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Spanning trees have been found to be structures of paramount importance in both theoretical and practical problems. In this paper
we derive new formulas for the complexity, number of spanning trees, of some products of complete and complete bipartite graphs
such as Cartesian product, normal product, composition product, tensor product, symmetric product, and strong sum, using linear
algebra and matrix theory techniques.

1. Introduction

The number of spanning trees of a graph is an important,
well-studied quantity in graph theory and appears in a
number of applications. The most notable application fields
are network reliability [1–4], enumerating certain chemical
isomers [5], and counting of the Eulerian circuits in a graph
[6]. Every connected graph has a spanning tree. A spanning
tree of a graph 𝐺 is a tree that (i) is a subgraph of 𝐺 (i.e., that
includes only edges from 𝐺) and (ii) includes every vertex
of 𝐺. The most classical interest concerning a spanning tree
is the number of spanning trees, also called the complexity
of the graph 𝐺 and denoted by 𝜏(𝐺). Kirchhoff [7] gave a
formula for determining it, which is known as thematrix tree
theorem.The spanning trees of a graph𝐺 are the value of any
cofactor of the matrix𝐷(𝐺)−𝐴(𝐺), where𝐷(𝐺) is the degree
matrix (the 𝑖th diagonal entry is equal to the degree of the 𝑖th
vertex and the other entry is equal to zero) and 𝐴(𝐺) is the
adjacency matrix of 𝐺 (the entry (𝑖, 𝑗) is equal to the number
of edges between 𝑖th vertex and 𝑗th vertex), respectively.This
topic is still much studied, in particular, in explicit formulas
of the number of spanning trees of some special classes.

That for complete graphs is most famous among such classes;
the number of spanning trees of 𝐾

𝑛
is 𝑛𝑛−2, called Cayley’s

formula [8]. Several proofs of Cayley’s formula are known,
and the most famous one is due to Prüfer [9]. The explicit
formulas of the number of spanning trees are known for other
classes than complete graphs: complete bipartite graphs [10–
13], regular graphs [14], circulant graphs [15–19], pyramid
graphs [20], and so on.

Now we introduce the following Lemma which describes
a way to calculate the number of spanning trees by an exten-
sion of Kirchhoff formula.

Lemma 1 (see [21]). Let 𝐺 be a graph with 𝑛 vertices. Then

𝜏 (𝐺) =
1

𝑛2
det (𝑛𝐼 − 𝐷 + 𝐴) , (1)

where 𝐴, 𝐷 are the adjacency and degree matrices of 𝐺, the
complement of 𝐺, respectively, and 𝐼 is the 𝑛 × 𝑛 unit matrix.
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Lemma 2. Let 𝐴
𝑛
(𝑥) be 𝑛 × 𝑛matrix, 𝑥 ≥ 2 such that

𝐴
𝑛
(𝑥) =

(
(
(
(
(
(
(
(
(
(

(

𝑥 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 𝑥 d d d
...

... d d d d
...

... d d d d
...

... d d d 𝑥 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑥

)
)
)
)
)
)
)
)
)
)

)

. (2)

Then

det (𝐴
𝑛
(𝑥)) = (𝑥 + 𝑛 − 1) (𝑥 − 1)

𝑛−1

. (3)

Proof. From the definition of the circulant determinants, we
have

det (𝐴
𝑛
(𝑥)) = det

(
(
(
(
(
(
(
(
(
(

(

𝑥 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 𝑥 d d d
...

... d d d d
...

... d d d d
...

... d d d 𝑥 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑥

)
)
)
)
)
)
)
)
)
)

)

=

𝑛

∏

𝑗=1

(𝑥 + 𝜔
𝑗
+ 𝜔
2

𝑗
+ 𝜔
3

𝑗
+ ⋅ ⋅ ⋅ + 𝜔

𝑛−1

𝑗
)

= (𝑥 + 1 + 1 + ⋅ ⋅ ⋅ + 1)

×

𝑛

∏

𝑗=1,𝜔𝑗 ̸= 1

(𝑥 + 𝜔
𝑗
+ 𝜔
2

𝑗
+ 𝜔
3

𝑗
+ ⋅ ⋅ ⋅ + 𝜔

𝑛−1

𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=−1

)

= (𝑥 + 𝑛 − 1) × (𝑥 − 1)
𝑛−1

.

(4)

We can generalize the above lemma as follows.

Lemma 3. Let 𝐴, 𝐵 ∈ 𝐹𝑛×𝑛, and F ∈ 𝐹𝑘𝑛×𝑘𝑛 such that

F =

(
(
(
(
(
(
(
(
(
(

(

𝐴 𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵

𝐵 𝐴 d d d
...

... d d d d
...

... d d d d
...

... d d d 𝐴 𝐵

𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵 𝐴

)
)
)
)
)
)
)
)
)
)

)

. (5)

Then

det F = [det (𝐴 − 𝐵)]
𝑘−1 det [𝐴 + (𝑘 − 1) 𝐵] . (6)

Lemma 4 (see [22]). Let 𝐴 ∈ 𝐹
𝑛×𝑛, 𝐵 ∈ 𝐹𝑛×𝑚, 𝐶 ∈ 𝐹

𝑚×𝑛, and
𝐷 ∈ 𝐹

𝑚×𝑚. Assume that 𝐴 and 𝐷 are nonsingular matrices.
Then:

det(
𝐴 𝐵

𝐶 𝐷
) = (−1)

𝑛𝑚 det (𝐴 − 𝐵𝐷
−1

𝐶) det𝐷

= (−1)
𝑛𝑚 det𝐴 det (𝐷 − 𝐶𝐴

−1

𝐵) .

(7)

Formulas in Lemmas 2, 3, and 4 give some sort of symmetry in
somematrices which facilitates our calculation of determinants.

2. Number of Spanning Trees of Cartesian
Product of Graphs

The Cartesian product, 𝐺
1
× 𝐺
2
, of two graphs 𝐺

1
and 𝐺

2
is

the simple graph with vertex set 𝑉(𝐺
1
× 𝐺
2
) = 𝑉

1
× 𝑉
2
and

edge set 𝐸(𝐺
1
× 𝐺
2
) = [(𝐸

1
× 𝑉
2
) ∪ (𝑉

1
× 𝐸
2
)] such that two

vertices (𝑢
1
, 𝑢
2
) and (V

1
, V
2
) are adjacent in𝐺

1
×𝐺
2
if and only

if either 𝑢
1
= V
1
and 𝑢
2
is adjacent to V

2
in𝐺
2
or 𝑢
1
is adjacent

to V
1
in 𝐺
1
and 𝑢

2
= V
2
[23].

Theorem 5. For𝑚, 𝑛 ≥ 1and 𝑟 ≥ 2, we have

𝜏 (𝐾
𝑟
× 𝐾
𝑚,𝑛
) = 𝑟
𝑟−2

𝑚
𝑛−1

𝑛
𝑚−1

(𝑚 + 𝑟)
(𝑟−1)(𝑛−1)

× (𝑛 + 𝑟)
(𝑟−1)(𝑚−1)

(𝑚 + 𝑛 + 𝑟)
𝑟−1

.

(8)



Mathematical Problems in Engineering 3

Proof. Applying Lemma 1, we have

𝜏 (𝐾
𝑟
× 𝐾
𝑚,𝑛
)

=
1

(𝑟 (𝑚 + 𝑛))
2
det (𝑟 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

𝑟2(𝑚 + 𝑛)
2

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑛+ 𝑟 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d

...

... d d 1

... d d
...

... d d 1

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ 1 𝑛 + 𝑟 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑚 + 𝑟 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
... 1 d d

...
... d d

... 1 d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d 1

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑟 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 d d
...

... d d
...

... d d
...

... d d
... 1 d d

...
... d d

...

... d d 1

... d d
...

... d d
...

... d d
...

... d d 1

... d d
...

1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d

...
... d d

... 1 d d
...

... d d
...

... d d 1

... d d
...

... d d
...

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑛 + 𝑟 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
... 1 d d

...
... d d

... 1 d d
...

... d d
...

... d d
...

... d d
...

... d d 1

... d d
...

... d d 1

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 𝑛 + 𝑟 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑚 + 𝑟 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
... 1 d d

...
... d d

... 1 d d
...

... d d
...

... d d
...

... d d
...

... d d 1

... d d
...

... d d 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑚 + 𝑟

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(9)
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Using Lemma 3, we get

𝜏 (𝐾
𝑟
× 𝐾
𝑚,𝑛
) =

1

𝑟2(𝑚 + 𝑛)
2
det

(
(
(
(
(
(
(
(
(
(

(

𝐴 𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵

𝐵 𝐴 d d d
...

... d d d d
...

... d d d d
...

... d d d 𝐴 𝐵

𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵 𝐴

)
)
)
)
)
)
)
)
)
)

)

=
1

(𝑟 (𝑚 + 𝑛))
2
[det (𝐴 − 𝐵)]

𝑟−1

[det (𝐴 + (𝑟 − 1) 𝐵)]

=
1

𝑟2(𝑚 + 𝑛)
2

×

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑛+ 𝑟 0 ⋅ ⋅ ⋅ 0 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

0 d d
...

... d d
...

... d d 0
... d d

...
0 ⋅ ⋅ ⋅ 0 𝑛 + 𝑟 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 𝑚 + 𝑟 0 ⋅ ⋅ ⋅ 0

... d d
... 0 d d

...
... d d

...
... d d 0

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 0 ⋅ ⋅ ⋅ 0 𝑚 + 𝑟

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

𝑟−1

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑛+ 𝑟 𝑟 ⋅ ⋅ ⋅ 𝑟 (𝑟 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑟 − 1)

𝑟 d d
...

... d d
...

... d d 𝑟
... d d

...
𝑟 ⋅ ⋅ ⋅ 𝑟 𝑛 + 𝑟 (𝑟 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑟 − 1)

(𝑟 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑟 − 1) 𝑚 + 𝑟 𝑟 ⋅ ⋅ ⋅ 𝑟

... d d
... 𝑟 d d

...
... d d

...
... d d 𝑟

(𝑟 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑟 − 1) 𝑟 ⋅ ⋅ ⋅ 𝑟 𝑚 + 𝑟

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

𝑟2(𝑚 + 𝑛)
2
(det(

𝐴 𝐵

𝐵
𝑇

𝐶
))

𝑟−1

× det(
𝐷 𝐸

𝐸
𝑇

𝐹
) .

(10)
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Using Lemma 4, we obtain

𝜏 (𝐾
𝑟
× 𝐾
𝑚,𝑛
) =

1

𝑟2(𝑚 + 𝑛)
2
× (det𝐴)𝑟−1(det (𝐶 − 𝐵𝑇𝐴−1𝐵))

𝑟−1

× det𝐷 det (𝐹 − 𝐸𝑇𝐷−1𝐸)

=
1

𝑟2(𝑚 + 𝑛)
2
(det(

𝑛+ 𝑟 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 𝑛 + 𝑟

)

𝑚×𝑚

)

𝑟−1

×

(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(

(

𝑛(𝑚 + 𝑟) + (𝑟 − 1)𝑚 + 𝑟
2

𝑛 + 𝑟

−𝑚

𝑛 + 𝑟
⋅ ⋅ ⋅

−𝑚

𝑛 + 𝑟

−𝑚

𝑛 + 𝑟
d d

...

... d d
−𝑚

𝑛 + 𝑟

−𝑚

𝑛 + 𝑟
⋅ ⋅ ⋅

−𝑚

𝑛 + 𝑟

𝑛(𝑚 + 𝑟) + (𝑟 − 1)𝑚 + 𝑟
2

𝑛 + 𝑟

)
)
)
)
)
)
)

)𝑛×𝑛

)
)
)
)
)
)
)

)

𝑟−1

× det
(
(
(

(

𝑛+ 𝑟 𝑟 ⋅ ⋅ ⋅ 𝑟

𝑟 d d
...

... d d 𝑟

𝑟 ⋅ ⋅ ⋅ 𝑟 𝑛 + 𝑟

)
)
)

)𝑚×𝑚

× det

(
(
(
(
(
(
(

(

𝑛(𝑚 + 𝑟) + 𝑟𝑚
2

+ (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑟𝑛 + (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
⋅ ⋅ ⋅

𝑟𝑛 + (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑟𝑛 + (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
d d

...

... d d
𝑟𝑛 + (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑟𝑛 + (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
⋅ ⋅ ⋅

𝑟𝑛 + (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑛 (𝑚 + 𝑟) + 𝑟𝑚
2

+ (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

)
)
)
)
)
)
)

)𝑛×𝑛

=
1

𝑟2(𝑚 + 𝑛)
2
(𝑛 + 𝑟)

𝑚(𝑟−1)

(
−𝑚

𝑛 + 𝑟
)

𝑛(𝑟−1)

×

(
(
(
(
(
(

(

det
(
(
(
(
(
(

(

𝑛(𝑚 + 𝑟) + (𝑟 − 1)𝑚 + 𝑟
2

−𝑚
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
𝑛(𝑚 + 𝑟) + (𝑟 − 1)𝑚 + 𝑟

2

−𝑚

)
)
)
)
)
)

)𝑛×𝑛

)
)
)
)
)
)

)

𝑟−1
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× 𝑟
𝑚 det

(
(
(
(

(

𝑛+ 𝑟

𝑟
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
𝑛 + 𝑟

𝑟

)
)
)
)

)
𝑚×𝑚

× (
𝑟𝑛 + (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
)

𝑛

× det
(
(
(
(
(
(

(

𝑛(𝑚 + 𝑟) + 𝑟𝑚
2

+ (2𝑟 − 1)𝑚

𝑟𝑛 + (2𝑟 − 1)𝑚
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
𝑛 (𝑚 + 𝑟) + 𝑟𝑚

2

+ (2𝑟 − 1)𝑚

𝑟𝑛 + (2𝑟 − 1)𝑚

)
)
)
)
)
)

)𝑛×𝑛

.

(11)

Using Lemma 2, we have

𝜏 (𝐾
𝑟
× 𝐾
𝑚,𝑛
)

=
1

𝑟2(𝑚 + 𝑛)
2
× (𝑛 + 𝑟)

𝑚(𝑟−1)

× (
−𝑚

𝑛 + 𝑟
)

𝑛(𝑟−1)

[−
𝑛𝑚 + 𝑟𝑛 + (𝑟 − 1)𝑚 + 𝑟

2

𝑚
+ 𝑛 − 1]

𝑟−1

× [−
𝑛𝑚 + 𝑟𝑛 + (𝑟 − 1)𝑚 + 𝑟

2

𝑚
− 1]

(𝑟−1)(𝑛−1)

× 𝑟
𝑚

(
𝑛 + 𝑟

𝑟
+ 𝑚 − 1)(

𝑛 + 𝑟

𝑟
− 1)

𝑚−1

× (
𝑛𝑟 + (2𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
)

𝑛

× [
𝑛 (𝑚 + 𝑟) + 𝑟𝑚

2

+ (2𝑟 − 1)𝑚

𝑟𝑛 + (2𝑟 − 1)𝑚
+ 𝑛 − 1]

× [
𝑛(𝑚 + 𝑟) + 𝑟𝑚

2

+ (2𝑟 − 1)𝑚

𝑟𝑛 + (2𝑟 − 1)𝑚
− 1]

(𝑛−1)

=
1

𝑟2(𝑚 + 𝑛)
2
× 𝑟
𝑟−1

(𝑛 + 𝑟)
(𝑚−𝑛)(𝑟−1)

× (𝑚 + 𝑛 + 𝑟)
𝑟−1

× (𝑟𝑚 + 𝑟𝑛 + 𝑚𝑛 + 𝑟
2

)
(𝑟−1)(𝑛−1)

× (𝑛 + 𝑟𝑚) × 𝑛
𝑚−1

×
1

(𝑛 + 𝑟𝑚)
𝑛
× 𝑟(𝑚 + 𝑛)

2

× (𝑛 + 𝑟𝑚)
𝑛−1

× 𝑚
𝑛−1

= 𝑟
𝑟−2

× (𝑛 + 𝑟)
(𝑚−𝑛)(𝑟−1)

× 𝑚
𝑛−1

× 𝑛
𝑚−1

× (𝑚 + 𝑛 + 𝑟)
𝑟−1

× (𝑟𝑚 + 𝑟𝑛 + 𝑚𝑛 + 𝑟
2

)
(𝑟−1)(𝑛−1)

= 𝑟
𝑟−2

× 𝑚
𝑛−1

× 𝑛
𝑚−1

× (𝑚 + 𝑟)
(𝑟−1)(𝑛−1)

× (𝑛 + 𝑟)
(𝑟−1)(𝑚−1)

× (𝑚 + 𝑛 + 𝑟)
𝑟−1

.

(12)

Specially,

𝜏 (𝐾
𝑟
× 𝐾
𝑛,𝑛
) = 𝑟
𝑟−2

× 𝑛
2𝑛−2

× (2𝑛 + 𝑟)
𝑟−1

× (𝑛 + 𝑟)
2(𝑟−1)(𝑛−1)

; 𝑛 ≥ 1.

(13)

3. Number of Spanning Trees of Normal
Product of Graphs

The normal product, or the strong product, 𝐺
1
∘ 𝐺
2
, of two

graphs 𝐺
1
and 𝐺

2
is the simple graph with𝑉(𝐺

1
∘ 𝐺
2
) = 𝑉
1
×

𝑉
2
, where (𝑢

1
, 𝑢
2
) and (V

1
, V
2
) are adjacent in 𝐺

1
∘ 𝐺
2
if and

only if either 𝑢
1
= V
1
and 𝑢
2
is adjacent to V

2
, or 𝑢
1
is adjacent

to V
1
and 𝑢

2
= V
2
, or 𝑢
1
is adjacent to V

1
and 𝑢

2
is adjacent to

V
2
, [24].

Theorem 6. For𝑚, 𝑛 ≥ 1 and 𝑟 ≥ 2, we have

𝜏 (𝐾
𝑟
∘ 𝐾
𝑚,𝑛
) = 𝑟
𝑟𝑚+𝑟𝑛−2

𝑚
𝑛−1

𝑛
𝑚−1

× (𝑚 + 1)
𝑛(𝑟−1)

(𝑛 + 1)
𝑚(𝑟−1)

.

(14)
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Proof. Applying Lemma 1, we have

𝜏 (𝐾
𝑟
∘ 𝐾
𝑚,𝑛
)

=
1

(𝑟 (𝑚 + 𝑛))
2
det (𝑟 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

𝑟2(𝑚 + 𝑛)
2

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑟(𝑛 + 1) 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...

... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 𝑟 (𝑛 + 1) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟 (𝑚 + 1) 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑟 (𝑚 + 1) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 d d
...

... d d
...

... d d
...

... d d 1

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
... 1 d d

...
... d d

...

... d d
...

... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...

... d d
...

... d d
...

... d d 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
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0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 d d
...

... d d
...

... d d
...

... d d 1

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟 (𝑛 + 1) 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑟 (𝑛 + 1) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟 (𝑚 + 1) 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d
... 1 d d

...
... d d 1

... d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑟 (𝑚 + 1)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(15)

Using Lemma 3, we get

𝜏 (𝐾
𝑟
∘ 𝐾
𝑚,𝑛
)

=
1

𝑟2(𝑚 + 𝑛)
2
× det

(
(
(
(
(
(
(
(
(
(

(

𝐴 𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵

𝐵 𝐴 d d d
...

... d d d d
...

... d d d d
...

... d d d 𝐴 𝐵

𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵 𝐴

)
)
)
)
)
)
)
)
)
)

)
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=
1

(𝑟 (𝑚 + 𝑛))
2
[det (𝐴 − 𝐵)]

𝑟−1

[det (𝐴 + (𝑟 − 1) 𝐵)]

=
1

𝑟2(𝑚 + 𝑛)
2

(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(

(

𝑟(𝑛 + 1) 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 d d
...

... d d
...

... d d 0
... d d

...
0 ⋅ ⋅ ⋅ 0 𝑟(𝑛 + 1) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟(𝑚 + 1) 0 ⋅ ⋅ ⋅ 0

... d d
... 0 d d

...
... d d

...
... d d 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 𝑟(𝑚 + 1)

)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)

)

𝑟−1

× det

(
(
(
(
(
(
(
(
(

(

𝑟(𝑛 + 1) 𝑟 ⋅ ⋅ ⋅ 𝑟 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝑟 d d
...

... d d
...

... d d 𝑟
... d d

...
𝑟 ⋅ ⋅ ⋅ 𝑟 𝑟 (𝑛 + 1) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟 (𝑚 + 1) 𝑟 ⋅ ⋅ ⋅ 𝑟

... d d
... 𝑟 d d

...
... d d

...
... d d 𝑟

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟 ⋅ ⋅ ⋅ 𝑟 𝑟 (𝑚 + 1)

)
)
)
)
)
)
)
)
)

)

=
1

𝑟2(𝑚 + 𝑛)
2
(det(

𝑟(𝑛 + 1) 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 𝑟(𝑛 + 1)

)

𝑚×𝑚

)

𝑟−1

×(det(

𝑟(𝑚 + 1) 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 𝑟(𝑚 + 1)

)

𝑛×𝑛

)

𝑟−1

× det(

𝑟(𝑛 + 1) 𝑟 ⋅ ⋅ ⋅ 𝑟

𝑟 d d
...

... d d 𝑟

𝑟 ⋅ ⋅ ⋅ 𝑟 𝑟 (𝑛 + 1)

)

𝑚×𝑚

× det(

𝑟(𝑚 + 1) 𝑟 ⋅ ⋅ ⋅ 𝑟

𝑟 d d
...

... d d 𝑟

𝑟 ⋅ ⋅ ⋅ 𝑟 𝑟 (𝑚 + 1)

)

𝑛×𝑛

.

(16)

Using Lemma 2, we obtain

𝜏 (𝐾
𝑟
∘ 𝐾
𝑚,𝑛
)

=
1

𝑟2(𝑚 + 𝑛)
2
(𝑟 (𝑛 + 1))

𝑚(𝑟−1)

(𝑟 (𝑚 + 1))
𝑛(𝑟−1)

× (𝑟
𝑚

× (𝑛 + 𝑚) × 𝑛
𝑚−1

) (𝑟
𝑛

× (𝑛 + 𝑚) × 𝑚
𝑛−1

)

= 𝑟
𝑟(𝑚+𝑛)−2

𝑚
𝑛−1

𝑛
𝑚−1

(𝑚 + 1)
𝑛(𝑟−1)

(𝑛 + 1)
𝑚(𝑟−1)

.

(17)

Specially,
𝜏 (𝐾
𝑟
∘ 𝐾
𝑛,𝑛
) = 𝑟
2(𝑟𝑛−1)

× 𝑛
2(𝑛−1)

× (𝑛 + 1)
2𝑛(𝑟−1)

; 𝑛 ≥ 1.

(18)

4. Number of Spanning Trees of
Composition Product of Graphs

The composition, or lexicographic product, 𝐺
1
[𝐺
2
], of two

graphs𝐺
1
and𝐺

2
is the simple graphwith𝑉

1
×𝑉
2
as the vertex

set in which the vertices (𝑢
1
, 𝑢
2
) and (V

1
, V
2
) are adjacent if

either 𝑢
1
is adjacent to V

1
or 𝑢
1
= V
1
and 𝑢

2
is adjacent to V

2

in 𝐺
2
[24].
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Theorem 7. For𝑚, 𝑛 ≥ 1 and 𝑟 ≥ 2, we get

𝜏 (𝐾
𝑟
[𝐾
𝑚,𝑛
]) = 𝑟

2(𝑟−1)

(𝑚 + 𝑛)
2(𝑟−1)

(𝑟𝑚 + 𝑟𝑛 − 𝑚)
𝑟(𝑚−1)

× (𝑟𝑚 + 𝑟𝑛 − 𝑛)
𝑟(𝑛−1)

.

(19)

Proof. Applying Lemma 1, we have

𝜏 (𝐾
𝑟
[𝐾
𝑚,𝑛
])

=
1

𝑟2(𝑚 + 𝑛)
2

×

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑟𝑛 + (𝑟 − 1)𝑚 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d 1
... d d

...

1 ⋅ ⋅ ⋅ 1 𝑟𝑛 + (𝑟 − 1)𝑚 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟𝑚 + (𝑟 − 1) 𝑛 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑟𝑚 + (𝑟 − 1) 𝑛 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

𝑟

=
1

𝑟2(𝑚 + 𝑛)
2

(
(

(

det((

(

𝑟𝑛 + (𝑟 − 1)𝑚 + 1 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 𝑟𝑛 + (𝑟 − 1)𝑚 + 1

)
)

)𝑚×𝑚

)
)

)

𝑟

×
(
(

(

det((

(

𝑟𝑚 + (𝑟 − 1) 𝑛 + 1 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 𝑟𝑚 + (𝑟 − 1) 𝑛 + 1

)
)

)𝑛×𝑛

)
)

)

𝑟

.

(20)

Using Lemma 2, we obtain

𝜏 (𝐾
𝑟
[𝐾
𝑚,𝑛
]) = 𝑟

2(𝑟−1)

(𝑚 + 𝑛)
2(𝑟−1)

× (𝑟𝑚 + 𝑟𝑛 − 𝑚)
𝑟(𝑚−1)

(𝑟𝑚 + 𝑟𝑛 − 𝑛)
𝑟(𝑛−1)

.

(21)
Specially,

𝜏 (𝐾
𝑟
[𝐾
𝑛,𝑛
]) = (2𝑟)

2(𝑟−1)

𝑛
2(𝑟𝑛−1)

(2𝑟 − 1)
2𝑟(𝑛−1)

; 𝑛 ≥ 1.

(22)

5. Complexity of Tensor Product of Graphs

The tensor product, or Kronecker product, 𝐺
1
⊗ 𝐺
2
, of two

graphs 𝐺
1
and 𝐺

2
is the simple graph with𝑉(𝐺

1
⊗𝐺
2
) = 𝑉
1
×

𝑉
2
, where (𝑢

1
, 𝑢
2
) and (V

1
, V
2
) are adjacent in 𝐺

1
⊗ 𝐺
2
if and

only if 𝑢
1
is adjacent to V

1
in 𝐺
1
and 𝑢

2
is adjacent to V

2
in 𝐺
2

[24].

Theorem 8. For𝑚, 𝑛 ≥ 1 and 𝑟 ≥ 2, we have

𝜏 (𝐾
𝑟
⊗ 𝐾
𝑚,𝑛
) = 𝑟
𝑟−2

(𝑟 − 2)
𝑟−1

(𝑟 − 1)
𝑟(𝑚+𝑛−2)+1

𝑚
𝑟𝑛−1

𝑛
𝑟𝑚−1

.

(23)
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Proof. Applying Lemma 1, we get

𝜏 (𝐾
𝑟
⊗ 𝐾
𝑚,𝑛
)

=
1

(𝑟 (𝑚 + 𝑛))
2
det (𝑟 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

𝑟2(𝑚 + 𝑛)
2

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

(𝑟 − 1) 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 d d
...

... d d
...

... d d
...

... d d 1

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ 1 (𝑟 − 1) 𝑛 + 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
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0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 (𝑟 − 1) 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 (𝑟 − 1) 𝑛 + 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(24)

Using Lemma 3, we obtain

𝜏 (𝐾
𝑟
⊗ 𝐾
𝑚,𝑛
)

=
1

𝑟2(𝑚 + 𝑛)
2

det

(
(
(
(
(
(
(
(
(
(

(

𝐴 𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵

𝐵 𝐴 d d d
...

... d d d d
...

... d d d d
...

... d d d 𝐴 𝐵

𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵 𝐴

)
)
)
)
)
)
)
)
)
)

)



Mathematical Problems in Engineering 13

=
1

(𝑟 (𝑚 + 𝑛))
2
[det(𝐴 − 𝐵)]

𝑟−1

[det (𝐴 + (𝑟 − 1) 𝐵)]

=
1

𝑟2(𝑚 + 𝑛)
2

×

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

(𝑟 − 1) 𝑛 0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 d d
...

... d d
...

... d d 0
... d d

...
0 ⋅ ⋅ ⋅ 0 (𝑟 − 1) 𝑛 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 0 ⋅ ⋅ ⋅ 0

... d d
... 0 d d

...
... d d

...
... d d 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0 (𝑟 − 1)𝑚

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

𝑟−1

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

(𝑟 − 1) 𝑛 + 𝑟 𝑟 ⋅ ⋅ ⋅ 𝑟 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

𝑟 d d
...

... d d
...

... d d 𝑟
... d d

...
𝑟 ⋅ ⋅ ⋅ 𝑟 (𝑟 − 1) 𝑛 + 𝑟 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 𝑟 𝑟 ⋅ ⋅ ⋅ 𝑟

... d d
... 𝑟 d d

...
... d d

...
... d d 𝑟

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 𝑟 ⋅ ⋅ ⋅ 𝑟 (𝑟 − 1)𝑚 + 𝑟

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

𝑟2(𝑚 + 𝑛)
2
(det(

𝐴 𝐵

𝐵
𝑇

𝐶
))

𝑟−1

× det(
𝐷 𝐸

𝐸
𝑇

𝐹
) .

(25)

Using Lemma 4, we obtain

𝜏 (𝐾
𝑟
⊗ 𝐾
𝑚,𝑛
)

=
1

𝑟2(𝑚 + 𝑛)
2
× (det𝐴)𝑟−1(det (𝐶 − 𝐵𝑇𝐴−1𝐵))

𝑟−1

× det𝐷 det (𝐹 − 𝐸𝑇𝐷−1𝐸)

=
1

𝑟2(𝑚 + 𝑛)
2

(
(

(

det((

(

(𝑟 − 1) 𝑛 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 (𝑟 − 1) 𝑛

)
)

)𝑚×𝑚

)
)

)

𝑟−1
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×det

(
(
(
(
(
(
(
(
(
(

(

[(𝑟 − 1)
2

𝑚 + (𝑟
2

− 𝑟)] 𝑛 + (𝑟
2

− 𝑟)𝑚
2

+ (𝑟
2

− 1)𝑚

𝑟𝑚 + (𝑟 − 1) 𝑛

(𝑟
2

− 1)𝑚 + (𝑟
2

− 𝑟) 𝑛

𝑟𝑚 + (𝑟 − 1) 𝑛

(𝑟
2

− 1)𝑚 + (𝑟
2

− 𝑟) 𝑛

𝑟𝑚 + (𝑟 − 1) 𝑛
d

... d

(𝑟
2

− 1)𝑚 + (𝑟
2

− 𝑟) 𝑛

𝑟𝑚 + (𝑟 − 1) 𝑛
⋅ ⋅ ⋅

⋅ ⋅ ⋅

(𝑟
2

− 1)𝑚 + (𝑟
2

− 𝑟) 𝑛

𝑟𝑚 + (𝑟 − 1) 𝑛

d
...

d
(𝑟
2

− 1)𝑚 + (𝑟
2

− 𝑟) 𝑛

𝑟𝑚 + (𝑟 − 1) 𝑛

(𝑟
2

− 1)𝑚 + (𝑟
2

− 𝑟) 𝑛

𝑟𝑚 + (𝑟 − 1) 𝑛

[(𝑟 − 1)
2

𝑚 + (𝑟
2

− 𝑟)] 𝑛 + (𝑟
2

− 𝑟)𝑚
2

+ (𝑟
2

− 1)𝑚

𝑟𝑚 + (𝑟 − 1) 𝑛

)
)
)
)
)
)
)
)
)
)

)
𝑛×𝑛

×

(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(

(

𝑚[(𝑟 − 1)
2

𝑛 − 1]

(𝑟 − 1) 𝑛

−𝑚

(𝑟 − 1) 𝑛
⋅ ⋅ ⋅

−𝑚

(𝑟 − 1) 𝑛

−𝑚

(𝑟 − 1)𝑛
d d

...

... d d
−𝑚

(𝑟 − 1) 𝑛

−𝑚

(𝑟 − 1) 𝑛
⋅ ⋅ ⋅

−𝑚

(𝑟 − 1)𝑛

𝑚 [(𝑟 − 1)
2

𝑛 − 1]

(𝑟 − 1) 𝑛

)
)
)
)
)
)
)
)
)

)𝑛×𝑛

)
)
)
)
)
)
)
)
)

)

𝑟−1

× det((

(

(𝑟 − 1) 𝑛 + 𝑟 𝑟 ⋅ ⋅ ⋅ 𝑟

𝑟 d d
...

... d d 𝑟

𝑟 ⋅ ⋅ ⋅ 𝑟 (𝑟 − 1) 𝑛 + 𝑟

)
)

)𝑚×𝑚

=
1

𝑟2(𝑚 + 𝑛)
2
((𝑟 − 1) 𝑛)

𝑚(𝑟−1)

× (
−𝑚

(𝑟 − 1) 𝑛
)

𝑛(𝑟−1)
(
(
(
(
(

(

det
(
(
(
(
(

(

−[(𝑟 − 1)
2

𝑛 − 1] 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 − [(𝑟 − 1)
2

𝑛 − 1]

)
)
)
)
)

)𝑛×𝑛

)
)
)
)
)

)

𝑟−1
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× 𝑟
𝑚 det

(
(
(
(
(
(
(

(

(𝑟 − 1) 𝑛 + 𝑟

𝑟
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
(𝑟 − 1) 𝑛 + 𝑟

𝑟

)
)
)
)
)
)
)

)𝑚×𝑚

× (

(𝑟
2

− 1)𝑚 + (𝑟
2

− 𝑟) 𝑛

𝑟𝑚 + (𝑟 − 1) 𝑛
)

𝑛

× det

(
(
(
(
(
(
(
(
(

(

[(𝑟 − 1)
2

𝑚 + (𝑟
2

− 𝑟)] 𝑛 + (𝑟
2

− 𝑟)𝑚
2

+ (𝑟
2

− 1)𝑚

(𝑟2 − 1)𝑚 + (𝑟2 − 𝑟) 𝑛
1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1
[(𝑟 − 1)

2

𝑚 + (𝑟
2

− 𝑟)]𝑛 + (𝑟
2

− 𝑟)𝑚
2

+ (𝑟
2

− 1)𝑚

(𝑟2 − 1)𝑚 + (𝑟2 − 𝑟) 𝑛

)
)
)
)
)
)
)
)
)

)𝑛×𝑛

.

(26)

Using Lemma 2 yields

𝜏 (𝐾
𝑟
⊗ 𝐾
𝑚,𝑛
)

=
1

𝑟2(𝑚 + 𝑛)
2
× (𝑟 − 1)

(𝑟−1)(𝑚−𝑛)

× 𝑛
(𝑟−1)(𝑚−𝑛)

× 𝑚
𝑛(𝑟−1)

× [𝑟𝑛 (𝑟 − 2)]
𝑟−1

× [𝑛(𝑟 − 1)
2

]
(𝑟−1)(𝑛−1)

× [𝑟𝑚 + (𝑟 − 1) 𝑛]

× [(𝑟 − 1) 𝑛]
𝑚−1

×
1

(𝑟𝑚 + (𝑟 − 1) 𝑛)
𝑛

× [𝑟 (𝑟 − 1) (𝑚 + 𝑛)
2

]

× [𝑚 (𝑟 − 1) (𝑟𝑚 + (𝑟 − 1) 𝑛)]
𝑛−1

= 𝑟
𝑟−2

× (𝑟 − 1)
𝑟(𝑚+𝑛)−2𝑟+1

× (𝑟 − 2)
𝑟−1

× 𝑚
𝑛𝑟−1

× 𝑛
𝑚𝑟−1

.

(27)

Specially,

𝜏 (𝐾
𝑟
⊗ 𝐾
𝑛,𝑛
)

= 𝑟
𝑟−2

× (𝑟 − 2)
𝑟−1

× (𝑟 − 1)
2𝑟(𝑛−1)+1

× 𝑛
2(𝑛𝑟−1)

; 𝑛 ≥ 1.

(28)

6. Number of Spanning Trees of
Symmetric Product of Graphs

The symmetric product, 𝐺
1
⊕ 𝐺
2
, of two graphs 𝐺

1
and 𝐺

2

is the simple graph with𝑉(𝐺
1
⊕𝐺
2
) = 𝑉
1
×𝑉
2
, where (𝑢

1
, 𝑢
2
)

and (V
1
, V
2
) are adjacent in 𝐺

1
⊕ 𝐺
2
if and only if either 𝑢

1

is adjacent to V
1
in 𝐺
1
and 𝑢

2
is not adjacent to V

2
in 𝐺
2
or

𝑢
1
is not adjacent to V

1
in 𝐺
1
and 𝑢

2
is adjacent to V

2
in 𝐺
2

[24].

Theorem 9. For𝑚, 𝑛 ≥ 1 and 𝑟 ≥ 2, we have

𝜏 (𝐾
𝑟
⊕ 𝐾
𝑚,𝑛
)

= 𝑟
𝑟−2

× ((𝑟 − 1)𝑚 + 𝑛)
𝑟(𝑚−1)

× ((𝑟 − 1) 𝑛 + 𝑚)
𝑟(𝑛−1)

× (𝑚
2

+ 𝑛
2

+ 𝑟𝑚𝑛)
𝑟−1

.

(29)
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Proof. Applying Lemma 1, we have

𝜏 (𝐾
𝑟
⊕ 𝐾
𝑚,𝑛
)

=
1

(𝑟 (𝑚 + 𝑛))
2
det (𝑟 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

𝑟2(𝑚 + 𝑛)
2

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

(𝑟 − 1)𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 d d
...

... d d
...

... d d
...

... d d 1

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 (𝑟 − 1) 𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d 1

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 (𝑟 − 1) 𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
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1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d ⋅ ⋅ ⋅

... d d
...

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 (𝑟 − 1) 𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
... 1 d d

...
... d d

...
... d d

...
... d d 1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 (𝑟 − 1) 𝑛 + 𝑚 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(30)

Using Lemma 3, we obtain

𝜏 (𝐾
𝑟
⊕ 𝐾
𝑚,𝑛
)

=
1

𝑟2(𝑚 + 𝑛)
2
det

(
(
(
(
(
(
(
(
(
(

(

𝐴 𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵

𝐵 𝐴 d d d
...

... d d d d
...

... d d d d
...

... d d d 𝐴 𝐵

𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵 𝐴

)
)
)
)
)
)
)
)
)
)

)
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=
1

(𝑟 (𝑚 + 𝑛))
2
[det (𝐴 − 𝐵)]

𝑟−1

[det (𝐴 + (𝑟 − 1) 𝐵)]

=
1

𝑟2(𝑚 + 𝑛)
2

×

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

(𝑟 − 1)𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

1 d d
...

... d d
...

... d d 1
... d d

...

1 ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 𝑛 + 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 (𝑟 − 1) 𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...

... d d
...

... d d 1

−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ 1 (𝑟 − 1) 𝑛 + 𝑚 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

𝑟−1

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

(𝑟 − 1)𝑚 + 𝑛 + 1 1 ⋅ ⋅ ⋅ 1 (𝑟 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑟 − 1)

1 d d
...

... d d
...

... d d 1
... d d

...

1 ⋅ ⋅ ⋅ 1 (𝑟 − 1)𝑚 + 𝑛 + 1 (𝑟 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑟 − 1)

(𝑟 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑟 − 1) (𝑟 − 1) 𝑛 + 𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
... 1 d d

...

... d d
...

... d d 1

(𝑟 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑟 − 1) 1 ⋅ ⋅ ⋅ 1 (𝑟 − 1) 𝑛 + 𝑚 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

𝑟2(𝑚 + 𝑛)
2
(det(

𝐴 𝐵

𝐵
𝑇

𝐶
))

𝑟−1

× det(
𝐷 𝐸

𝐸
𝑇

𝐹
) .

(31)

Using Lemma 4, we get

𝜏 (𝐾
𝑟
⊕ 𝐾
𝑚,𝑛
)

=
1

𝑟2(𝑚 + 𝑛)
2
× (det𝐴)𝑟−1(det (𝐶 − 𝐵𝑇𝐴−1𝐵))

𝑟−1

× det𝐷 det (𝐹 − 𝐸𝑇𝐷−1𝐸)

=
(𝑟𝑚 + 𝑛)

𝑟−1

((𝑟 − 1)𝑚 + 𝑛)
(𝑟−1)(𝑚−1)

𝑟2(𝑛 + 𝑚)
2
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×

(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(

(

(𝑟 − 1) 𝑛
2

+ [(𝑟
2

− 𝑟 + 1)𝑚 + 1] 𝑛 + 𝑟𝑚
2

+ (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑛 + (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑛 + (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
d

... d

𝑛 + (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
⋅ ⋅ ⋅

⋅ ⋅ ⋅
𝑛 + (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

d
...

d
𝑛 + (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑛 + (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

(𝑟 − 1) 𝑛
2

+ [(𝑟
2

− 𝑟 + 1)𝑚 + 1] 𝑛 + 𝑟𝑚
2

+ (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

)
)
)
)
)
)
)

)
𝑛×𝑛

)
)
)
)
)
)
)

)

𝑟−1

× (𝑟𝑚 + 𝑛) ((𝑟 − 1)𝑚 + 𝑛)
𝑚−1

× det

(
(
(
(
(
(
(
(
(

(

(𝑟 − 1) 𝑛
2

+ [(𝑟
2

− 𝑟 + 1)𝑚 + 1] 𝑛 + 𝑟𝑚
2

+ (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑛 + (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑛 + (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
d

... d

𝑛 + (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
⋅ ⋅ ⋅

⋅ ⋅ ⋅
𝑛 + (−𝑟

2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

d
...

d
𝑛 + (−𝑟

2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

𝑛 + (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

(𝑟 − 1)𝑛
2

+ [(𝑟
2

− 𝑟 + 1)𝑚 + 1] 𝑛 + 𝑟𝑚
2

+ (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚

)
)
)
)
)
)
)
)

)
𝑛×𝑛

=
(𝑟𝑚 + 𝑛)

𝑟−1

((𝑟 − 1)𝑚 + 𝑛)
(𝑟−1)(𝑚−1)

𝑟2(𝑛 + 𝑚)
2

× (
𝑛 + (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
)

𝑛(𝑟−1)
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×

(
(
(
(
(

(

det
(
(
(
(
(

(

(𝑟 − 1) 𝑛
2

+ [(𝑟
2

− 𝑟 + 1)𝑚 + 1] 𝑛 + 𝑟𝑚
2

+ (𝑟 − 1)𝑚

𝑛 + (𝑟 − 1)𝑚

1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1

(𝑟 − 1) 𝑛
2

+ [(𝑟
2

− 𝑟 + 1)𝑚 + 1] 𝑛 + 𝑟𝑚
2

+ (𝑟 − 1)𝑚

𝑛 + (𝑟 − 1)𝑚

)
)
)
)
)

)
𝑛×𝑛

)
)
)
)
)

)

𝑟−1

× (𝑟𝑚 + 𝑛) ((𝑟 − 1)𝑚 + 𝑛)
𝑚−1

× (

𝑛 + (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
)

𝑛

× det
(
(
(
(
(

(

(𝑟 − 1)𝑛
2

+ [(𝑟
2

− 𝑟 + 1)𝑚 + 1] 𝑛 + 𝑟𝑚
2

+ (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + (−𝑟
2
+ 3𝑟 − 1)𝑚

1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1

(𝑟 − 1)𝑛
2

+ [(𝑟
2

− 𝑟 + 1)𝑚 + 1]𝑛 + 𝑟𝑚
2

+ (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + (−𝑟
2
+ 3𝑟 − 1)𝑚

)
)
)
)
)

)
𝑛×𝑛

.

(32)

Using Lemma 2, we have

𝜏 (𝐾
𝑟
⊕ 𝐾
𝑚,𝑛
)

=
1

𝑟2(𝑚 + 𝑛)
2
× (𝑟𝑚 + 𝑛)

𝑟−1

× ((𝑟 − 1)𝑚 + 𝑛)
(𝑟−1)(𝑚−1)

× (
𝑛 + (𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
)

(𝑟−1)𝑛

×
1

(𝑛 + (𝑟 − 1)𝑚)
(𝑟−1)𝑛

× (𝑟𝑛
2

+ 𝑟𝑚
2

+ 𝑟
2

𝑛𝑚)
𝑟−1

× (𝑟𝑚
2

+ (𝑟
2

− 𝑟 + 1)𝑛𝑚 + (𝑟 − 1)𝑛
2

)
(𝑟−1)(𝑛−1)

× (𝑟𝑚 + 𝑛) × ((𝑟 − 1)𝑚 + 𝑛)
𝑚−1

× (

𝑛 + (−𝑟
2

+ 3𝑟 − 1)𝑚

𝑛 + 𝑟𝑚
)

𝑛

×
1

(𝑛 + (−𝑟2 + 3𝑟 − 1)𝑚)
𝑛
× (𝑟𝑛
2

+ 𝑟𝑚
2

+ 2𝑟𝑚𝑛)

× (𝑟𝑚
2

+ (𝑟
2

− 𝑟 + 1) 𝑛𝑚 + (𝑟 − 1) 𝑛
2

)
𝑛−1

= 𝑟
𝑟−2

× ((𝑟 − 1)𝑚 + 𝑛)
𝑟(𝑚−1)

× ((𝑟 − 1) 𝑛 + 𝑚)
𝑟(𝑛−1)

× (𝑚
2

+ 𝑛
2

+ 𝑟𝑚𝑛)
𝑟−1

.

(33)

Specially,

𝜏 (𝐾
𝑟
⊕ 𝐾
𝑛,𝑛
) = 𝑟
2𝑟𝑛−𝑟−2

× 𝑛
2𝑟𝑛−2

× (𝑟 + 2)
𝑟−1

; 𝑛 ≥ 1.

(34)

7. Number of Spanning Trees of
Strong Sum of Graphs

Thestrong sum,𝐺
1
∗𝐺
2
, of two graphs𝐺

1
and𝐺

2
is the simple

graph with 𝑉(𝐺
1
∗ 𝐺
2
) = 𝑉
1
× 𝑉
2
where (𝑢

1
, 𝑢
2
) and (V

1
, V
2
)

are adjacent in 𝐺
1
∗𝐺
2
if and only if 𝑢

2
is adjacent to V

2
in 𝐺
2

and either 𝑢
1
is adjacent to V

1
in 𝐺
1
or 𝑢
1
= V
1
[24].

Theorem 10. For𝑚, 𝑛 ≥ 1 and 𝑟 ≥ 2, we have

𝜏 (𝐾
𝑟
∗ 𝐾
𝑚,𝑛
) = 𝑟
(𝑚+𝑛)𝑟−2

× 𝑚
𝑟𝑛−1

× 𝑛
𝑟𝑚−1

. (35)
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Proof. Applying Lemma 1, we have

𝜏 (𝐾
𝑟
∗ 𝐾
𝑚,𝑛
)

=
1

(𝑟 (𝑚 + 𝑛))
2
det (𝑟 (𝑚 + 𝑛) 𝐼 − 𝐷 + 𝐴)

=
1

𝑟2(𝑚 + 𝑛)
2

× det

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
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(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑟𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ 1 𝑟𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟𝑚 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d 1

... d d
...

... d d
...

... d d
...

... d d
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑟𝑚 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
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... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
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... d d
...

... d d
...

... d d
...

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
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... d d
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... d d
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... d d
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... d d
...

... d d
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... d d
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... d d
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... d d
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... d d ⋅ ⋅ ⋅
... d d
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... d d
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0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

... 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟𝑛 + 1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

... d d
...

... d d
...

... d d
...

... d d
... 1 d d

...
... d d

...

... d d
...

... d d
...

... d d
...

... d d
...

... d d 1

... d d
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑟𝑛 + 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟𝑚 + 1 1 ⋅ ⋅ ⋅ 1

... d d
...

... d d
...

... d d
...

... d d
...

... d d
... 1 d d

...

... d d
...

... d d
...

... d d
...

... d d
...

... d d
...

... d d 1

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 𝑟𝑚 + 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.
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Using Lemma 3, we obtain

𝜏 (𝐾
𝑟
∗ 𝐾
𝑚,𝑛
) =

1

𝑟2(𝑚 + 𝑛)
2
det

(
(
(
(
(
(
(
(

(

𝐴 𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵

𝐵 𝐴 d d d
...

... d d d d
...

... d d d d
...

... d d d 𝐴 𝐵

𝐵 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐵 𝐴

)
)
)
)
)
)
)
)

)

=
1

(𝑟(𝑚 + 𝑛))
2
[det(𝐴 − 𝐵)]

𝑟−1

[det (𝐴 + (𝑟 − 1) 𝐵)]

=
1

𝑟2(𝑚 + 𝑛)
2

(
(
(
(
(
(
(
(
(
(
(
(
(

(

det

(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑟𝑛 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 d d
...

... d d
...

... d d 0
... d d

...
0 ⋅ ⋅ ⋅ 0 𝑟𝑛 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟𝑚 0 ⋅ ⋅ ⋅ 0

... d d
... 0 d d

...
... d d

...
... d d 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 𝑟𝑚

)
)
)
)
)
)
)
)
)
)
)
)
)

)

)
)
)
)
)
)
)
)
)
)
)
)
)

)

𝑟−1

× det

(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑟(𝑛 + 1) 𝑟 ⋅ ⋅ ⋅ 𝑟 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝑟 d d
...

... d d
...

... d d 𝑟
... d d

...
𝑟 ⋅ ⋅ ⋅ 𝑟 𝑟 (𝑛 + 1) 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟 (𝑚 + 1) 𝑟 ⋅ ⋅ ⋅ 𝑟

... d d
... 𝑟 d d

...
... d d

...
... d d 𝑟

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑟 ⋅ ⋅ ⋅ 𝑟 𝑟 (𝑚 + 1)

)
)
)
)
)
)
)
)
)
)
)
)
)

)

=
1

𝑟2(𝑚 + 𝑛)
2
[(𝑟𝑛)
𝑚

(𝑟𝑚)
𝑛

]
𝑟−1

× 𝑟
𝑚 det(

(

𝑛+ 1 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 𝑛 + 1

)

)𝑚×𝑚

× 𝑟
𝑛 det(

(

𝑚+ 1 1 ⋅ ⋅ ⋅ 1

1 d d
...

... d d 1

1 ⋅ ⋅ ⋅ 1 𝑚 + 1

)

)𝑛×𝑛

.
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Using Lemma 2, we get

𝜏 (𝐾
𝑟
∗ 𝐾
𝑚,𝑛
) =

1

𝑟2(𝑚 + 𝑛)
2
× 𝑟
(𝑚+𝑛)(𝑟−1)

× 𝑛
𝑚(𝑟−1)

× 𝑚
𝑛(𝑟−1)

× 𝑟
(𝑚+𝑛)

× (𝑛 + 1 + 𝑚 − 1) (𝑛 + 1 − 1)
𝑚−1

× (𝑚 + 1 + 𝑛 − 1) (𝑚 + 1 − 1)
𝑛−1

= 𝑟
(𝑚+𝑛)𝑟−2

× 𝑚
𝑛𝑟−1

× 𝑛
𝑚𝑟−1

.

(38)

Specially,

𝜏 (𝐾
𝑟
∗ 𝐾
𝑛,𝑛
) = (𝑛𝑟)

2(𝑟𝑛−1)

; 𝑛 ≥ 1. (39)

8. Conclusion

Driving formulas for different types of graphs can prove
to be helpful in identifying those graphs that contain the
maximum number of spanning trees. Such an investigation
has practical consequence related to network reliability. Some
computationally hard problems, such as the Steiner tree
problem and the traveling salesperson problem, can be solved
approximately by using spanning trees [25]. Due to the high
dependence of the network design and reliability on the graph
theory we introduced the above important theorems and
lemmas and their proofs.
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[7] G. G. Kirchhoff, “Über die auflösung der gleichungen, auf
welche man be ider Untersuchung der linearen verteilung
galvanischer störme gefuhrt wird,” Annalen der Physik und
Chemie, vol. 72, pp. 497–508, 1847.

[8] A. Cayley, “A theorm on trees,” Quarterly Journal of Mathemat-
ics, vol. 23, pp. 276–378, 1889.
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