01, 𝑔(𝑏)4 = 0.05, 𝑔(𝑏)5 = 0.1, 𝑔(𝑏)6 = 0.2,
𝑔
(𝑏)

7 = 0.4, 𝑔(𝑏)8 = 0.24}; {𝑔(V)4 = 0.15, 𝑔(V)6 = 0.25, 𝑔(V)8 = 0.3,
𝑔
(V)
9 = 0.25, 𝑔(V)10 = 0.05} with other parameters: 𝜆1 = 0.136,

𝜆2 = 0.13, and V = 0.008. It can be seen from Figures 3(a) and
3(b) that, for each case, the blocking probability and average
sojourn time both decrease as system capacity 𝑁 increases
and both of them become stable with increasing 𝑁.

Figures 4(a) and 4(b) give the numerical illustrations of
the effects of 𝜆2 on the blocking probability and average
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Figure 2: (a) Steady queue length distributions at different epochs. (b) Steady queue length distributions at different epochs.

Table 2: System queue length distribution at various epochs when
service time is arbitrary with {𝑔

(𝑏)

3 = 0.01, 𝑔(𝑏)4 = 0.05, 𝑔(𝑏)5 =

0.1, 𝑔(𝑏)6 = 0.2, 𝑔(𝑏)7 = 0.4, 𝑔(𝑏)8 = 0.24}, {𝑔(V)4 = 0.15, 𝑔(V)6 = 0.25, 𝑔(V)8 =

0.3, 𝑔(V)9 = 0.25, 𝑔(V)10 = 0.05}, and 𝜆1 = 0.136, 𝜆2 = 0.13, V = 0.008,
and 𝑁 = 15.

𝑗 𝑃
(𝑜)

𝑗,0
𝑃
(𝑜)

𝑗,1 𝑃
(𝑎)

𝑗,0
𝑃
(𝑎)

𝑗,1
𝑃
(𝑒)

𝑗,0
𝑃
(𝑒)

𝑗,1

0 0.0811 0.0790 0.0706
1 0.1008 0.0334 0.0982 0.0340 0.0982 0.0289
2 0.0819 0.0558 0.0798 0.0569 0.0844 0.0528
3 0.0567 0.0652 0.0553 0.0665 0.0600 0.0639
4 0.0377 0.0659 0.0367 0.0672 0.0402 0.0658
5 0.0250 0.0618 0.0244 0.0630 0.0267 0.0624
6 0.0166 0.0554 0.0162 0.0565 0.0177 0.0563
7 0.0110 0.0483 0.0107 0.0492 0.0117 0.0493
8 0.0073 0.0412 0.0071 0.0420 0.0078 0.0422
9 0.0049 0.0347 0.0048 0.0354 0.0052 0.0356
10 0.0033 0.0289 0.0032 0.0295 0.0035 0.0297
11 0.0022 0.0238 0.0021 0.0243 0.0023 0.0245
12 0.0015 0.0195 0.0015 0.0199 0.0016 0.0201
13 0.0011 0.0159 0.0011 0.0162 0.0012 0.0164
14 0.0008 0.0129 0.0008 0.0132 0.0008 0.0133
15 0.0003 0.0051 0.0003 0.0052 0.0004 0.0069
𝑁
(𝑜)

= 4.569, 𝑁(𝑜)
1

= 1.0948, 𝑁(𝑜)
2

= 3.4742, 𝑃loss = 0.0055,
𝑆 = 34.249.

sojourn time under three kinds of service time distributions;
that is, (1) service time is deterministic: {𝑔(𝑏)4 = 1}, {𝑔(V)6 = 1}
with other parameters: 𝜆1 = 0.24, 𝑁 = 15, and V = 0.008;

(2) service time is geometric with average service times: 𝛼1 =

2, 𝛼2 = 3.3333 and other parameters: 𝜆1 = 0.46, 𝑁 = 15, V =

0.008; (3) service time is arbitrary: {𝑔(𝑏)3 = 0.01, 𝑔(𝑏)4 = 0.05,
𝑔
(𝑏)

5 = 0.1, 𝑔(𝑏)6 = 0.2, 𝑔(𝑏)7 = 0.4, 𝑔(𝑏)8 = 0.24}; {𝑔(V)4 = 0.15,
𝑔
(V)
6 = 0.25, 𝑔

(V)
8 = 0.3, 𝑔

(V)
9 = 0.25, 𝑔

(V)
10 = 0.05} with

other parameters: 𝜆1 = 0.136 and V = 0.008. The three
curves in Figure 4(a) or Figure 4(b) exhibit an increasing
shape. We observe from Figure 4(a) that, for each case, the
blocking probability becomes sensitive after a certain arrival
rate during working vacation (𝜆2) and seems to tend to be
unstable as 𝜆2 → 𝜆1. For three cases in Figure 4(b), we can
see that the average sojourn time gets sensitive after a certain
value of 𝜆2 and likely tends to be stable as 𝜆2 → 𝜆1.

6. A Numerical Example

To display the application of the abovemodels, a real problem
concerning express logistics services is studied. In an express
logistics service center with the maximum capacity of 𝑁 (in
other words, if the number of express parcels accumulates to
𝑁 the new arriving express parcels will be delivered to other
service centers), the express parcels arrive in distribution
center according to a Poisson process. The arrival rate of
the express parcels depends on the state of the server in the
distribution center. When the server is on duty, the arrival
rate is 𝜆1. On the other hand, the rate is 𝜆2 < 𝜆1 if the server
is on vacation. In this service center, the semivacation policy
is adopted: after dealing with all the waiting express parcels,
the server takes vacation. To improve the service efficiency,
the manager requires the server to keep on providing service
during his vacation with a low service rate. When returning
from a vacation and finding any express parcels waiting for
service, the server returns the low service rate to a normal
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Figure 3: (a) Effect of 𝑁 on blocking probability under different service time distributions. (b) Effect of 𝑁 on average sojourn time under
different service time distributions.
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Figure 4: (a) Effect of 𝜆2 on blocking probability under different service time distributions. (b) Effect of 𝜆2 on average sojourn time under
different service time distributions.

level. Otherwise, the server takes the next vacation. The
length of a working vacation 𝑉 is geometrically distributed
with parameter V. The service time for each parcel during
normal busy period is an arbitrarily distributed variable with
mean value of 𝛼1. The service time for each parcel during
working vacation is also an arbitrarily distributed variable
with mean value of 𝛼2.

Thus, this express logistics service center can be modeled
by the finite-capacity 𝐺𝑒𝑜/𝐺/1/𝑁 queueing system with
working vacation and different input rate studied in this
paper. To realize precise control, the manager considers the
following cost elements:

𝑑1 ≡ fixed possessing fee per unit time for a express
parcel in center;
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𝑑2(𝑗) ≡ unit time fee for possessing 𝑗 (1 ≤ 𝑗 ≤ 𝑁)

express parcels during working vacation;

𝑑3(𝑗) ≡ unit time fee for possessing 𝑗 (1 ≤ 𝑗 ≤ 𝑁)

express parcels during normal busy period;

𝑑4 ≡ fixed service fee per unit time during working
vacation;

𝑑5 ≡ fixed service fee per unit time during normal
busy period.

Based on the cost elements defined above, the optimal cost
problem can be modeled mathematically by

min
𝛼2

: ℎ (𝛼2) = 𝑑1 ⋅ 𝑆 +

𝑁

∑

𝑗=1
𝑑2 (𝑗) ⋅ 𝑃𝑗,0 +

𝑁

∑

𝑗=1
𝑑3 (𝑗) ⋅ 𝑃𝑗,1

+
𝑑4
𝛼2

+
𝑑5
𝛼1

,

(70)

where 𝑃𝑗,0, 𝑃𝑗,1, and 𝑆 are determined by (45), (46), and (69),
respectively.

Regarding the service during working vacations as a piece
of additional work for the server, the proper service rate
during that time is a critical decision variable for themanager
to arrange the optimal operation.The key task of themanager
is to determine the appropriate value of service rate during
working vacation (denoted by 𝛼

∗

2 ) in (70) to minimize the
operating cost.

One may note that it would be pretty difficult to solve the
optimum problem (70) by using analytic method because of
the highly nonlinear and complex of the given cost function.
Instead, we apply the parabolic method to deal with it. Based
on the introduction of parabolic method (see [19]), we design
the following steps.

Step 1 (initialization). Choose a starting 3-point pattern
{𝑦
(𝑙)
, 𝑦
(𝑚)

, 𝑦
(𝑟)

} along with a stopping tolerance 𝜀 = 10−5 and
initialize the iteration counter 𝑖 = 0. Substitute these initial
values into the following approximate formula

𝑦
(𝑞)

=
1
2

[(𝑦
(𝑚)

)
2
− (𝑦
(𝑟)

)
2
] ℎ (𝑦

(𝑙)
) + [(𝑦

(𝑟)
)
2
− (𝑦
(𝑙)
)
2
] ℎ (𝑦

(𝑚)
) + [(𝑦

(𝑙)
)
2
− (𝑦
(𝑚)

)
2
] ℎ (𝑦

(𝑟)
)

[𝑦(𝑚) − 𝑦(𝑟)] ℎ (𝑦(𝑙)) + [𝑦(𝑟) − 𝑦(𝑙)] ℎ (𝑦(𝑚)) + [𝑦(𝑙) − 𝑦(𝑚)] ℎ (𝑦(𝑟))
. (71)

Step 2 (stopping). If |𝑦
(𝑞)

− 𝑦
(𝑚)

| ≤ 𝜀, stop and report
approximate optimum solution 𝑦

(𝑚).

Step 3 (quadratic fit). Compute a quadratic fit optimum 𝑦
(𝑞)

according to the formulae (70) and (71). Then if 𝑦(𝑞) ≤ 𝑦
(𝑚),

go to Step 4, and if 𝑦(𝑞) > 𝑦
(𝑚) go to Step 5.

Step 4 (left). If ℎ(𝑦
(𝑚)

) is superior to ℎ(𝑦
(𝑞)

) (less for a
minimize, greater for a maximize), then update 𝑦

(𝑞)
→ 𝑦
(𝑙).

Otherwise, replace 𝑦
(𝑚)

→ 𝑦
(𝑟), 𝑦(𝑞) → 𝑦

(𝑚). Either way,
advance 𝑖 = 𝑖 + 1 and return to Step 2.

Step 5 (right). If ℎ(𝑦
(𝑚)

) is superior to ℎ(𝑦
(𝑞)

) (less for a
minimize, greater for a maximize), then update 𝑦

(𝑞)
→ 𝑦
(𝑟).

Otherwise, replace 𝑦
(𝑚)

→ 𝑦
(𝑙), 𝑦(𝑞) → 𝑦

(𝑚). Either way,
advance 𝑖 = 𝑖 + 1 and return to Step 2.

It is assumed that the systems parameters are as follows.
(1) The input rates of express parcels during working

vacation and normal busy period are 𝜆2 = 0.3 and 𝜆1 = 0.38,
respectively.

(2) The working vacation time (𝑉) follows a geometric
distribution with parameter V = 0.08 and the capacity of
system is 𝑁 = 15.

(3) The service time during normal busy period is
arbitrarily distributed as {𝑔1 = 0.2, 𝑔2 = 0.4, 𝑔3 = 0.2,
𝑔4 = 0.1, 𝑔5 = 0.1}.

The other parameters in (70) are given as follows: 𝑑1 = 90,
𝑑2(𝑗) = 12 ⋅𝑗+ 5

√𝑗3, 𝑑3(𝑗) = 15 ⋅𝑗+ 3
√𝑗5, 𝑑4 = 1800, 𝑑5 = 2200.

So, the effect of service rate during working vacation period
(1/𝛼2) on the operating fee (ℎ(𝛼2)) is demonstrated in
Figure 5.

From Figure 5, choosing an initial 3-point pattern
(1/𝛼)(𝑙) = 0.05, (1/𝛼)(𝑚) = 0.1, (1/𝛼)(𝑟) = 0.15, and the
stopping tolerance 𝜀 = 10−5, it obtains the optimal value of
𝛼2 after three iterations: 𝛼∗2 = 10.5820 which leads to the
minimum expected operating fee: ℎ(𝛼∗2 ) = 2849.9146.

7. Conclusions

For the first time, we carry out an analysis of finite buffer
𝐺𝑒𝑜/𝐺(𝑀𝑊𝑉)/1/𝑁 queue with working vacations and dif-
ferent input rate. Using two kinds of classical analysis tech-
niques, we derive the queue-length solutions in the form of
formula at different epoches (given by Section 3). Through
this solution, we also obtain some important performance
characteristics (given by Section 4). Based on the queue-
length distribution, a state-dependent cost function is devel-
oped from a express logistics service center and optimally
analyzed in Section 6. This paper is a beginning study
for finite buffer 𝐺𝑒𝑜/𝐺/1/𝑁 queue with working vacation.
In the future, research topics such as 𝐺𝑒𝑜

𝑋
/𝐺/1/𝑁 with

batch arrivals, 𝐺𝑒𝑜/𝐺/1/𝑁 with Bernoulli-schedule working
vacation,𝐺𝑒𝑜/𝐺/1/𝑁with𝑁-policy, and so on can be studied
with the same analysis techniques.
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Figure 5: Effect of 1/𝛼2 on the operating cost per unit time.
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