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The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz,
Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate
the existence of fixed points of generalized 𝛼-admissible modular contractive mappings in modular metric spaces. As applications,
we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular
metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between
fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some
examples are provided here to illustrate the usability of the obtained results.

1. Introduction and Basic Definitions

Chistyakov introduced the notion of modular metric spaces
in [1, 2].Themain idea behind this new concept is the physical
interpretation of the modular. Informally speaking, whereas
a metric on a set represents nonnegative finite distances
between any two points of the set, a modular on a set
attributes a nonnegative (possibly, infinite valued) “field of
(generalized) velocities”: to each “time” 𝜆 > 0 the absolute
value of an average velocity 𝜔𝜆(𝑥, 𝑦) is associated in such a
way that in order to cover the “distance” between points𝑥, 𝑦 ∈
𝑋 it takes time 𝜆 to move from 𝑥 to 𝑦 with velocity 𝜔𝜆(𝑥, 𝑦).
But the way we approached the concept of modular metric
spaces is different. Indeed we look at these spaces as the
nonlinear version of the classical modular spaces introduced
by Nakano [3] on vector spaces and modular function spaces
introduced by Musielak [4] and Orlicz [5, 6].

For the study of electrorheological fluids (for instance
lithiumpolymethacrylate), modelingwith sufficient accuracy
using classical Lebesgue and Sobolev spaces, 𝐿𝑝 and 𝑊

1,𝑝,
where 𝑝 is a fixed constant is not adequate, but rather the
exponent 𝑝 should be able to vary [7]. One of the most
interesting problems in this setting is the famous Dirichlet

energy problem [8, 9]. The classical technique used so far in
studying this problem is to convert the energy functional, nat-
urally defined by a modular, to a convoluted and complicated
problem which involves a norm (the Luxemburg norm). The
modular metric approach is more natural and has not been
used extensively. In recent years, there was a strong interest
to study the fixed point property in modular function spaces
after the first paper [10] was published in 1990. For more on
metric fixed point theory, the reader may consult the book
[11] and for modular function spaces [12, 13].

Let 𝑋 be a nonempty set. Throughout this paper for a
function 𝜔 : (0,∞) × 𝑋 × 𝑋 → [0,∞], we will write

𝜔𝜆 (𝑥, 𝑦) = 𝜔 (𝜆, 𝑥, 𝑦) , (1)

for all 𝜆 > 0 and 𝑥, 𝑦 ∈ 𝑋.

Definition 1 (see [1, 2]). A function 𝜔 : (0,∞) × 𝑋 × 𝑋 →

[0,∞] is said to be modular metric on 𝑋 if it satisfies the
following axioms:

(i) 𝑥 = 𝑦 if and only if 𝜔𝜆(𝑥, 𝑦) = 0, for all 𝜆 > 0;
(ii) 𝜔𝜆(𝑥, 𝑦) = 𝜔𝜆(𝑦, 𝑥), for all 𝜆 > 0, and 𝑥, 𝑦 ∈ 𝑋;
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(iii) 𝜔𝜆+𝜇(𝑥, 𝑦) ≤ 𝜔𝜆(𝑥, 𝑧) + 𝜔𝜇(𝑧, 𝑦), for all 𝜆, 𝜇 > 0 and
𝑥, 𝑦, 𝑧 ∈ 𝑋.

If instead of (i), we have only the condition (i)

𝜔𝜆 (𝑥, 𝑥) = 0, ∀𝜆 > 0, 𝑥 ∈ 𝑋, (2)

then 𝜔 is said to be a pseudomodular (metric) on 𝑋. A
modular metric 𝜔 on 𝑋 is said to be regular if the following
weaker version of (i) is satisfied:

𝑥 = 𝑦 iff 𝜔𝜆 (𝑥, 𝑦) = 0, for some 𝜆 > 0. (3)

Finally, 𝜔 is said to be convex if for 𝜆, 𝜇 > 0 and 𝑥, 𝑦, 𝑧 ∈ 𝑋,
it satisfies the inequality

𝜔𝜆+𝜇 (𝑥, 𝑦) ≤

𝜆

𝜆 + 𝜇

𝜔𝜆 (𝑥, 𝑧) +

𝜇

𝜆 + 𝜇

𝜔𝜇 (𝑧, 𝑦) . (4)

Note that for a metric pseudomodular 𝜔 on a set 𝑋 and any
𝑥, 𝑦 ∈ 𝑋, the function 𝜆 → 𝜔𝜆(𝑥, 𝑦) is nonincreasing on
(0,∞). Indeed, if 0 < 𝜇 < 𝜆, then

𝜔𝜆 (𝑥, 𝑦) ≤ 𝜔𝜆−𝜇 (𝑥, 𝑥) + 𝜔𝜇 (𝑥, 𝑦) = 𝜔𝜇 (𝑥, 𝑦) . (5)

Following example presented by Abdou and Khamsi [14]
is an important motivation of the concept of modular metric
spaces.

Example 2. Let 𝑋 be a nonempty set and Σ a nontrivial 𝜎-
algebra of subsets of 𝑋. Let P be a 𝛿-ring of subsets of 𝑋,
such that 𝐸 ∩ 𝐴 ∈ P for any 𝐸 ∈ P and 𝐴 ∈ Σ. Let
us assume that there exists an increasing sequence of sets
𝐾𝑛 ∈ P such that𝑋 = ⋃𝐾𝑛. ByEwe denote the linear space
of all simple functions with supports fromP. ByM∞ we will
denote the space of all extended measurable functions; that
is, all functions 𝑓 : 𝑋 → [−∞,∞] such that there exists a
sequence {𝑔𝑛} ⊂ E, |𝑔𝑛| ≤ |𝑓|, and 𝑔𝑛(𝑥) → 𝑓(𝑥) for all
𝑥 ∈ 𝑋. By 1𝐴 we denote the characteristic function of the set
𝐴. Let 𝜌 : M∞ → [0,∞] be a nontrivial, convex, and even
function. We say that 𝜌 is a regular convex function pseudo-
modular if

(i) 𝜌(0) = 0;
(ii) 𝜌 is monotone; that is, |𝑓(𝑥)| ≤ |𝑔(𝑥)| for all 𝑥 ∈ 𝑋

implies 𝜌(𝑓) ≤ 𝜌(𝑔), where 𝑓, 𝑔 ∈ M∞;
(iii) 𝜌 is orthogonally subadditive; that is, 𝜌(𝑓1𝐴∪𝐵) ≤

𝜌(𝑓1𝐴) + 𝜌(𝑓1𝐵) for any 𝐴, 𝐵 ∈ Σ such that 𝐴 ∩

𝐵 ̸= 0, 𝑓 ∈ M;
(iv) 𝜌 has the Fatou property; that is, |𝑓𝑛(𝑥)| ↑ |𝑓(𝑥)| for

all 𝑥 ∈ 𝑋 implies 𝜌(𝑓𝑛) ↑ 𝜌(𝑓), where 𝑓 ∈ M∞;
(v) 𝜌 is order continuous in E; that is, 𝑔𝑛 ∈ E and

|𝑔𝑛(𝑥)| ↓ 0 implies 𝜌(𝑔𝑛) ↓ 0.

Similarly, as in the case of measure spaces, we say that a set
𝐴 ∈ Σ is 𝜌-null if 𝜌(𝑔1𝐴) = 0 for every 𝑔 ∈ E. We say
that a property holds 𝜌-almost everywhere if the exceptional
set is 𝜌-null. As usual we identify any pair of measurable sets
whose symmetric difference is 𝜌-null as well as any pair of

measurable functions differing only on a 𝜌-null set. With this
in mind we define

M (𝑋, Σ,P, 𝜌) = {𝑓 ∈ M∞;




𝑓 (𝑥)





< ∞𝜌-a.e} , (6)

where each𝑓 ∈ M(𝑋, Σ,P, 𝜌) is actually an equivalence class
of functions equal to𝜌-a.e. rather than an individual function.
Where no confusion exists we will write M instead of
M(𝑋, Σ,P, 𝜌). Let 𝜌 be a regular function pseudomodular.

(a) We say that 𝜌 is a regular function semimodular if
𝜌(𝛼𝑓) = 0 for every 𝛼 > 0 implies 𝑓 = 0 𝜌-a.e.

(b) We say that𝜌 is a regular functionmodular if𝜌(𝑓) = 0
implies 𝑓 = 0 𝜌-a.e.

The class of all nonzero regular convex function modulars
defined on 𝑋 will be denoted by R. Let us denote 𝜌(𝑓, 𝐸) =
𝜌(𝑓1𝐸) for 𝑓 ∈ M, 𝐸 ∈ Σ. It is easy to prove that 𝜌(𝑓, 𝐸) is
a function pseudomodular in the sense of Definition 2.1.1 in
[13] (see also [15, 16]). Let 𝜌 be a convex function modular.

(a) The associated modular function space is the vector
space 𝐿𝜌(𝑋, Σ), or briefly 𝐿𝜌, defined by

𝐿𝜌 = {𝑓 ∈ M; 𝜌 (𝜆𝑓) → 0 as 𝜆 → 0} . (7)

(b) The following formula defines a norm in 𝐿𝜌 (fre-
quently called Luxemburg norm):





𝑓



𝜌
= inf {𝛼 > 0; 𝜌 (

𝑓

𝛼

) ≤ 1} . (8)

A modular function space furnishes a wonderful example of
a modular metric space. Indeed, let 𝐿𝜌 be amodular function
space. Define the function modular 𝜔 by

𝜔𝜆 (𝑓, 𝑔) = 𝜌(

𝑓 − 𝑔

𝜆

) (9)

for all 𝜆 > 0, and 𝑓, 𝑔 ∈ 𝐿𝜌. Then 𝜔 is a modular metric on
𝐿𝜌. Note that 𝜔 is convex if and only if 𝜌 is convex. Moreover
we have





𝑓 − 𝑔




𝜌
= 𝑑
∗

𝜔
(𝑓, 𝑔) , (10)

for any 𝑓, 𝑔 ∈ 𝐿𝜌.

Other easy examples may be found in [1, 2].

Definition 3. Let𝑋𝜔 be a modular metric space.

(1) The sequence (𝑥𝑛)𝑛∈N in𝑋𝜔 is said to be𝜔-convergent
to𝑥 ∈ 𝑋𝜔 if and only if for each𝜆 > 0,𝜔𝜆(𝑥𝑛, 𝑥) → 0,
as 𝑛 → ∞. 𝑥 will be called the 𝜔-limit of (𝑥𝑛).

(2) The sequence (𝑥𝑛)𝑛∈N in 𝑋𝜔 is said to be 𝜔-Cauchy if
for each 𝜆 > 0, 𝜔𝜆(𝑥𝑚, 𝑥𝑛) → 0, as𝑚, 𝑛 → ∞.

(3) A subset𝑀 of𝑋𝜔 is said to be 𝜔-closed if the 𝜔-limit
of a 𝜔-convergent sequence of 𝑀 always belongs to
𝑀.
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(4) A subset𝑀 of 𝑋𝜔 is said to be 𝜔-complete if any 𝜔-
Cauchy sequence in 𝑀 is a 𝜔-convergent sequence
and its 𝜔-limit is in𝑀.

(5) A subset𝑀 of𝑋𝜔 is said to be 𝜔-bounded if we have

𝛿𝜔 (𝑀) = sup {𝜔𝜆 (𝑥, 𝑦) ; 𝑥, 𝑦 ∈ 𝑀} < ∞. (11)

In 2012, Samet et al. [17] introduced the concepts of 𝛼-
𝜓-contractive and 𝛼-admissible mappings and established
various fixed point theorems for such mappings defined on
complete metric spaces. Afterwards Salimi et al. [18] and
Hussain et al. [19–21]modified the notions of𝛼-𝜓-contractive
and 𝛼-admissible mappings and established certain fixed
point theorems.

Definition 4 (see [17]). Let 𝑇 be self-mapping on 𝑋 and 𝛼 :

𝑋×𝑋 → [0, +∞) a function. One says that 𝑇 is an 𝛼-admis-
sible mapping if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦) ≥ 1. (12)

Definition 5 (see [18]). Let 𝑇 be self-mapping on𝑋 and 𝛼, 𝜂 :
𝑋 × 𝑋 → [0, +∞) two functions. One says that 𝑇 is an 𝛼-
admissible mapping with respect to 𝜂 if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 𝜂 (𝑥, 𝑦) ⇒ 𝛼 (𝑇𝑥, 𝑇𝑦)

≥ 𝜂 (𝑇𝑥, 𝑇𝑦) .

(13)

Note that if we take 𝜂(𝑥, 𝑦) = 1 then this definition reduces
to Definition 4. Also, if we take, 𝛼(𝑥, 𝑦) = 1 then we say that
𝑇 is an 𝜂-subadmissible mapping.

Definition 6 (see [20]). Let (𝑋, 𝑑) be a metric space. Let 𝛼, 𝜂 :
𝑋 × 𝑋 → [0,∞) and 𝑇 : 𝑋 → 𝑋 be functions. One says 𝑇
is an 𝛼-𝜂-continuous mapping on (𝑋, 𝑑), if, for given 𝑥 ∈ 𝑋

and sequence {𝑥𝑛} with

𝑥𝑛 → 𝑥 as 𝑛 → ∞, 𝛼 (𝑥𝑛, 𝑥𝑛+1) ≥ 𝜂 (𝑥𝑛, 𝑥𝑛+1)

∀𝑛 ∈ N ⇒ 𝑇𝑥𝑛 → 𝑇𝑥.

(14)

Example 7 (see [20]). Let 𝑋 = [0,∞) and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|

be a metric on 𝑋. Assume 𝑇 : 𝑋 → 𝑋 and 𝛼, 𝜂 : 𝑋 × 𝑋 →

[0, +∞) are defined by

𝑇𝑥 = {

𝑥
5
, if 𝑥 ∈ [0, 1] ,

sin𝜋𝑥 + 2, if (1,∞) ,

𝛼 (𝑥, 𝑦) = {

𝑥
2
+ 𝑦
2
+ 1, if 𝑥, 𝑦 ∈ [0, 1] ,

0, otherwise

(15)

and 𝜂(𝑥, 𝑦) = 𝑥
2. Clearly, 𝑇 is not continuous, but 𝑇 is 𝛼-𝜂-

continuous on (𝑋, 𝑑).

A mapping 𝑇 : 𝑋 → 𝑋 is called orbitally continuous at
𝑝 ∈ 𝑋 if lim𝑛→∞𝑇

𝑛
𝑥 = 𝑝 implies that lim𝑛→∞𝑇𝑇

𝑛
𝑥 = 𝑇𝑝.

The mapping 𝑇 is orbitally continuous on 𝑋 if 𝑇 is orbitally
continuous for all 𝑝 ∈ 𝑋.

Remark 8 (see [20]). Let 𝑇 : 𝑋 → 𝑋 be self-mapping on an
orbitally 𝑇-complete metric space 𝑋. Define 𝛼, 𝜂 : 𝑋 × 𝑋 →

[0, +∞) by

𝛼 (𝑥, 𝑦) = {

3, if 𝑥, 𝑦 ∈ 𝑂 (𝑤)
0, otherwise,

𝜂 (𝑥, 𝑦) = 1, (16)

where 𝑂(𝑤) is an orbit of a point 𝑤 ∈ 𝑋. If 𝑇 : 𝑋 → 𝑋 is an
orbitally continuous map on (𝑋, 𝑑), then 𝑇 is 𝛼-𝜂-continuous
on (𝑋, 𝑑).

In this paper, we investigate existence and uniqueness of
fixed points of generalized 𝛼-admissible modular contractive
mappings in modular metric spaces. As applications, we
derive some new fixed point theorems in partially ordered
modular metric spaces, Suzuki type fixed point theorems in
modular metric spaces and new fixed point theorems for
integral contractions. At the end, we develop an important
relation between fuzzy metric and modular metric and
deduce certain new fixed point results in triangular fuzzy
metric spaces. Moreover, some examples are provided here
to illustrate the usability of the obtained results.

2. Fixed Point Results for
Implicit Contractions

Let us first start this section with a definition of a family of
functions.

Definition 9. Assume that ΔH denotes the collection of all
continuous functionsH : R+

6

→ R satisfying the following.

(H1) H is increasing in its 1th variable and nonincreasing
in its 5th variable.

(H2) if 𝑢, V ∈ R+ with 𝑢, V > 0 andH(𝑢, V, V, 𝑢, V+𝑢, 0) ≤ 0,
then, there exists 𝜓 ∈ Ψ such that

𝑢 ≤ 𝜓 (V) . (17)

Notice that here we denote with Ψ the family of non-
decreasing functions 𝜓 : [0, +∞) → [0, +∞) such that
∑
∞

𝑛=1
𝜓
𝑛
(𝑡) < +∞ for all 𝑡 > 0, where 𝜓𝑛 is the 𝑛th iterate

of 𝜓.

Example 10. Let H(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6) = 𝑡1 − 𝜓(max{𝑡2, (𝑡3 +
𝑡4)/2, (𝑡5 + 𝑡6)/2}), where 𝜓 ∈ Ψ; thenH ∈ ΔH.

Example 11. Let H(𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6) = 𝑡1 − 𝜓(max{𝑡2, (1 +
𝑡3)𝑡4/(1 + 𝑡2)}), where 𝜓 ∈ Ψ; thenH ∈ ΔH.

Theorem 12. Let 𝑋𝜔 be a complete modular metric space and
𝑇 : 𝑋𝜔 → 𝑋𝜔 self-mapping satisfying the following assertions:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;

(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0);

(iii) 𝑇 is an 𝛼-𝜂-continuous function;
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(iv) assume that there exists H ∈ ΔH such that for all
𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦) we have

H (𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦) ,

𝜔2𝜆/𝑙 (𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑥)) ≤ 0,

(18)

where 0 < 𝑙 < 𝑐.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦) andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0,
then 𝑇 has a unique fixed point.

Proof. Let 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0). For
𝑥0 ∈ 𝑋, we define the sequence {𝑥𝑛} by 𝑥𝑛 = 𝑇

𝑛
𝑥0 = 𝑇𝑥𝑛.

Now since 𝑇 is an 𝛼-admissible mapping with respect to 𝜂
then 𝛼(𝑥0, 𝑥1) = 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0) = 𝜂(𝑥0, 𝑥1). By
continuing this process we have

𝜂 (𝑥𝑛−1, 𝑇𝑥𝑛−1) = 𝜂 (𝑥𝑛−1, 𝑥𝑛) ≤ 𝛼 (𝑥𝑛−1, 𝑥𝑛) (19)

for all 𝑛 ∈ N. Also, let there exists 𝑛0 ∈ 𝑋 such that 𝑥𝑛0 =
𝑥𝑛0+1

. Then 𝑥𝑛0
is fixed point of 𝑇 and we have nothing to

prove. Hence, we assume 𝑥𝑛 ̸= 𝑥𝑛+1 for all 𝑛 ∈ N ∪ {0}. Now
by taking 𝑥 = 𝑥𝑛−1 and 𝑦 = 𝑥𝑛 in (iv) we get

H (𝜔𝜆/𝑐 (𝑇𝑥𝑛−1, 𝑇𝑥𝑛) , 𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛) , 𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑇𝑥𝑛−1) ,

𝜔𝜆/𝑙 (𝑥𝑛, 𝑇𝑥𝑛) , 𝜔2𝜆/𝑙 (𝑥𝑛−1, 𝑇𝑥𝑛) , 𝜔𝜆/𝑙 (𝑥𝑛, 𝑇𝑥𝑛−1)) ≤ 0

(20)

which implies

H (𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑛+1) , 𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛) , 𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛) ,

𝜔𝜆/𝑙 (𝑥𝑛, 𝑥𝑛+1) , 𝜔2𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛+1) , 0) ≤ 0.

(21)

On the other hand,

𝜔2𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛+1) ≤ 𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛) + 𝜔𝜆/𝑙 (𝑥𝑛, 𝑥𝑛+1)

≤ 𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛) + 𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑛+1) ,

𝜔𝜆/𝑙 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑛+1) .

(22)

Now since H is nonincreasing in its 5th variable, so by
(21) and (22) we obtain

H (𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑛+1) , 𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛) , 𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛) ,

𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑛+1) , 𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛)

+𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑛+1) , 0) ≤ 0.

(23)

From (H1) we deduce that

𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝜓 (𝜔𝜆/𝑙 (𝑥𝑛−1, 𝑥𝑛)) ≤ 𝜓 (𝜔𝜆/𝑐 (𝑥𝑛−1, 𝑥𝑛)) .

(24)

Inductively, we obtain

𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑛+1) ≤ 𝜓
𝑛
(𝜔𝜆/𝑐 (𝑥0, 𝑥1)) . (25)

Taking limit as 𝑛 → ∞ in the above inequality we get

lim
𝑛→∞

𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑛+1) = 0. (26)

Suppose𝑚, 𝑛 ∈ N with𝑚 > 𝑛 and 𝜖 > 0 be given. Then there
exists 𝑛𝜆/(𝑚−𝑛) ∈ N such that

𝜔𝜆/𝑐(𝑚−𝑛) (𝑥𝑛, 𝑥𝑛+1) <

𝜖

𝑐 (𝑚 − 𝑛)
(27)

for all 𝑛 ≥ 𝑛𝜆/(𝑚−𝑛). Therefore we get

𝜔𝜆/𝑐 (𝑥𝑛, 𝑥𝑚) ≤ 𝜔𝜆/𝑐(𝑚−𝑛) (𝑥𝑛, 𝑥𝑛+1)

+ 𝜔𝜆/𝑐(𝑚−𝑛) (𝑥𝑛+1, 𝑥𝑛+2) + ⋅ ⋅ ⋅

+ 𝜔𝜆/𝑐(𝑚−𝑛) (𝑥𝑚−1, 𝑥𝑚)

<

𝜖

𝑐 (𝑚 − 𝑛)

+

𝜖

𝑐 (𝑚 − 𝑛)

+

𝜖

𝑐 (𝑚 − 𝑛)

+ ⋅ ⋅ ⋅

+

𝜖

𝑐 (𝑚 − 𝑛)

=

𝜖

𝑐

(28)

for all 𝑚, 𝑛 ≥ 𝑛𝜆/(𝑚−𝑛). This shows that {𝑥𝑛} is a Cauchy
sequence. Since𝑋𝜔 is complete, so there exists 𝑥∗ ∈ 𝑋𝜔 such
that lim𝑛→∞𝑥𝑛 = 𝑥

∗. Now since 𝑇 is an 𝛼-𝜂-continuous
mapping, so 𝑇𝑥𝑛 → 𝑇𝑥

∗ as 𝑛 → ∞. Therefore,

𝑇𝑥
∗
= lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑥𝑛+1 = 𝑥
∗
. (29)

Thus 𝑇 has a fixed point. Let all 𝑥, 𝑦 ∈ Fix(𝑇) we have
𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦) and H(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0.
Then by (iv)

H (𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) , 0, 0, 𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑥))

≤ H (𝜔𝜆/𝑐 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) , 0, 0,

𝜔2𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑥))

= H (𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) ,

𝜔𝜆/𝑙 (𝑦, 𝑇𝑦) , 𝜔2𝜆/𝑙 (𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑥)) ≤ 0.

(30)

Now if 𝜔𝜆/𝑙(𝑥, 𝑦) > 0, then

0 < H (𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) , 0, 0,

𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑥)) ≤ 0

(31)

which is a contradiction.Hence,𝜔𝜆/𝑙(𝑥, 𝑦) = 0.That is, 𝑥 = 𝑦.
Thus 𝑇 has a unique fixed point.
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Corollary 13. Let𝑋𝜔 be a complete modular metric space and
𝑇 : 𝑋𝜔 → 𝑋𝜔 a self-mapping satisfying the following asser-
tions:

(i) 𝑇 is an 𝛼-admissible mapping;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 1;
(iii) 𝑇 is an 𝛼-continuous function;
(iv) assume that there exists H ∈ ΔH such that for all

𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝛼(𝑥, 𝑦) ≥ 1 we have
H (𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦) ,

𝜔2𝜆/𝑙 (𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑥)) ≤ 0,

(32)

where 0 < 𝑙 < 𝑐.
Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 1 ≤ 𝛼(𝑥, 𝑦) andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0, then
𝑇 has a unique fixed point.

Theorem 14. Let 𝑋𝜔 be a complete modular metric space and
𝑇 : 𝑋𝜔 → 𝑋𝜔 self-mapping satisfying the following assertions:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0);
(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥

𝜂(𝑥𝑛, 𝑥𝑛+1) with 𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either

𝜂 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛) ≤ 𝛼 (𝑇𝑥𝑛, 𝑥) or

𝜂 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛) ≤ 𝛼 (𝑇

2
𝑥𝑛, 𝑥)

(33)

holds for all 𝑛 ∈ N;
(iv) condition (iv) of Theorem 12 holds.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦) andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0,
then 𝑇 has a unique fixed point.

Proof. As in proof of Theorem 12, we can deduce a sequence
{𝑥𝑛} such that 𝑥𝑛+1 = 𝑇𝑥𝑛 with 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 𝜂(𝑥𝑛, 𝑥𝑛+1) and
there exists 𝑥∗ ∈ 𝑋𝜔 such that 𝑥𝑛 → 𝑥

∗ as 𝑛 → ∞. From
(iii) either

𝜂 (𝑥𝑛, 𝑇𝑥𝑛) ≤ 𝛼 (𝑥𝑛, 𝑥
∗
) or

𝜂 (𝑥𝑛+1, 𝑇𝑥𝑛+1) ≤ 𝛼 (𝑥𝑛+1, 𝑥
∗
)

(34)

holds for all 𝑛 ∈ N. Let 𝜂(𝑥𝑛, 𝑇𝑥𝑛) ≤ 𝛼(𝑥𝑛, 𝑥
∗
).Then by taking

𝑥 = 𝑥𝑛 and 𝑦 = 𝑥
∗ in (iv) we have

H (𝜔𝜆/𝑐 (𝑇𝑥𝑛, 𝑇𝑥
∗
) , 𝜔𝜆/𝑙 (𝑥𝑛, 𝑥

∗
) , 𝜔𝜆/𝑙 (𝑥𝑛, 𝑇𝑥𝑛) ,

𝜔𝜆/𝑙 (𝑥
∗
, 𝑇𝑥
∗
) , 𝜔2𝜆/𝑙 (𝑥𝑛, 𝑇𝑥

∗
) , 𝜔𝜆/𝑙 (𝑥

∗
, 𝑇𝑥𝑛)) ≤ 0

(35)
which implies

H (𝜔𝜆/𝑐 (𝑥𝑛+1, 𝑇𝑥
∗
) , 𝜔𝜆/𝑙 (𝑥𝑛, 𝑥

∗
) ,

𝜔𝜆/𝑙 (𝑥𝑛, 𝑥𝑛+1) , 𝜔𝜆/𝑙 (𝑥
∗
, 𝑇𝑥
∗
) ,

𝜔2𝜆/𝑙 (𝑥𝑛, 𝑇𝑥
∗
) , 𝜔𝜆/𝑙 (𝑥

∗
, 𝑥𝑛+1)) ≤ 0.

(36)

Taking limit as 𝑛 → ∞ in the above inequality we obtain

H (𝜔𝜆/𝑐 (𝑥
∗
, 𝑇𝑥
∗
) , 0, 0,

𝜔𝜆/𝑙 (𝑥
∗
, 𝑇𝑥
∗
) , 𝜔2𝜆/𝑙 (𝑥

∗
, 𝑇𝑥
∗
) , 0) ≤ 0.

(37)

Now since, 𝜔2𝜆/𝑙(𝑥
∗
, 𝑇𝑥
∗
) < 𝜔𝜆/𝑙(𝑥

∗
, 𝑇𝑥
∗
), 𝜔𝜆/𝑙(𝑥

∗
, 𝑇𝑥
∗
) <

𝜔𝜆/𝑐(𝑥
∗
, 𝑇𝑥
∗
), H is increasing in its 1th variable and nonin-

creasing in its 5th variable, so we obtain

H (𝜔𝜆/𝑙 (𝑥
∗
, 𝑇𝑥
∗
) , 0, 0,

𝜔𝜆/𝑙 (𝑥
∗
, 𝑇𝑥
∗
) , 𝜔𝜆/𝑙 (𝑥

∗
, 𝑇𝑥
∗
) , 0) ≤ 0

(38)

which is a contradiction. Now by taking 𝑢 = 𝜔𝜆/𝑙(𝑥
∗
, 𝑇𝑥
∗
)

and V = 0, from (H2) we have

𝜔𝜆/𝑙 (𝑥
∗
, 𝑇𝑥
∗
) ≤ 𝜓 (0) = 0. (39)

Hence, 𝜔𝜆/𝑙(𝑥
∗
, 𝑇𝑥
∗
) = 0; that is, 𝑥∗ = 𝑇𝑥∗. Similarly we can

deduce that 𝑇𝑥∗ = 𝑥
∗ when 𝜂𝜆(𝑥𝑛+1, 𝑇𝑥𝑛+1) ≤ 𝛼𝜆(𝑥𝑛+1, 𝑥

∗
).

By using Example 10 and Theorem 14 we can obtain the
following corollary.

Corollary 15. Let 𝑋𝜔 be a complete modular metric space.
Let 𝑇 : 𝑋𝜔 → 𝑋𝜔 be self-mapping satisfying the following
assertions:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0);
(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥

𝜂(𝑥𝑛, 𝑥𝑛+1) with 𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either

𝜂 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛) ≤ 𝛼 (𝑇𝑥𝑛, 𝑥) or

𝜂 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛) ≤ 𝛼 (𝑇

2
𝑥𝑛, 𝑥)

(40)

holds for all 𝑛 ∈ N;
(iv) for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦) we

have

𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓(max{𝜔𝜆/𝑙 (𝑥, 𝑦) ,

𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) + 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦)

2

,

𝜔2𝜆/𝑙 (𝑥, 𝑇𝑦) + 𝜔𝜆/𝑙 (𝑦, 𝑇𝑥)

2

}) ,

(41)

where 𝜓 ∈ Ψ and 0 < 𝑙 < 𝑐.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦), then 𝑇 has a unique fixed point.
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Corollary 16. Let 𝑋𝜔 be a complete modular metric space.
Let 𝑇 : 𝑋𝜔 → 𝑋𝜔 be self-mapping satisfying the following
assertions:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0);
(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥

𝜂(𝑥𝑛, 𝑥𝑛+1) with 𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either

𝜂 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛) ≤ 𝛼 (𝑇𝑥𝑛, 𝑥) or

𝜂 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛) ≤ 𝛼 (𝑇

2
𝑥𝑛, 𝑥)

(42)

holds for all 𝑛 ∈ N;
(iv) for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦) we

have

𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓(max{𝜔𝜆/𝑙 (𝑥, 𝑦) ,
[1 + 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥)] 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦)

1 + 𝜔𝜆/𝑙 (𝑥, 𝑦)

}) ,

(43)

where 𝜓 ∈ Ψ and 0 < 𝑙 < 𝑐.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦), then 𝑇 has a unique fixed point.

Corollary 17. Let𝑋𝜔 be a complete modular metric space. Let
𝑇 : 𝑋𝜔 → 𝑋𝜔 be self-mapping satisfying the following asser-
tions:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0);
(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥

𝜂(𝑥𝑛, 𝑥𝑛+1) with 𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either

𝜂 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛) ≤ 𝛼 (𝑇𝑥𝑛, 𝑥) or

𝜂 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛) ≤ 𝛼 (𝑇

2
𝑥𝑛, 𝑥)

(44)

holds for all 𝑛 ∈ N;
(iv) for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦) we

have

𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) ≤ 𝑎𝜔𝜆/𝑙 (𝑥, 𝑦)

+ 𝑏

[1 + 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥)] 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦)

1 + 𝜔𝜆/𝑙 (𝑥, 𝑦)

,

(45)

where 𝑎 + 𝑏 < 1 and 0 < 𝑙 < 𝑐.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦), then 𝑇 has a unique fixed point.

Example 18. Let 𝑋𝜔 = [0, +∞) and 𝜔𝜆(𝑥, 𝑦) = (1/𝜆)|𝑥 − 𝑦|.
Define 𝑇 : 𝑋𝜔 → 𝑋𝜔, 𝛼, 𝜂 : 𝑋𝜔 × 𝑋𝜔 → [0,∞), and 𝜓 :

[0,∞) → [0,∞) by

𝑇𝑥 =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1

16

𝑥
2
, if 𝑥 ∈ [0, 1] ,

sin2𝑥 + cos𝑥 + 1
√𝑥
2
+ 1

, if 𝑥 ∈ (1, 2] ,

7𝑥 + ln𝑥, if 𝑥 ∈ (2,∞) ,

𝛼 (𝑥, 𝑦) =

{
{
{

{
{
{

{

1

2

, if 𝑥, 𝑦 ∈ [0, 1] ,

1

8

, otherwise,

𝜂 (𝑥, 𝑦) =

1

4

, 𝜓 (𝑡) =

1

2

𝑡.

(46)

Let 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦); then 𝑥, 𝑦 ∈ [0, 1]. On the other
hand, 𝑇𝑤 ∈ [0, 1] for all 𝑤 ∈ [0, 1]. Then, 𝛼(𝑇𝑥, 𝑇𝑦) ≥

𝜂(𝑇𝑥, 𝑇𝑦). That is, 𝑇 is an 𝛼-admissible mapping with respect
to 𝜂. If {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥

𝜂(𝑥𝑛, 𝑥𝑛+1) with 𝑥𝑛 → 𝑥 as 𝑛 → ∞, then 𝑇𝑥𝑛, 𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛 ∈

[0, 1] for all 𝑛 ∈ N. That is,

𝜂 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛) ≤ 𝛼 (𝑇𝑥𝑛, 𝑥) ,

𝜂 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛) ≤ 𝛼 (𝑇

2
𝑥𝑛, 𝑥)

(47)

hold for all 𝑛 ∈ N. Clearly, 𝛼(0, 𝑇0) ≥ 𝜂(0, 𝑇0). Let 𝛼(𝑥, 𝑦) ≥
𝜂(𝑥, 𝑇𝑥). Now, if 𝑥 ∉ [0, 1] or 𝑦 ∉ [0, 1], then 1/8 ≥ 1/4,
which is a contradiction. So, 𝑥, 𝑦 ∈ [0, 1]. Therefore,

𝜔𝜆/2 (𝑇𝑥, 𝑇𝑦) =

2

𝜆

1

16






𝑥
2
− 𝑦
2




=

1

8𝜆





𝑥 − 𝑦










𝑥 + 𝑦





≤

1

4𝜆





𝑥 − 𝑦






=

1

2

1

𝜆/ (1/2)





𝑥 − 𝑦






=

1

2

𝜔𝜆/(1/2) (𝑥, 𝑦) = 𝜓 (𝜔𝜆/(1/2) (𝑥, 𝑦))

≤ 𝜓(max{𝜔𝜆/𝑙 (𝑥, 𝑦) ,

[1 + 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥)] 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦)

1 + 𝜔𝜆/𝑙 (𝑥, 𝑦)

}) .

(48)

Hence all conditions of Corollary 16 hold and 𝑇 has a unique
fixed point.

Let (𝑋𝜔, ⪯) be a partially ordered modular metric space.
Recall that 𝑇 : 𝑋𝜔 → 𝑋𝜔 is nondecreasing if for all 𝑥,
𝑦 ∈ 𝑋, 𝑥 ⪯ 𝑦 ⇒ 𝑇(𝑥) ⪯ 𝑇(𝑦). Fixed point theorems
for monotone operators in ordered metric spaces are widely
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investigated and have found various applications in differ-
ential and integral equations (see [20, 22–25] and references
therein). From results proved above, we derive the following
new results in partially ordered modular metric spaces.

Theorem 19. Let (𝑋𝜔, ⪯) be a complete partially ordered
modular metric space and𝑇 : 𝑋𝜔 → 𝑋𝜔 self-mapping satisfy-
ing the following assertions:

(i) 𝑇 is nondecreasing;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑇𝑥0;
(iii) 𝑇 is continuous function;
(iv) assume that there exists H ∈ ΔH such that for all

𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝑥 ⪯ 𝑦 we have
H (𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦) ,

𝜔2𝜆/𝑙 (𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑥)) ≤ 0,

(49)

where 0 < l < 𝑐.
Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝑥 ⪯ 𝑦 andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0, then 𝑇 has
a unique fixed point.

Theorem 20. Let (𝑋𝜔, ⪯) be a complete partially ordered
modular metric space and 𝑇 : 𝑋𝜔 → 𝑋𝜔 self-mapping
satisfying the following assertions:

(i) 𝑇 is nondecreasing;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑇𝑥0;
(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝑥𝑛 ⪯ 𝑥𝑛+1 with

𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either
𝑇𝑥𝑛 ⪯ 𝑥 or 𝑇

2
𝑥𝑛 ⪯ 𝑥

(50)

holds for all 𝑛 ∈ N;
(iv) assume that there exists H ∈ ΔH such that for all

𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝑥 ⪯ 𝑦 we have
H (𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦) ,

𝜔2𝜆/𝑙 (𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑥)) ≤ 0,

(51)

where 0 < 𝑙 < 𝑐.
Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝑥 ⪯ 𝑦 andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0, then 𝑇 has
a unique fixed point.

Corollary 21. Let (𝑋𝜔, ⪯) be a complete partially ordered
modular metric space and 𝑇 : 𝑋𝜔 → 𝑋𝜔 self-mapping
satisfying the following assertions:

(i) 𝑇 is nondecreasing;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑇𝑥0;
(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝑥𝑛 ⪯ 𝑥𝑛+1 with

𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either
𝑇𝑥𝑛 ⪯ 𝑥 or 𝑇

2
𝑥𝑛 ⪯ 𝑥

(52)

holds for all 𝑛 ∈ N;

(iv) assume that for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝑥 ⪯ 𝑦 we
have

𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓(max{𝜔𝜆/𝑙 (𝑥, 𝑦) ,
𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) + 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦)

2

,

𝜔2𝜆/𝑙 (𝑥, 𝑇𝑦) + 𝜔𝜆/𝑙 (𝑦, 𝑇𝑥)

2

}) ,

(53)

where 𝜓 ∈ Ψ and 0 < 𝑙 < 𝑐.
Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝑥 ⪯ 𝑦, then 𝑇 has a unique fixed point.

Corollary 22. Let (𝑋𝜔, ⪯) be a complete partially ordered
modular metric space and 𝑇 : 𝑋𝜔 → 𝑋𝜔 self-mapping
satisfying the following assertions:

(i) 𝑇 is nondecreasing;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑇𝑥0;
(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝑥𝑛 ⪯ 𝑥𝑛+1 with

𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either
𝑇𝑥𝑛 ⪯ 𝑥 or 𝑇

2
𝑥𝑛 ⪯ 𝑥

(54)

holds for all 𝑛 ∈ N;
(iv) assume that for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝑥 ⪯ 𝑦 we

have
𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦)

≤ 𝜓(max{𝜔𝜆/𝑙 (𝑥, 𝑦) ,
[1 + 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥)] 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦)

1 + 𝜔𝜆/𝑙 (𝑥, 𝑦)

}) ,

(55)

where 𝜓 ∈ Ψ and 0 < 𝑙 < 𝑐.
Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝑥 ⪯ 𝑦, then 𝑇 has a unique fixed point.

Corollary 23. Let (𝑋𝜔, ⪯) be a complete partially ordered
modular metric space and 𝑇 : 𝑋𝜔 → 𝑋𝜔 self-mapping
satisfying the following assertions:

(i) 𝑇 is nondecreasing;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑇𝑥0;
(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝑥𝑛 ⪯ 𝑥𝑛+1 with

𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either
𝑇𝑥𝑛 ⪯ 𝑥 or 𝑇

2
𝑥𝑛 ⪯ 𝑥

(56)

holds for all 𝑛 ∈ N;
(iv) assume that for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝑥 ⪯ 𝑦 we

have
𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦)

≤ 𝑎𝜔𝜆/𝑙 (𝑥, 𝑦) + 𝑏

[1 + 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥)] 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦)

1 + 𝜔𝜆/𝑙 (𝑥, 𝑦)

,

(57)

where 𝑎 + 𝑏 < 1 and 0 < 𝑙 < 𝑐.
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Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝑥 ⪯ 𝑦, then 𝑇 has a unique fixed point.

3. Suzuki Type Fixed Point Results in
Modular Metric Spaces

In 2008, Suzuki proved a remarkable fixedpoint theorem, that
is, a generalization of the Banach contraction principle and
characterizes themetric completeness. Consequently, a num-
ber of extensions and generalizations of this result appeared
in the literature (see [26–30] and references therein). As an
application of our results proved abovewededuce Suzuki type
fixed point theorems in the setting of modular metric spaces.

Theorem 24. Let𝑋𝜔 be a complete modular metric space and
𝑇 continuous self-mapping on 𝑋. Assume that

𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) ≤ 𝜔𝜆/𝑙 (𝑥, 𝑦)

⇒ H (𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) ,

𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦) ,

𝜔2𝜆/𝑙 (𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑥)) ≤ 0

(58)

for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0, where 0 < 𝑙 < 𝑐. Then 𝑇 has a
fixed point. Moreover, if H(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0,
then 𝑇 has a unique fixed point.

Proof. Define 𝛼, 𝜂 : (0,∞) × 𝑋𝜔 × 𝑋𝜔 → [0,∞) by

𝛼 (𝑥, 𝑦) = 𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜂 (𝑥, 𝑦) = 𝜔𝜆/𝑙 (𝑥, 𝑦) . (59)

Clearly, 𝜂(𝑥, 𝑦) ≤ 𝛼(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0.
Since 𝑇 is continuous, 𝑇 is 𝛼-𝜂-continuous. Thus conditions
(i)–(iii) of Theorem 12 hold. Let 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦). Then
𝜔𝜆/𝑙(𝑥, 𝑇𝑥) ≤ 𝜔𝜆/𝑙(𝑥, 𝑦). So from (58) we obtain

H (𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑦) , 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦) ,

𝜔2𝜆/𝑙 (𝑥, 𝑇𝑦) , 𝜔𝜆/𝑙 (𝑦, 𝑇𝑥)) ≤ 0.

(60)

Therefore all conditions of Theorem 12 hold and 𝑇 has a
unique fixed point.

Theorem 25. Let𝑋𝜔 be a complete modular metric space and
𝑇 self-mapping on 𝑋. Assume that

1 − 𝑏

1 − 𝑏 + 𝑎

𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) ≤ 𝜔𝜆/2𝑙 (𝑥, 𝑦)

⇒ 𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) ≤ 𝑎𝜔𝜆/𝑙 (𝑥, 𝑦)

+ 𝑏

[1 + 𝜔𝜆/𝑙 (𝑥, 𝑇𝑥)] 𝜔𝜆/𝑙 (𝑦, 𝑇𝑦)

1 + 𝜔𝜆/𝑙 (𝑥, 𝑦)

(61)

for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0, where 0 < 𝑙 < 𝑐 and 𝑎 + 𝑏 < 1.
Then 𝑇 has a unique fixed point.

Proof. Define 𝛼, 𝜂 : 𝑋𝜔 × 𝑋𝜔 → [0,∞) by

𝛼 (𝑥, 𝑦) = 𝜔𝜆/2𝑙 (𝑥, 𝑦) , 𝜂 (𝑥, 𝑦) = 𝑘𝜔𝜆/𝑙 (𝑥, 𝑦) , (62)

where 𝑘 = (1 − 𝑏)/(1 − 𝑏 + 𝑎). Clearly, 𝜂(𝑥, 𝑦) ≤ 𝛼(𝑥, 𝑦) for all
𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0. Then conditions (i)-(ii) of Corollary 17
hold. Let {𝑥𝑛} be a sequence such that 𝑥𝑛 → 𝑥 as 𝑛 → ∞.
Since 𝑘𝜔𝜆/𝑙(𝑇𝑥𝑛, 𝑇

2
𝑥𝑛) ≤ 𝜔𝜆/2𝑙(𝑇𝑥𝑛, 𝑇

2
𝑥𝑛) for all 𝑛 ∈ N, from

(61) we obtain

𝜔𝜆/𝑙 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛)

≤ 𝜔𝜆/𝑐 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛)

≤ 𝑎𝜔𝜆/𝑙 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛)

+ 𝑏

[1 + 𝜔𝜆/𝑙 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛)] 𝜔𝜆/𝑙 (𝑇

2
𝑥𝑛, 𝑇
3
𝑥𝑛)

1 + 𝜔𝜆/𝑙 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛)

≤ 𝑎𝜔𝜆/𝑙 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛) + 𝑏𝜔𝜆/𝑙 (𝑇

2
𝑥𝑛, 𝑇
3
𝑥𝑛)

(63)

which implies

𝜔𝜆/𝑙 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛) ≤

𝑎

1 − 𝑏

𝜔𝜆/𝑙 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛) . (64)

Suppose there exists 𝑛0 ∈ N, such that

𝜂 (𝑇𝑥𝑛0
, 𝑇
2
𝑥𝑛0

) > 𝛼 (𝑇𝑥𝑛0
, 𝑥) or

𝜂 (𝑇
2
𝑥𝑛0

, 𝑇
3
𝑥𝑛0

) > 𝛼 (𝑇
2
𝑥𝑛0

, 𝑥) ;

(65)

then
𝑘𝜔𝜆/𝑙 (𝑇𝑥𝑛0

, 𝑇
2
𝑥𝑛0

) > 𝜔𝜆/2𝑙 (𝑇𝑥𝑛0
, 𝑥) or

𝑘𝜔𝜆/𝑙 (𝑇
2
𝑥𝑛0

, 𝑇
3
𝑥𝑛0

) > 𝜔𝜆/2𝑙 (𝑇
2
𝑥𝑛0

, 𝑥) .

(66)

Therefore,

𝜔𝜆/𝑙 (𝑇𝑥𝑛0
, 𝑇
2
𝑥𝑛0

)

≤ 𝜔𝜆/2𝑙 (𝑇𝑥𝑛0
, 𝑥) + 𝜔𝜆/2𝑙 (𝑇

2
𝑥𝑛0

, 𝑥)

< 𝑘𝜔𝜆/𝑙 (𝑇𝑥𝑛0
, 𝑇
2
𝑥𝑛0

) + 𝑘𝜔𝜆/𝑙 (𝑇
2
𝑥𝑛0

, 𝑇
3
𝑥𝑛0

)

≤ 𝑘𝜔𝜆/𝑙 (𝑇𝑥𝑛0
, 𝑇
2
𝑥𝑛0

) + 𝑘

𝑎

1 − 𝑏

𝜔𝜆/𝑙 (𝑇𝑥𝑛0
, 𝑇
2
𝑥𝑛0

)

≤ (𝑘 + 𝑘

𝑎

1 − 𝑏

)𝜔𝜆/𝑙 (𝑇𝑥𝑛0
, 𝑇
2
𝑥𝑛0

)

= 𝜔𝜆/𝑙 (𝑇𝑥𝑛0
, 𝑇
2
𝑥𝑛0

)

(67)

which is a contradiction. Hence, (iii) of Corollary 17 holds.
Thus all conditions of Corollary 17 hold and 𝑇 has a unique
fixed point.

Corollary 26. Let𝑋𝜔 be a complete modularmetric space and
𝑇 self-mapping on𝑋. Assume that

1

1 + 𝑎

𝜔𝜆/𝑙 (𝑥, 𝑇𝑥) ≤ 𝜔𝜆/2𝑙 (𝑥, 𝑦)

⇒ 𝜔𝜆/𝑐 (𝑇𝑥, 𝑇𝑦) ≤ 𝑎𝜔𝜆/𝑙 (𝑥, 𝑦)

(68)
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for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0, where 0 < 𝑙 < 𝑐 and 𝑎 < 1. Then 𝑇
has a unique fixed point.

4. Fixed Point Results for
Integral Type Contractions

Recently, Azadifar et al. [31] and Razani and Moradi [32]
proved common fixed point theorems of integral type in
modular metric spaces. In this section we present more
general fixed point theorems for integral type contractions.

Theorem 27. Let𝑋𝜔 be a complete modular metric space and
𝑇 : 𝑋𝜔 → 𝑋𝜔 self-mapping satisfying the following assertions:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;

(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0);

(iii) 𝑇 is an 𝛼-𝜂-continuous function;

(iv) assume that there exists H ∈ ΔH such that for all
𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0 with 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦) we have

H(∫

𝜔𝜆/𝑐(𝑇𝑥,𝑇𝑦)

0

𝜌 (𝑡) 𝑑𝑡, ∫

𝜔𝜆/𝑙(𝑥,𝑦)

0

𝜌 (𝑡) 𝑑𝑡,

∫

𝜔𝜆/𝑙(𝑥,𝑇𝑥)

0

𝜌 (𝑡) 𝑑𝑡, ∫

𝜔𝜆/𝑙(𝑦,𝑇𝑦)

0

𝜌 (𝑡) 𝑑𝑡,

∫

𝜔2𝜆/𝑙(𝑥,𝑇𝑦)

0

𝜌 (𝑡) 𝑑𝑡, ∫

𝜔𝜆/𝑙(𝑦,𝑇𝑥)

0

𝜌 (𝑡) 𝑑𝑡) ≤ 0,

(69)

where 0 < 𝑙 < 𝑐, 𝜌 : [0,∞) → [0,∞) is a Lebesgue-
integrable mapping satisfying ∫𝜀

0
𝜌(𝑡)𝑑𝑡 > 0 for 𝜀 > 0.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦) andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0,
then 𝑇 has a unique fixed point.

Theorem 28. Let𝑋𝜔 be a complete modular metric space and
𝑇 : 𝑋𝜔 → 𝑋𝜔 self-mapping satisfying the following assertions:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;

(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0);

(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥

𝜂(𝑥𝑛, 𝑥𝑛+1) with 𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either

𝜂 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛) ≤ 𝛼 (𝑇𝑥𝑛, 𝑥) or

𝜂 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛) ≤ 𝛼 (𝑇

2
𝑥𝑛, 𝑥)

(70)

holds for all 𝑛 ∈ N;

(iv) condition (iv) of Theorem 27 holds.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦) andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0,
then 𝑇 has a unique fixed point.

Theorem 29. Let𝑋𝜔 be a complete modular metric space and
𝑇 continuous self-mapping on 𝑋. Assume that

∫

𝜔𝜆/𝑙(𝑥,𝑇𝑥)

0

𝜌 (𝑡) 𝑑𝑡

≤ ∫

𝜔𝜆/𝑙(𝑥,𝑦)

0

𝜌 (𝑡) 𝑑𝑡

⇒ H(∫

𝜔𝜆/𝑐(𝑇𝑥,𝑇𝑦)

0

𝜌 (𝑡) 𝑑𝑡, ∫

𝜔𝜆/𝑙(𝑥,𝑦)

0

𝜌 (𝑡) 𝑑𝑡,

∫

𝜔𝜆/𝑙(𝑥,𝑇𝑥)

0

𝜌 (𝑡) 𝑑𝑡, ∫

𝜔𝜆/𝑙(𝑦,𝑇𝑦)

0

𝜌 (𝑡) 𝑑𝑡,

∫

𝜔2𝜆/𝑙(𝑥,𝑇𝑦)

0

𝜌 (𝑡) 𝑑𝑡, ∫

𝜔𝜆/𝑙(𝑦,𝑇𝑥)

0

𝜌 (𝑡) 𝑑𝑡) ≤ 0

(71)

for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0, where 0 < 𝑙 < 𝑐, 𝜌 :

[0,∞) → [0,∞) is a Lebesgue-integrable mapping satisfying
∫

𝜀

0
𝜌(𝑡)𝑑𝑡 > 0 for 𝜀 > 0. Then 𝑇 has a fixed point. Moreover, if

H(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0, then 𝑇 has a unique fixed
point.

Theorem 30. Let𝑋𝜔 be a complete modular metric space and
𝑇 self-mapping on𝑋. Assume that

1 − 𝑏

1 − 𝑏 + 𝑎

∫

𝜔𝜆/𝑙(𝑥,𝑇𝑥)

0

𝜌 (𝑡) 𝑑𝑡

≤ ∫

𝜔𝜆/2𝑙(𝑥,𝑦)

0

𝜌 (𝑡) 𝑑𝑡 ⇒ ∫

𝜔𝜆/𝑐(𝑇𝑥,𝑇𝑦)

0

𝜌 (𝑡) 𝑑𝑡

≤ 𝑎∫

𝜔𝜆/𝑙(𝑥,𝑦)

0

𝜌 (𝑡) 𝑑𝑡

+ 𝑏

[1 + ∫

𝜔𝜆/𝑙(𝑥,𝑇𝑥)

0
𝜌 (𝑡) 𝑑𝑡] ∫

𝜔𝜆/𝑙(𝑦,𝑇𝑦)

0
𝜌 (𝑡) 𝑑𝑡

1 + ∫

𝜔𝜆/𝑙(𝑥,𝑦)

0
𝜌 (𝑡) 𝑑𝑡

(72)

for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0, where 0 < 𝑙 < 𝑐, 𝑎 + 𝑏 < 1 and
𝜌 : [0,∞) → [0,∞) is a Lebesgue-integrablemapping satisfy-
ing ∫𝜀
0
𝜌(𝑡)𝑑𝑡 > 0 for 𝜀 > 0. Then 𝑇 has a unique fixed point.

5. Modular Metric Spaces to
Fuzzy Metric Spaces

In 1988, Grabiec [33] defined contractivemappings on a fuzzy
metric space and extended fixed point theorems of Banach
and Edelstein in such spaces. Successively, George and Veera-
mani [34] slightlymodified the notion of a fuzzymetric space
introduced by Kramosil and Michálek and then defined a
Hausdorff and first countable topology on it. Since then, the
notion of a complete fuzzy metric space presented by George
and Veeramani has emerged as another characterization of
completeness, and many fixed point theorems have also been
proved (see for more details [35–39] and the references
therein). In this section we develop an important relation
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between modular metric and fuzzy metric and deduce in
fixed point results in a triangular fuzzy metric space.

Definition 31. A 3-tuple (𝑋,𝑀, ∗) is said to be a fuzzy metric
space if𝑋 is an arbitrary set, ∗ is a continuous 𝑡-norm and𝑀
is fuzzy set on𝑋2×(0,∞) satisfying the following conditions,
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡, 𝑠 > 0:

(i) 𝑀(𝑥, 𝑦, 𝑡) > 0;
(ii) 𝑀(𝑥, 𝑦, 𝑡) = 1 for all 𝑡 > 0 if and only if 𝑥 = 𝑦;
(iii) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡);
(iv) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠);
(v) 𝑀(𝑥, 𝑦, .) : (0,∞) → [0, 1] is continuous.

The function 𝑀(𝑥, 𝑦, 𝑡) denotes the degree of nearness
between 𝑥 and 𝑦 with respect to 𝑡.

Definition 32 (see [36]). Let (𝑋,𝑀, ∗) be a fuzzymetric space.
The fuzzy metric𝑀 is called triangular whenever

1

𝑀(𝑥, 𝑦, 𝑡)

− 1 ≤

1

𝑀 (𝑥, 𝑧, 𝑡)

− 1 +

1

𝑀(𝑧, 𝑦, 𝑡)

− 1 (73)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and all 𝑡 > 0.

Lemma 33 (see [33, 35]). For all 𝑥, 𝑦 ∈ 𝑋, 𝑀(𝑥, 𝑦, ⋅) is
nondecreasing on (0,∞).

As an application of Lemma 33, we establish the following
important fact that each triangular fuzzymetric on𝑋 induces
a modular metric.

Lemma 34. Let (𝑋,𝑀, ∗) be a triangular fuzzy metric space.
Define

𝜔𝜆 (𝑥, 𝑦) =

1

𝑀(𝑥, 𝑦, 𝜆)

− 1 (74)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝜆 > 0. Then 𝜔𝜆 is a modular metric on
𝑋.

Proof. Let 𝑠, 𝑡 > 0. Then we get

𝑀(𝑥, 𝑦, 𝑠) = 𝑀(𝑥, 𝑦, 𝑠) ∗ 1

= 𝑀(𝑥, 𝑦, 𝑠) ∗ 𝑀 (𝑥, 𝑥, 𝑡) ≤ 𝑀 (𝑥, 𝑦, 𝑠 + 𝑡)

(75)

for all𝑥, 𝑦 ∈ 𝑋 and 𝑠, 𝑡 > 0. Now, since (𝑋,𝑀, ∗) is triangular,
then we get

𝜔𝜆+𝜇 (𝑥, 𝑦) =

1

𝑀(𝑥, 𝑦, 𝜇 + 𝜆)

− 1

≤

1

𝑀(𝑥, 𝑧, 𝜇 + 𝜆)

− 1 +

1

𝑀(𝑧, 𝑦, 𝜇 + 𝜆)

− 1

≤

1

𝑀 (𝑥, 𝑧, 𝜆)

− 1 +

1

𝑀(𝑧, 𝑦, 𝜇)

− 1

= 𝜔𝜆 (𝑥, 𝑧) + 𝜔𝜇 (𝑧, 𝑦) .

(76)

As an application of Lemma 34 and the results proved
above we deduce following new fixed point theorems in
triangular fuzzy metric spaces.

Theorem 35. Let (𝑋,𝑀, ∗) be a complete triangular fuzzy
metric space and 𝑇 : 𝑋 → 𝑋 self-mapping satisfying the
following assertions:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0);
(iii) 𝑇 is an 𝛼-𝜂-continuous function;
(iv) assume that there exists H ∈ ΔH such that for all

𝑥, 𝑦 ∈ 𝑋 and 𝜆 > 0 with 𝜂(𝑥, 𝑇𝑥) ≤ 𝛼(𝑥, 𝑦) we have

H(

1

𝑀(𝑇𝑥, 𝑇𝑦, 𝜆/𝑐)

− 1,

1

𝑀 (𝑥, 𝑦, 𝜆/𝑙)

− 1,

1

𝑀 (𝑥, 𝑇𝑥, 𝜆/𝑙)

− 1,

1

𝑀 (𝑦, 𝑇𝑦, 𝜆/𝑙)

− 1,

1

𝑀 (𝑥, 𝑇𝑦, 2𝜆/𝑙)

− 1,

1

𝑀 (𝑦, 𝑇𝑥, 𝜆/𝑙)

− 1) ≤ 0,

(77)

where 0 < 𝑙 < 𝑐.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦) andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0,
then 𝑇 has a unique fixed point.

Theorem 36. Let (𝑋,𝑀, ∗) be a complete triangular fuzzy
metric space and 𝑇 : 𝑋 → 𝑋 self-mapping satisfying the
following assertions:

(i) 𝑇 is an 𝛼-admissible mapping with respect to 𝜂;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 𝜂(𝑥0, 𝑇𝑥0);
(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥

𝜂(𝑥𝑛, 𝑥𝑛+1) with 𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either

𝜂 (𝑇𝑥𝑛, 𝑇
2
𝑥𝑛) ≤ 𝛼 (𝑇𝑥𝑛, 𝑥) or

𝜂 (𝑇
2
𝑥𝑛, 𝑇
3
𝑥𝑛) ≤ 𝛼 (𝑇

2
𝑥𝑛, 𝑥)

(78)

holds for all 𝑛 ∈ N;
(iv) condition (iv) of Theorem 35 holds.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝜂(𝑥, 𝑥) ≤ 𝛼(𝑥, 𝑦) andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0,
then 𝑇 has a unique fixed point.

Theorem 37. Let (𝑋,𝑀, ∗, ⪯) be a partially ordered complete
triangular fuzzy metric space and 𝑇 : 𝑋 → 𝑋 self-mapping
satisfying the following assertions:

(i) 𝑇 is nondecreasing;
(ii) there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑇𝑥0;
(iii) 𝑇 is continuous function;
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(iv) assume that there exists H ∈ ΔH such that for all
𝑥, 𝑦 ∈ 𝑋 and 𝜆 > 0 with 𝑥 ⪯ 𝑦 we have

H(

1

𝑀(𝑇𝑥, 𝑇𝑦, 𝜆/𝑐)

− 1,

1

𝑀 (𝑥, 𝑦, 𝜆/𝑙)

− 1,

1

𝑀 (𝑥, 𝑇𝑥, 𝜆/𝑙)

− 1,

1

𝑀 (𝑦, 𝑇𝑦, 𝜆/𝑙)

− 1,

1

𝑀 (𝑥, 𝑇𝑦, 2𝜆/𝑙)

− 1,

1

𝑀 (𝑦, 𝑇𝑥, 𝜆/𝑙)

− 1) ≤ 0,

(79)

where 0 < 𝑙 < 𝑐.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝑥 ⪯ 𝑦 andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0, then 𝑇 has
a unique fixed point.

Theorem 38. Let (𝑋,𝑀, ∗, ⪯) be a partially ordered complete
triangular fuzzy metric space and 𝑇 : 𝑋 → 𝑋 self-mapping
satisfying the following assertions:

(i) 𝑇 is nondecreasing;

(ii) there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑇𝑥0;

(iii) if {𝑥𝑛} is a sequence in 𝑋 such that 𝑥𝑛 ⪯ 𝑥𝑛+1 with
𝑥𝑛 → 𝑥 as 𝑛 → ∞, then either

𝑇𝑥𝑛 ⪯ 𝑥 or 𝑇
2
𝑥𝑛 ⪯ 𝑥

(80)

holds for all 𝑛 ∈ N;

(iv) assume that there exists H ∈ ΔH such that for all
𝑥, 𝑦 ∈ 𝑋𝜔 and 0𝜆 > 0 with 𝑥 ⪯ 𝑦 we have

H(

1

𝑀(𝑇𝑥, 𝑇𝑦, 𝜆/𝑐)

− 1,

1

𝑀 (𝑥, 𝑦, 𝜆/𝑙)

− 1,

1

𝑀 (𝑥, 𝑇𝑥, 𝜆/𝑙)

− 1,

1

𝑀 (𝑦, 𝑇𝑦, 𝜆/𝑙)

− 1,

1

𝑀 (𝑥, 𝑇𝑦, 2𝜆/𝑙)

− 1,

1

𝑀 (𝑦, 𝑇𝑥, 𝜆/𝑙)

− 1) ≤ 0,

(81)

where 0 < 𝑙 < 𝑐.

Then 𝑇 has a fixed point. Moreover, if for all 𝑥, 𝑦 ∈ Fix(𝑇) we
have 𝑥 ⪯ 𝑦 andH(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) > 0 for all 𝑢 > 0, then 𝑇 has
a unique fixed point.

Theorem 39. Let (𝑋,𝑀, ∗) be a complete triangular fuzzy
metric space and𝑇 continuous self-mapping on𝑋. Assume that

1

𝑀 (𝑥, 𝑇𝑥, 𝜆/𝑙)

− 1

≤

1

𝑀(𝑥, 𝑦, 𝜆/𝑙)

− 1

⇒ H(

1

𝑀(𝑇𝑥, 𝑇𝑦, 𝜆/𝑐)

− 1,

1

𝑀 (𝑥, 𝑦, 𝜆/𝑙)

− 1,

1

𝑀 (𝑥, 𝑇𝑥, 𝜆/𝑙)

− 1,

1

𝑀 (𝑦, 𝑇𝑦, 𝜆/𝑙)

− 1,

1

𝑀 (𝑥, 𝑇𝑦, 2𝜆/𝑙)

− 1,

1

𝑀 (𝑦, 𝑇𝑥, 𝜆/𝑙)

− 1) ≤ 0

(82)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆 > 0, where 0 < 𝑙 < 𝑐. Then 𝑇 has a
unique fixed point.

Theorem 40. Let (𝑋,𝑀, ∗) be a complete triangular fuzzy
metric space and𝑇 continuous self-mapping on𝑋. Assume that

1 − 𝑏

1 − 𝑏 + 𝑎

(

1

𝑀 (𝑥, 𝑇𝑥, 𝜆/𝑙)

− 1)

≤

1

𝑀(𝑥, 𝑦, 𝜆/2𝑙)

− 1 ⇒

1

𝑀(𝑇𝑥, 𝑇𝑦, 𝜆/𝑐)

− 1

≤ 𝑎(

1

𝑀(𝑥, 𝑦, 𝜆/𝑙)

− 1)

+ 𝑏

(1/𝑀 (𝑥, 𝑇𝑥, 𝜆/𝑙)) [(1/𝑀 (𝑦, 𝑇𝑦, 𝜆/𝑙)) − 1]

1/𝑀 (𝑥, 𝑦, 𝜆/𝑙)

(83)

for all 𝑥, 𝑦 ∈ 𝑋𝜔 and 𝜆 > 0, where 0 < 𝑙 < 𝑐 and 𝑎 + 𝑏 < 1.
Then 𝑇 has a unique fixed point.
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