
Research Article
A Pruning-Based Disk Scheduling Algorithm for
Heterogeneous I/O Workloads

Taeseok Kim,1 Hyokyung Bahn,2 and Youjip Won3

1 Department of Computer Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
2Department of Computer Science and Engineering, Ewha University, Seoul 120-750, Republic of Korea
3 Division of Electrical and Computer Engineering, Hanyang University, Seoul 133-791, Republic of Korea

Correspondence should be addressed to Hyokyung Bahn; bahn@ewha.ac.kr

Received 26 August 2013; Accepted 24 December 2013; Published 23 March 2014

Academic Editors: R. Baños, S. Xiang, and Z. Yang

Copyright © 2014 Taeseok Kim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In heterogeneous I/O workload environments, disk scheduling algorithms should support different QoS (Quality-of-Service) for
each I/O request. For example, the algorithm should meet the deadlines of real-time requests and at the same time provide
reasonable response time for best-effort requests.This paper presents a novel disk scheduling algorithm called G-SCAN (Grouping-
SCAN) for handling heterogeneous I/O workloads. To find a schedule that satisfies the deadline constraints and seek time
minimization simultaneously, G-SCAN maintains a series of candidate schedules and expands the schedules whenever a new
request arrives. Maintaining these candidate schedules requires excessive spatial and temporal overhead, but G-SCAN reduces
the overhead to a manageable level via pruning the state space using two heuristics. One is grouping that clusters adjacent best-
effort requests into a single scheduling unit and the other is the branch-and-bound strategy that cuts off inefficient or impractical
schedules. Experiments with various synthetic and real-world I/O workloads show that G-SCAN outperforms existing disk
scheduling algorithms significantly in terms of the average response time, throughput, and QoS-guarantees for heterogeneous I/O
workloads. We also show that the overhead of G-SCAN is reasonable for on-line execution.

1. Introduction

As an increasingly large variety of applications are developed
and equipped in modern computer systems, there is a need
to support heterogeneous performance requirements for
each application simultaneously. For example, a deadline-
guaranteed service is required for real-time applications (e.g.,
audio or video playback), while reasonable response time
and high throughput are important for interactive best-effort
applications (e.g., web navigation or file editing). Since these
applications require different QoS- (Quality-of-Service-)
guarantees, an efficient disk scheduling algorithm that can
deal with heterogeneous I/O requests is needed.

Due to themechanical overhead for accessing data in hard
disk-based storage systems, I/O scheduling has been a long-
standing problem for operating system and storage system
designers. An optimal I/O schedule in the traditional disk
scheduling domain usually refers to a sequence of requests
that has minimum scanning time. In order to find this

optimal schedule, all possible request sequences need to be
searched. This is a complicated searching problem which
is known as NP hard [1]. The location of each requested
block is represented as cylinder, head, and sector information.
The distance between two points in this three-dimensional
space does not satisfy the Euclidean property. Therefore, to
obtain an optimal solution, we should enumerate all possible
orderings of a given set of I/O requests. For example, if there
are 𝑛 requests in the I/O request queue, the number of all
possible combinations is 𝑛 factorial. Unfortunately, finding
an optimal schedule from this huge searching space is not
feasible due to the excessive spatial and temporal overhead.
For this reason, most practical scheduling algorithms simply
use deterministic heuristic approaches instead of searching
huge spaces.

Unlike traditional scheduling problems, scheduling in
heterogeneous workload environments is even more com-
plicated because it should meet the deadlines of real-time

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 940850, 17 pages
http://dx.doi.org/10.1155/2014/940850

2 The Scientific World Journal

requests and provide reasonable response times for best-
effort requests, simultaneously. This implies the necessity of
scanning huge search spaces rather than simple deterministic
processes as in traditional scheduling problems. Y.-F. Huang
and J.-M. Huang presented a new approach called MS-EDF
(Minimizing Seek time Earliest Deadline First) that effec-
tively reduces the huge state space to a feasible extent through
the branch-and-bound strategy [2]. Though MS-EDF shows
superior performances, it has some limitations. First, MS-
EDF handles requests in a batch manner and thus it cannot
be practically used for on-line scheduling. Second, MS-EDF
considers only real-time requests, so adopting it directly to
the domain of heterogeneous workload environments is not
possible.

In this paper, we present a novel disk scheduling algo-
rithm called G-SCAN (Grouping-SCAN) for handling het-
erogeneousworkloads.G-SCANresolves the aforementioned
problems by employing an on-line mechanism and several
rules exploiting theQoS requirements of I/O requests. Specif-
ically, G-SCAN first arranges requests in the queue by the
SCAN order and then clusters adjacent best-effort requests
into a group to schedule them together. Then, G-SCAN
reduces the huge searching space to a reasonable extent by
pruning unnecessary schedules using the branch-and-bound
strategy. Experimental results show that G-SCAN performs
better than existing disk scheduling algorithms in terms of
average response time, throughput, and QoS-guarantees for
heterogeneous workload environments. We also show that
the space and time overhead of G-SCAN is reasonable for on-
line execution.

The remainder of this paper is organized as follows.
Section 2 presents the state of the art of disk scheduling
algorithms. In Section 3, the proposed scheduling algorithm,
namely, G-SCAN, is explained in detail. The validation of
G-SCAN is described in Section 4 by extensive experiments.
Finally, we conclude this paper in Section 5.

2. Related Works

Since disk-based storage is always one of the performance
bottlenecks in computer systems, disk scheduling algorithms
have been studied extensively in the last few decades.
Recently, as disks are used as the storage for multimedia data
with soft real-time constraints, I/O scheduling problems have
becomemore complicated. In this section, we classify existing
disk scheduling algorithms into several classes according to
the design purpose.

The first class is throughput-oriented scheduling algo-
rithms. This class of algorithms concentrates on the opti-
mization of disk head movement. SSTF [3], SATF [4], SCAN
[5], and C-SCAN [5] are such examples. Of these, SSTF and
SATF require an elaborate disk model in order to predict
disk seek time or access time, which are not required for
SCAN-like algorithms. This is the reason why SCAN and
its variants such as C-SCAN are widely used in commodity
operating systems. Note that this class of algorithms does not
consider the priority of requests, and thus they do not have
the function of real-time supports.

The second class is real-time scheduling algorithms, and
they again can be classified into two categories: deadline-
based algorithms and round-based algorithms. Deadline-
based algorithms aim at servicing I/O requests within given
deadlines. EDF (Earliest Deadline First) is a representative
algorithm in this category [6]. The concept of EDF comes
from the real-time CPU scheduling technique. As EDF
focuses only on deadlines, it exhibits poor performance in
terms of disk head movement. Hence, a number of policies
have been proposed to reduce the disk head movement of
EDF. They include SCAN-EDF [7, 8], SSEDO/SSEDV [9],
FD-SCAN [10], SCAN-RT [11], DM-SCAN [12], and Kamel’s
algorithm [13].Most of these algorithms combine the features
of EDF and SCAN in order to meet the deadlines of real-
time requests and maximize the disk utilization. However,
since this approach is based on priority, they may induce the
starvation of requests with low priorities.

Round-based algorithms are designed for continuous
media data and they exploit the periodicity of data retrieval
in audio/video playback. They first define the size of round
and service all I/O requests before the round expires. Ran-
gan’s algorithm [14], Grouped Sweep Scheduling (GSS) [15],
Preseeking Sweep algorithm [16], and Chen’s algorithm [17]
can be classified into this category. These algorithms pri-
marily focus on the efficiency of underlying resources rather
than explicitly consider the deadlines of real-time requests.
Instead, deadlines could be satisfied in the round-based
algorithms by careful load control through the admission
control mechanism. These algorithms mandate the in-depth
knowledge of disk internals, such as the number of cylinders,
the number of sectors per cylinder, and the curve function of
seek distance and seek time, which are not usually accessible
from the operating system’s standpoint.

The third class is algorithms for heterogeneous I/O
workloads. During the last years, handling heterogeneous
workloads in a single storage device has become an impor-
tant issue as integrated file systems get momentum as the
choice for next generation file systems. The most famous
work is Cello [18]. Shenoy and Vin proposed the Cello
disk scheduling framework using two-level disk scheduling
architectures: a class-independent scheduler and a set of
class-specific schedulers. Cello first classifies disk requests
into several classes based on their requirement of service.
Then it assigns weights to the application classes and allocates
disk bandwidth to the application classes in proportion to
their weights.Won and Ryu [19],Wijayaratne andNarasimha
Reddy [20], and Tsai et al. [21] also proposed scheduling
strategies for heterogeneous workloads.

More recently, general frameworks that can control dif-
ferent scheduling parameters such as deadline, priority, and
disk utilization were presented. For example, Mokbel et al.
proposedCascaded-SFCwhich provides a unified framework
that can scale scheduling parameters [22]. It models multi-
media I/O requests as points in multidimensional subspaces,
where each dimension represents one of the parameters.
These general scheduling frameworks require many tuning
parameters to be set by the system itself or end users. Povzner
et al. proposed Fahrrad that allows applications to reserve a
fixed fraction of a disk’s utilization [23]. Fahrrad reserves disk

The Scientific World Journal 3

resources in terms of the utilization by using disk time utiliza-
tion and period.They also proposed a multilayered approach
called Horizon to manage QoS in distributed storage systems
[24]. Horizon has an upper-level controlmechanism to assign
deadlines to requests based on workload performance targets
and a low-level disk I/O scheduler deigned to meet deadlines
while maximizing throughput.

Most of the aforementioned scheduling algorithms
employ deterministic approaches. “Deterministic” here
means that the algorithms maintain only a single schedule
to be actually executed, and each time a new request arrives
the schedule is simply updated. Though deterministic
algorithms are effective for fast on-line processing, they have
difficulty in maximizing the performance. For example, a
new request in the futuremay change the order of the optimal
schedule of existing requests, but this cannot be reflected
in deterministic algorithms. Y.-F. Huang and J.-M. Huang
presented MS-EDF (Minimizing Seek time Earliest Deadline
First) for multimedia server environments that is not a
deterministic algorithm [2]. They recognized I/O scheduling
as an NP-hard problem andmade an initial attempt to reduce
the searching space. However, MS-EDF is a kind of off-line
algorithm, so it cannot be adopted directly as the on-line
scheduler of heterogeneous workload environments. Table 1
lists a summary of various disk scheduling algorithms.

3. G-SCAN: A Pruning-Based Disk Scheduling

3.1. Goal and Assumptions. Our goal is to design a disk
scheduling algorithm that satisfies the deadline requirement
of real-time requests and at the same timeminimizes the seek
distance of the disk head as much as possible. In addition
to this, the scheduling algorithm should be feasible to be
implemented; that is, the execution overhead of the algorithm
should be reasonable in terms of both space and time for on-
line execution.

We first classify I/O requests into two classes: real-time
requests and best-effort requests. We assume that each I/O
request 𝑅

𝑖
consists of (𝑑

𝑖
, 𝑡
𝑖
), where 𝑑

𝑖
is the deadline and 𝑡

𝑖
is

the track number of 𝑅
𝑖
on the disk. Real-time requests have

their own deadlines and they can be periodic or aperiodic.
Best-effort requests have no specific deadlines, and thus we
assume their deadlines to be infinite. We also assume that all
requests are independent, which implies that a request does
not synchronize or communicate with other requests and all
requests are nonpreemptive while being serviced in the disk.

Since G-SCAN is an on-line scheduling mechanism, it
should decide the schedule of requests immediately when a
new request arrives or the service of a request is completed.
Though G-SCAN expands existing schedules whenever an
arrival or a departure of a request occurs, it reduces the
searching space significantly by grouping and branch-and-
bound strategies.

3.2. Grouping of Best-Effort Requests. Wegroup adjacent best-
effort requests and consider themas a single request to service
them together. To do this, we arrange the requests in the

queue by the SCAN order and then cluster adjacent best-
effort requests into a group. Since best-effort requests have
no deadlines, it is reasonable to service them together within
a group. This grouping reduces the huge searching space
significantly by removing unnecessary combinations.

Figure 1 illustrates the grouping of adjacent best-effort
requests.There are 11 requests sorted by the SCAN order, and
the searching space is 11 factorial as shown in Figure 1(a). In
this example, for best-effort requests 𝑅

7
, 𝑅
8
, 𝑅
9
, and 𝑅

10
, the

ordered schedule 𝑅
7
→ 𝑅
8
→ 𝑅
9
→ 𝑅
10
or 𝑅
10
→ 𝑅
9
→

𝑅
8
→ 𝑅

7
is always superior to the nonordered schedules

such as 𝑅
7
→ 𝑅

10
→ 𝑅

9
→ 𝑅

8
in terms of the seek

distance.
Figure 1(b) shows the state after grouping adjacent best-

effort requests. Basically, G-SCAN clusters all best-effort
requests between two real-time requests into a single group.
However, if the seek distance between any two best-effort
requests is too long, they are not put together into the same
group. This is because a group that spans too long distance
may decrease the possibility of finding good schedules.
Hence, we put any two adjacent best-effort requests whose
distance is below the threshold 𝜏 into the same group,
where 𝜏 is an experimental parameter. In Figure 1(b), 𝑅

6

and 𝑅
7
belong to separate groups because their distance

is longer than 𝜏. If 𝜏 is large, the number of possible
schedules decreases and thus the searching space becomes
smaller, but the possibility of finding the best schedule also
decreases.

When a new request arrives at the queue,G-SCANgroups
it by the aforementionedmethod. If the new request is a best-
effort one, it may be merged into an existing group, bridge a
gap between two groups, or create a new group. On the other
hand, if the new request is a real-time one, it may split an
existing group or just be inserted by the SCAN order without
any specific actions.

3.3.The Branch-and-Bound Strategy. To reduce the searching
space even more, we employ the branch-and-bound strategy
similar to the approach of Y.-F. Huang and J.-M. Huang [2].
The branch-and-bound strategy is an algorithmic technique
to find an optimal solution in combinatorial optimization
problems by keeping the best solution found so far. If a partial
solution cannot improve at best, it is pruned not to produce
unnecessary combinations any more. Since I/O scheduling
is a typical combinatorial optimization problem, the branch-
and-bound strategy can be effectively used for this problem.

We cut down two kinds of unnecessary schedules from
huge searching spaces using the QoS requirements of het-
erogeneous workloads. The first class is schedules that have
any deadline missed request and the second class is schedules
that incur too long seek time. Figure 2 illustrates an example
of the cutting-down process. Let us assume that 𝑅

1
is a real-

time request with the deadline of 200ms, and 𝑅
2
and 𝑅

3
are

best-effort requests. In this example, for simplicity, we assume
that the seek time of track-to-track is 1ms and the seek time
is proportional to the track distance of the requests. We also
assume that the rotational latency for each request is constant
and do not consider the transfer time because it is very small

4 The Scientific World Journal

Ta
bl
e
1:
A
su
m
m
ar
y
of

di
sk

sc
he
du

lin
g
al
go
rit
hm

s.

A
lg
or
ith

m
Ba

sic
id
ea

Ad
va
nt
ag
e

W
ea
kn

es
s

Ta
rg
et
ap
pl
ic
at
io
ns

SS
TF

Se
rv
ic
er

eq
ue
st
w
ith

sh
or
te
st
se
ek

tim
efi

rs
t

Si
m
pl
et
o
im

pl
em

en
t;

hi
gh

th
ro
ug

hp
ut

H
ig
h
va
ria

tio
n
of

re
sp
on

se
tim

e

Be
st-

eff
or
ta
pp

lic
at
io
ns

SA
TF

Se
rv
ic
er

eq
ue
st
w
ith

sh
or
te
st
ac
ce
ss
tim

e
(in

clu
di
ng

ro
ta
tio

na
ll
at
en
cy
)fi

rs
t

H
ig
h
th
ro
ug

hp
ut

Re
qu

ire
kn

ow
le
dg
eo

fd
isk

st
ru
ct
ur
e

SC
A
N

Sc
an

in
on

ed
ire

ct
io
n
an
d
se
rv
ic
ea

ll
re
qu

es
ts
by

tr
ac
k
nu

m
be
ro

rd
er

an
d
ch
an
ge

th
ed

ire
ct
io
n
of

sc
an

Si
m
pl
et
o
im

pl
em

en
t;

hi
gh

th
ro
ug

hp
ut

C
on

sid
er

on
ly
be
st-

eff
or
tr
eq
ue
sts

C-
SC

A
N

Va
ria

nt
of

SC
A
N
th
at
al
w
ay
ss
ca
ns

in
on

e
di
re
ct
io
n

Si
m
pl
et
o
im

pl
em

en
t;
hi
gh

th
ro
ug

hp
ut
;

lo
w
va
ria

tio
n
of

re
sp
on

se
tim

e
C
on

sid
er

on
ly
be
st-

eff
or
tr
eq
ue
sts

ED
F

Se
rv
ic
er

eq
ue
st
w
ith

Ea
rli
es
tD

ea
dl
in
eF

irs
t

Si
m
pl
es
tt
o
im

pl
em

en
ti
n
re
al
-ti
m
e

en
vi
ro
nm

en
t

Lo
w
di
sk

ut
ili
za
tio

n

Re
al
-ti
m
ea

pp
lic
at
io
ns

SC
A
N
-E
D
F

Se
rv
ic
eE

D
F
or
de
ra

nd
us
eS

CA
N
as

at
ie
br
ea
ke
r

Si
m
pl
et
o
im

pl
em

en
t

Po
ss
ib
le
to

de
ge
ne
ra
te
in
to

ED
F

SS
ED

O
/

SS
ED

V
C
on

sid
er

bo
th

de
ad
lin

ea
nd

se
ek

tim
e,
bu

tp
ut

m
or
ew

ei
gh
to

n
de
ad
lin

e
C
on

sid
er

bo
th

de
ad
lin

ea
nd

se
ek

tim
e

Re
qu

ire
pa
ra
m
et
er

tu
ni
ng

FD
-S
CA

N
M
ov
eh

ea
d
to
w
ar
ds

th
er

eq
ue
st
w
ith

ea
rli
es
t

fe
as
ib
le
de
ad
lin

e;
se
rv
ic
er

eq
ue
sts

on
th
ew

ay
C
on

sid
er

fe
as
ib
ili
ty
of

re
al
-ti
m
e

re
qu

es
ts

M
ay

in
cu
rm

an
y
de
ad
lin

em
iss

es
;

hi
gh

ov
er
he
ad

SC
A
N
-R
T

Ba
sic

al
ly
SC

A
N
;i
ns
er
tn

ew
re
qu

es
to

nl
y
if
it
do

es
no

tv
io
lat
et
he

de
ad
lin

es
of

pe
nd

in
g
re
qu

es
ts

Em
pl
oy

SC
A
N
co
ns
id
er
in
g
de
ad
lin

e
N
ot

co
ns
id
er

di
ffe
re
nt

pr
io
rit
y
le
ve
lo
f

re
qu

es
ts

D
M
-S
CA

N
Ap

pl
y
SC

A
N
by

un
ify

in
g
de
ad
lin

es
of

re
qu

es
ts

w
ith

in
m
ax
im

um
sc
an
na
bl
eg

ro
up

Em
pl
oy

SC
A
N
co
ns
id
er
in
g
de
ad
lin

e
Po

ss
ib
le
to

de
ge
ne
ra
te
in
to

ED
F

Ka
m
el’
s

Ba
sic

al
ly
SC

A
N
;i
ns
er
tn

ew
re
qu

es
tc
on

sid
er
in
g

de
ad
lin

ea
nd

pr
io
rit
y

C
on

sid
er

di
ffe
re
nt

pr
io
rit
y
le
ve
l;

de
ad
lin

eg
ua
ra
nt
ee

Im
m
at
ur
eh

an
dl
in
g
of

re
qu

es
ts
in

ne
xt

ro
un

d

M
S-
ED

F
Fi
nd

ag
lo
ba
lo
pt
im

al
sc
he
du

le
us
in
g

br
an
ch
-a
nd

-b
ou

nd
sc
he
m
e

G
lo
ba
ls
ea
rc
h
of

an
op

tim
al
sc
he
du

le
;

hi
gh

pe
rfo

rm
an
ce

O
nl
y
fo
rr
ea
l-t
im

er
eq
ue
sts

;o
ff-
lin

e
m
ec
ha
ni
sm

Ra
ng

an
’s

A
fix
ed
-o
rd
er

cy
cli
ca
ls
ch
ed
ul
in
g
str

at
eg
y

Em
pl
oy

an
ela

bo
ra
te
di
sk

m
od

el
N
ot

ha
nd

le
fr
am

e-
or
ie
nt
ed

da
ta

M
ul
tim

ed
ia
st
re
am

in
g

ap
pl
ic
at
io
ns

G
SS

As
sig

n
th
ej
oi
nt

de
ad
lin

et
o
ea
ch

gr
ou

p
of

str
ea
m
s;

ea
ch

gr
ou

p
is
se
rv
ic
ed

in
afi

xe
d
or
de
ri
n
ar

ou
nd

Si
m
pl
et
o
im

pl
em

en
t;
ob

ta
in

hi
gh

th
ro
ug

hp
ut

by
us
in
g
SC

A
N
w
ith

in
ea
ch

ro
un

d
Re

qu
ire

gr
ou

p
siz

et
un

in
g

Pr
es
ee
ki
ng

sw
ee
p

Sp
lit

str
ea
m

da
ta
re
qu

es
ts
in
to

m
ul
tip

le
fr
ag
m
en
ts

O
bt
ai
n
hi
gh

th
ro
ug

hp
ut

by
em

pl
oy
in
g

an
el
ab
or
at
ed

isk
m
od

el
Re

qu
ire

kn
ow

le
dg
eo

fd
isk

st
ru
ct
ur
e

Ch
en
’s

M
od

ify
ro
un

d-
ro
bi
n
sc
he
du

lin
g
to

pr
ov
id
e

st
at
ist
ic
al
gu

ar
an
te
es

to
cli
en
ts

U
se
fu
lw

he
n
pl
ay
ba
ck

gu
ar
an
te
ei
sn

ot
ne
ce
ss
ar
y

Re
qu

ire
co
m
pl
ic
at
ed

st
at
ist
ic
al
an
al
ys
is

The Scientific World Journal 5

Ta
bl
e
1:
C
on

tin
ue
d.

A
lg
or
ith

m
Ba

sic
id
ea

Ad
va
nt
ag
e

W
ea
kn

es
s

Ta
rg
et
ap
pl
ic
at
io
ns

C
el
lo

Tw
o-
le
ve
ld

isk
sc
he
du

lin
g
fr
am

ew
or
k:
a

cla
ss
-in

de
pe
nd

en
ts
ch
ed
ul
er

an
d
as

et
of

cla
ss
-s
pe
ci
fic

sc
he
du

le
rs

G
ua
ra
nt
ee

pr
ed
efi
ne
d
di
sk

ba
nd

w
id
th

fo
re

ac
h
cla

ss
N
ot

gu
ar
an
te
et
he

jit
te
r-
fre

ep
la
yb
ac
k

of
m
ul
tim

ed
ia

Ap
pl
ic
at
io
ns

w
ith

he
te
ro
ge
ne
ou

sw
or
kl
oa
ds

Re
dd

y’s
Si
m
ila
rt
o
C
el
lo
;e
m
pl
oy

ad
m
iss

io
n
co
nt
ro
lle
ra

s
w
el
la
ss
ch
ed
ul
er

C
on

sid
er

ad
m
iss
io
n
co
nt
ro
lle
ra

nd
V
BR

str
ea
m
s

Re
qu

ire
kn

ow
le
dg
eo

fd
isk

st
ru
ct
ur
e

W
on
’s

A
llo

ca
te
so
m
eb

an
dw

id
th

to
be
st-

eff
or
tr
eq
ue
sts

by
ex
te
nd

in
g
th
el
en
gt
h
of

ro
un

d
C
on

sid
er

bu
ffe
rr
eq
ui
re
m
en
tf
or

jit
te
r-
fre

ep
la
yb
ac
k
of

m
ul
tim

ed
ia

Re
qu

ire
kn

ow
le
dg
eo

fd
isk

st
ru
ct
ur
e

W
RR

-S
CA

N
A
llo

ca
te
di
sk

ba
nd

w
id
th

to
pr
io
rit
iz
ed

ta
sk

gr
ou

ps
an
d
se
rv
ic
er

eq
ue
sts

in
th
eg

ro
up

by
SC

A
N

G
ua
ra
nt
ee

m
in
im

al
di
sk

ba
nd

w
id
th

fo
r

ap
er
io
di
ct
as
ks

Re
qu

ire
kn

ow
le
dg
eo

fd
isk

st
ru
ct
ur
e

Ca
sc
ad
ed
-S
FC

U
ni
fie
d
fr
am

ew
or
k
co
ns
id
er
in
g
va
rio

us
sc
he
du

lin
g
pa
ra
m
et
er
s

C
on

sid
er

al
ls
ch
ed
ul
in
g
pa
ra
m
et
er
s;

ap
pl
ic
ab
le
to

va
rio

us
en
vi
ro
nm

en
ts

Re
qu

ire
pa
ra
m
et
er

tu
ni
ng

Fa
hr
ra
d

Re
se
rv
ed

isk
ba
nd

w
id
th

ba
se
d
on

di
sk

tim
e

ut
ili
za
tio

n
Fu

lly
re
se
rv
et
he

di
sk

ba
nd

w
id
th

fo
r

di
ffe
re
nt

ap
pl
ic
at
io
ns

Le
ss
effi

ci
en
ti
n
sm

al
lb
ur
sty

w
or
kl
oa
d

w
ith

lo
w
-la

te
nc
y
ta
rg
et
s

H
or
iz
on

Tw
o-
lay

er
ed

ap
pr
oa
ch
:u
pp

er
le
ve
lf
or

de
ad
lin

e
as
sig

nm
en
ta
nd

lo
w
er

le
ve
lf
or

sc
he
du

lin
g

Sc
he
du

le
re
qu

es
ts
ba
se
d
on

th
ei
r

ex
pe
ct
ed

di
sk

se
rv
ic
et
im

e
La
ck

of
ha
rd

re
al
-ti
m
es

up
po

rt
s

6 The Scientific World Journal

Inner track Outer track
11 factorial

The number of schedules
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

Real-time request

Best-effort request

Group of best-effort requests

(a)

 6 factorial

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

𝜏

Real-time request

Best-effort request

Group of best-effort requests

G1
G2

G3

(b)

Figure 1: An example of grouping best-effort requests located closely to each other. In (a), the number of all possible combinations before
grouping is 11 factorial. On the other hand, as in (b), the number of all possible combinations after grouping becomes 6 factorial.

10

Current
head

position

0 10070

R2(∞, 10) R3(∞, 70) R1(200, 100)

(a) Requests 𝑅𝑖(𝑑𝑖, 𝑡𝑖) in the queue: 𝑑𝑖 is the deadline and 𝑡𝑖 is the track number

Root
Level

1

2

3

Seek time Seek time Seek time Seek time Seek time Seek time

(R2, R1) (R1, R2)

(R3, R2, R1) (R2, R3, R1) (R2, R1, R3) (R3, R1, R2) (R1, R3, R2) (R1, R2, R3)

(R1)

= 70 + 60 + 90 = 10 + 60 + 30 = 10 + 90 + 30 = 70 + 30 + 90 = 100 + 30 + 60 = 100 + 90 + 60

S1 S2 S3 S4 S5 S6

= 220ms = 100ms = 130ms = 190ms = 190ms = 250ms

(b) All possible schedules: node (𝑅𝑖, 𝑅𝑗, 𝑅𝑘) denotes the scheduling order of 𝑅𝑖 → 𝑅𝑗 → 𝑅𝑘

Figure 2: An example for pruning.There are three requests 𝑅
1
, 𝑅
2
, and 𝑅

3
in the queue. Schedules 𝑆

1
and 𝑆

6
can be pruned because 𝑆

1
misses

the deadline 200ms of 𝑅
1
, and 𝑆

6
incurs too long seek times.

compared to the seek time and the rotational latency. Note
that these factors are considered in the experiment section.

In Figure 2(b), level denotes the number of requests in
the queue. For example, when the level is 3, the searching
space is 3 factorial. Among all possible combinations, some
schedules can be removed from this tree structure. For
example, schedule 𝑆

1
can be removed because request 𝑅

1
in

schedule 𝑆
1
cannot meet its deadline of 200ms. Note that

any schedules inherited from this schedule cannot also satisfy

the deadline constraints, which we will show in Theorem 1.
Schedule 𝑆

6
can also be removed because it incurs too long

seek time. A concrete yardstick for “too large” here will
be given more clearly in Theorem 2. As a result, practical
searches for finding the best schedule can be performed only
with the remaining schedules. An optimal schedule in this
example is 𝑆

2
, because its seek time is shortest among the

schedules satisfying the deadline requirement of real-time
requests.

The Scientific World Journal 7

Now, we will show why the two classes of schedules and
their successors cannot produce an optimal schedule and thus
can be pruned. These two pruning conditions can be proved
through the following two theorems.

Theorem 1. If a schedule does not meet the deadline of any
real-time request, then all new schedules inherited from that
schedule will not also meet the deadlines.

Proof. Let us assume that there is a schedule with the request
order (. . . , 𝑅

𝑖
, . . .), where 1 ≤ 𝑖 ≤ 𝑛, that cannot meet the

deadline of 𝑅
𝑖
. When a new request 𝑅

𝑛+1
arrives, G-SCAN

expands existing schedules by inserting 𝑅
𝑛+1

into positions
either before or after 𝑅

𝑖
, that is, (. . . , 𝑅

𝑛+1
, . . . , 𝑅

𝑖
, . . .) or

(. . . , 𝑅
𝑖
, . . . , 𝑅

𝑛+1
, . . .). In the latter case that 𝑅

𝑛+1
is serviced

later than 𝑅
𝑖
, the service time of 𝑅

𝑖
does not change at all, and

thus𝑅
𝑖
still misses the deadline. In the former case that𝑅

𝑛+1
is

serviced earlier than 𝑅
𝑖
, the seek time of 𝑅

𝑖
will not obviously

be reduced. Hence, the schedule cannot meet the deadline of
𝑅
𝑖
.

Theorem 2. Assume that there are 𝑛 requests in the queue and
the seek time of a schedule 𝑆

𝑖
(𝑛) is longer than that of an optimal

schedule 𝑆opt(𝑛) for a full sweep time of the disk head.Then, any
schedule 𝑆

𝑖
(𝑛 + 1) expanded from 𝑆

𝑖
(𝑛) due to the arrival of a

new request cannot be an optimal schedule.

Proof. Let 𝐶opt(𝑛) and 𝐶𝑖(𝑛) be the seek time of 𝑆opt(𝑛) and
𝑆
𝑖
(𝑛), respectively. Then, by the assumption of this theorem,

the following expression holds:

𝐶
𝑖 (
𝑛) − 𝐶opt (𝑛) > 𝐶sweep, (1)

where 𝐶sweep is the seek time of a full disk head sweep.
Similarly, let 𝑆opt(𝑛 + 1) be an optimal schedule after arriving
(𝑛 + 1)th request, and let 𝐶

𝑖
(𝑛 + 1) and 𝐶opt(𝑛 + 1) be the seek

time of 𝑆
𝑖
(𝑛+ 1) and 𝑆opt(𝑛+ 1), respectively. Since 𝑆𝑖(𝑛+ 1) is

inherited from 𝑆
𝑖
(𝑛) by including a new request, the following

expression holds:

𝐶
𝑖 (
𝑛 + 1) ≥ 𝐶𝑖 (

𝑛) . (2)

Also, expression (3) is satisfied because an additional seek
time for the new request is not longer than the seek time of a
full disk head sweep in the case of the optimal algorithm:

𝐶opt (𝑛) + 𝐶sweep ≥ 𝐶opt (𝑛 + 1) . (3)

Through expressions (1), (2), and (3), the following expression
is derived:

𝐶
𝑖 (
𝑛 + 1) > 𝐶opt (𝑛 + 1) . (4)

This implies that any schedule 𝑆
𝑖
(𝑛 + 1) inherited from 𝑆

𝑖
(𝑛)

which satisfies expression (1) cannot have shorter seek time
than that of 𝑆opt(𝑛 + 1). Hence, 𝑆𝑖(𝑛 + 1) cannot be an optimal
schedule.

The above two pruning conditions are devised to reduce
the searching space when a new request arrives at the queue.
Similarly, it is also possible to reduce the searching space

when a request is removed from the queue. Specifically, when
the disk becomes ready to perform a new I/O operation,
G-SCAN selects the best schedule among the candidate
schedules and dispatches the first request in that schedule.
Thismakes schedules not beginning with the selected request
meaningless and thus they can be pruned. Details of this
pruning condition are explained inTheorem 3.

Theorem 3. When a request 𝑅
𝑖
leaves from the queue to be

serviced, any schedules that do not begin with𝑅
𝑖
can be pruned.

Proof. Let us suppose that an optimal schedule with 𝑛
requests is 𝑆opt(𝑛) and the first request in 𝑆opt(𝑛) is 𝑅𝑖. When
the disk becomes ready to service a request, the scheduling
algorithm selects 𝑆opt(𝑛) and removes 𝑅

𝑖
from the queue to

service it. In this case, all schedules that do not begin with 𝑅
𝑖

can be removed from the searching space because schedules
inherited from them as well as themselves are all invalid. On
the other hand, schedules beginning with 𝑅

𝑖
are not pruned

but remain in the tree structure though they are not selected.
It is because these schedulesmay become an optimal schedule
according to the arrival of new requests in the future even
though they are not optimal now.

It is possible that all schedules will be removed through
the above pruning conditions. For example, when the I/O
subsystem is overloaded and no feasible schedule exists, all
schedules may be pruned. To resolve this phenomenon, if the
number of candidate schedules becomes less than threshold,
G-SCAN maintains a certain number of relatively superior
schedules even though they satisfy the pruning conditions.
The relative superiority here is evaluated by considering both
total seek time and deadline miss time of real-time requests.
On the other hand, there is a possibility of incurring large
overhead if too many schedules satisfy the conditions of
G-SCAN. To solve this problem, we give rankings to the
schedules according to the relative superiority and then cut
down schedules whose ranking is beyond another threshold.
Note that G-SCANmight not find an optimal schedule in the
true sense of the definition. Essentially, an optimal algorithm
requires the knowledge of request sequences that will arrive
in the future. Our goal is to design an algorithm which can
obtain a schedule close to optimal with reasonable execution
overhead. The algorithm of G-SCAN is listed in Algorithms
1 and 2. ADD REQUEST() is invoked when a new request
arrives and SERVICE REQUEST() is invoked when the disk
dispatches a request in the queue for I/O service.

4. Performance Evaluation

4.1. Experimental Methodology. To assess the effectiveness of
G-SCAN, we performed extensive experiments by replaying
various traces collected. We compare G-SCAN with other
representative on-line algorithms, namely, C-SCAN, EDF,
SCAN-EDF, and Kamel’s algorithm [13] in terms of the
average response time, total seek distance, throughput, and
deadline miss rate. We also show that the overhead of G-
SCAN is feasible to be implemented. To evaluate the algo-
rithms in various heterogeneous workload environments, we

8 The Scientific World Journal

/∗request list is a list of requests ordered by SCAN order.
schedule list is a list of schedules that have a sequence of requests.
group list is a list of groups that consist of adjacent best-effort requests.
𝑆MIN is a schedule with the minimum seek time.∗/

procedure ADD REQUEST(request R)
/∗ insert R into request list by SCAN order. ∗/
for each request 𝑅

𝑖
in request list

if (𝑅.track num > 𝑅
𝑖
.track num) then

insert request(𝑅); /∗ insert request R in front of 𝑅
𝑖
. ∗/

break;
end if

end for
/∗ group adjacent best-effort requests. ∗/
GROUP REQUESTS(𝑅);
/∗expand existing schedules by inserting 𝑅. ∗/
EXPAND SCHEDULES(𝑅);
/∗ remove schedules whose seek time is larger than that of 𝑆MIN
by a disk’s full sweep time, 𝑇fullsweep.

∗/
for each schedule 𝑆

𝑖
in schedule list

if (|𝑆
𝑖
.seektime − 𝑆MIN.seektime | > 𝑇fullsweep) then
remove schedule(𝑆

𝑖
, schedule list); /∗ remove 𝑆

𝑖
from schedule list∗/

end if
end for

end procedure
procedure GROUP REQUESTS(request 𝑅)

if (𝑅.type = real-time) then
for each group 𝐺

𝑘
in group list

/∗ if 𝑅 is located in 𝐺
𝑘
, split the 𝐺

𝑘
into two groups ∗/

if (𝐺
𝑘
.start track num < 𝑅.track num and 𝑅.track num < 𝐺

𝑘
.end track num) then

split group (𝑅, 𝐺
𝑘
);

return;
end if

end for
else /∗R.type is best-effort. ∗/

/∗𝑅
𝑖
and 𝑅

𝑗
are left and right neighbour requests of 𝑅, respectively,

and 𝜏 is a threshold for grouping. ∗/
if (𝑅
𝑖
.type = best-effort and 𝑅

𝑗
.type = best-effort) then

if (|𝑅
𝑖
.track num − 𝑅

𝑖
.track num | < 𝜏) then

insert into group(𝑅, 𝐺); /∗ add 𝑅 to the group 𝐺 including both
𝑅
𝑖
and 𝑅

𝑗
. ∗/

return;
else if (|𝑅

𝑖
.track num − 𝑅.track num | < 𝜏 and |𝑅.track num −𝑅

𝑗
.track num | < 𝜏) then

merge groups(𝐺
𝑖
, 𝐺
𝑗
); /∗ merge group 𝐺

𝑖
including 𝑅

𝑖
and group 𝐺

𝑗

including 𝑅
𝑗
. ∗/

return;
else if (|𝑅

𝑖
.track num − 𝑅.track num | < 𝜏) then

insert into group (𝑅, 𝐺
𝑖
); /∗ add 𝑅 to the group 𝐺

𝑖
including 𝑅

𝑖
. ∗/

return;
else if (|𝑅.track num − 𝑅

𝑗
.track num | < 𝜏) then

insert into group (𝑅, 𝐺
𝑗
); /∗ add 𝑅 to the group 𝐺

𝑗
including 𝑅

𝑗
. ∗/

return;
end if

else if (𝑅
𝑖
.type = best-effort and 𝑅

𝑗
.type = real-time) then

if (|𝑅
𝑖
.track num − 𝑅.track num | < 𝜏) then
insert into group (𝑅, 𝐺

𝑖
); /∗ add 𝑅 to the group 𝐺

𝑖
including 𝑅

𝑖
. ∗/

return;
end if

else if (𝑅
𝑖
.type = real-time and 𝑅

𝑗
.type = best-effort) then

if (|𝑅.track num − 𝑅
𝑗
.track num | < 𝜏) then

insert into group (𝑅, 𝐺
𝑗
); /∗ add 𝑅 to the group 𝐺

𝑗
including 𝑅

𝑗
. ∗/

return;
end if

Algorithm 1: Continued.

The Scientific World Journal 9

else
create group (𝑅); /∗ creates a new group including 𝑅. ∗/

end if
end if

end procedure
procedure EXPAND SCHEDULES(request 𝑅)

old schedule list← schedule list;
for each schedule 𝑆

𝑖
in old schedule list

remove schedule (𝑆
𝑖
, old schedule list); /∗ remove 𝑆

𝑖
from old schedule list. ∗/

for each position 𝑛 in request sequences of 𝑆
𝑖

𝑆new ← a new schedule created by inserting 𝑅 into position 𝑛.
deadline missed← FALSE;
temp← 0;
for each request 𝑅

𝑗
in 𝑆new

temp + = 𝑅
𝑗
.servicetime;

if (𝑅
𝑗
.deadline < temp) then
deadline missed← TRUE;
break;

end if
end for
if (deadline missed = FALSE) then

insert schedule (𝑆new, new schedule list); /∗ insert 𝑆new into
new schedule list. ∗/
if (𝑆new.seektime < 𝑆MIN.seektime) then
𝑆MIN ← 𝑆new;

end if
end if

end for
end for
schedule list← new schedule list;

end procedure

Algorithm 1: Inserting a request into queue.

procedure SERVICE REQUEST(schedule 𝑆MIN)
𝑅 ← the first request in 𝑆MIN;
old schedule list← schedule list;
for each schedule 𝑆

𝑖
in old schedule list

remove schedule(𝑆
𝑖
, old schedule list); /∗ remove 𝑆

𝑖
from old schedule list. ∗/

𝑅
0
← the first request in 𝑆

𝑖
.

if (𝑅 = 𝑅
0
) then
𝑆new ← a new schedule created by removing 𝑅

0
from 𝑆

𝑖
;

insert schedule(𝑆new, new schedule list); /∗ insert 𝑆new into new schedule list. ∗/
end if

end for
schedule list← new schedule list;
return 𝑅;

end procedure

Algorithm 2: Dispatching a request from queue.

use both synthetic and real-world I/O traces. For synthetic
traces, we generated four different types of workloads as
shown in Table 2. Workloads 1 to 4 consist of various
heterogeneous I/O workloads including real-time and best-
effort applications. We modeled two different types of real-
time applications based on their access patterns, namely,
random and periodic. In the random type, data positions, I/O
request times, and deadlines are determined randomly each

time, while the periodic type has regular values. Similarly,
we modeled best-effort applications as two different access
patterns, namely, random and sequential.

To show the effectiveness of G-SCAN under more real-
istic conditions, we also performed experiments with real-
world I/O traces gathered from Linux workstations (work-
loads 5 and 6 in Table 2). We executed the IOZONE program
and the mpeg2dec multimedia player together to generate

10 The Scientific World Journal

Table 2: Summary of workloads used in the experiments.

Workload Type of application Access pattern Average interarrival
time (ms)

Deadline
(ms)

I/O size
(KB)

File size
(MB)

(1) Real-time application Random 20 30–70 64 100
Best-effort application Random 20 Infinite 4–128 100

(2) Real-time application Periodic 20 20 64 100
Best-effort application Random 20 Infinite 4–128 200

(3) Real-time application Periodic 20 20 64 100
Best-effort application Sequential 20 Infinite 64 200

(4)
Real-time application Periodic 20 20 64 100
Best-effort application Random 45 Infinite 4–128 100
Best-effort application Sequential 20 Infinite 64 100

(5) Real-time application Periodic 45 30 4–64 324
Best-effort application Random 10 Infinite 4–64 128

(6) Real-time application Periodic 90 30 4–64 324
Best-effort application Random 19 Infinite 4–64 128

0

5

10

15

20

25

0 100 200 300 400

N
um

be
r o

f g
ro

up
s

Threshold

Figure 3: The number of groups after grouping adjacent best-effort requests. The searching space is significantly reduced by the grouping.

different types of I/O requests. IOZONE is a filesystem
benchmark tool which measures the performance of a given
file system. It generates various random I/O requests, and
their average interarrival times in workloads 5 and 6 are
10ms and 19ms, respectively [25].mpeg2dec is a program for
playing video files, which generates real-time I/O requests
periodically. Average interarrival times of I/O requests gen-
erated bympeg2dec in workloads 5 and 6 are about 45ms and
90ms, respectively. The deadline of real-time I/O requests in
mpeg2dec is about 30ms.

4.2. Effects of Grouping. Before comparing the performances
of G-SCAN against other algorithms, we first investigate the
effect of grouping when workload 5 (real workload) is used.
Figure 3 shows the average number of groups as a function
of threshold 𝜏. Note that the number of groups illustrated
in Figure 3 includes real-time requests as well as grouped
best-effort requests. The unit of 𝜏 is defined as the track

distance of two requests. For example, if 𝜏 is set to 100, best-
effort requests whose track distance is smaller than 100 can
belong to the same group. As can be seen from Figure 3
the searching space, namely, all possible combinations of
schedules, is significantly reduced after grouping.

For example, when grouping is not used, the average
number of requests in the queue is about 22 and thus the
size of entire searching space is 22! which is a number larger
than 1021. Note that the zero extreme of threshold 𝜏 in
the graph implies that grouping is not used. However, after
grouping is used, the searching space is significantly reduced.
For example, when the threshold 𝜏 is 100 tracks, the average
number of groups becomes about 6, and thus the searching
space is reduced to 6! = 720. Moreover, G-SCAN does not
expand this searching space completely because it also uses
heuristics to reduce the searching space even more.

To see the effect of grouping, we investigate the perfor-
mance of G-SCAN in terms of various aspects as a function
of threshold 𝜏. We also use workload 5 (real workload) in this

The Scientific World Journal 11

200000

220000

240000

260000

280000

300000

320000

340000

0 100 200 300 400

To
ta

l s
ee

k
di

st
an

ce
 (n

um
be

r o
f t

ra
ck

s)

Threshold

(a) Total seek distance

3500

3600

3700

3800

3900

4000

4100

4200

4300

0 100 200 300 400

Th
ro

ug
hp

ut
 (K

B/
s)

Threshold

(b) Throughput

0

5

10

15

20

25

30

0 100 200 300 400

D
ea

dl
in

e m
iss

 ra
te

 (%
)

Threshold

(c) Deadline miss rate

0

50

100

150

200

250

300

0 100 200 300 400

Av
er

ag
e r

es
po

ns
e t

im
e (

m
s)

Threshold

(d) Average response time

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400

N
um

be
r o

f s
ch

ed
ul

es

Threshold

(e) Number of schedules searched

Figure 4: The effect of grouping in G-SCAN.

experiment. As can be seen from Figures 4(a)–4(c), total seek
distances, throughput, and deadline miss rate are scarcely
influenced by the value of threshold 𝜏. In the case of average
response time, however, the performance degrades signifi-
cantly when 𝜏 is larger than 100 as shown in Figure 4(d). We
also compare the number of schedules actually expanded as

a function of threshold 𝜏. As can be seen from Figure 4(e),
grouping significantly reduces the number of schedules to
be handled. Specifically, the number of expanded schedules
drops rapidly when the threshold 𝜏 is larger than 60. With
these results, we can conclude that grouping of adjacent best-
effort requests can significantly reduce the searching space

12 The Scientific World Journal

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 2 3 4 5 6

To
ta

l s
ee

k
di

st
an

ce
 (n

um
be

r o
f t

ra
ck

s)

Workload

C-SCAN
EDF
SCAN-EDF

Kamel’s
G-SCAN

(a) Total seek distances

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

Th
ro

ug
hp

ut
 (K

B/
s)

Workload

C-SCAN
EDF
SCAN-EDF

Kamel’s
G-SCAN

(b) Throughput

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6

Av
er

ag
e r

es
po

ns
e t

im
e (

m
s)

Workload

Average response time

C-SCAN
EDF
SCAN-EDF

Kamel’s
G-SCAN

(c) Average response time

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

D
ea

dl
in

e m
iss

 ra
te

 (%
)

Workload

C-SCAN
EDF
SCAN-EDF

Kamel’s
G-SCAN

(d) Deadline miss rate

Figure 5: Performance comparison with various workloads.

without performance degradations when the threshold 𝜏 is
set to a value around 100. In reality, finding an appropriate 𝜏
value for each workload environment is not an easy matter
and is a topic that we are still pursuing. We use the default
value of 𝜏 as 100 throughout this paper because it shows
good performances and incurs reasonably low scheduling
overhead for all workloads that we considered.

4.3. Performance Comparison. In this subsection, we com-
pare the performance of G-SCAN with other scheduling
algorithms. We use four synthetic workloads and two real
workloads listed in Table 2. Note that the performance of G-
SCAN is measured when 𝜏 is set to 100. First, we investigate

the total seek distances of the five algorithms. As shown in
Figure 5(a), G-SCAN outperforms the other algorithms for
all workloads that we experimented. C-SCAN and Kamel’s
algorithm also show competitive performances though the
performance gap betweenG-SCAN and these two algorithms
is distinguishable for workloads 2 and 4. Figures 5(b) and
5(c) show the throughput and the average response time
of the algorithms, respectively. For both of the metrics, G-
SCAN again performs better than C-SCAN and Kamel’s
algorithm. EDF and SCAN-EDF result in excessively large
average response time for all cases.The reason is that EDF and
SCAN-EDF greedily follow the earliest deadline irrespective
of request positions. Figure 5(d) compares the deadline miss
rate of the five algorithms. As expected, deadline-based

The Scientific World Journal 13

C-SCAN
EDF
SCAN-EDF
Kamel’s

G-SCAN
OPT-G
OPT-T

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4

To
ta

l s
ee

k
di

sta
nc

e
(n

um
be

r o
f t

ra
ck

s)

Interarrival time (ms)

(a) Synthetic workload

C-SCAN
EDF
SCAN-EDF
Kamel’s

G-SCAN
OPT-G
OPT-T

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

1.0 1.5 2.0 2.5 3.0 3.5 4.0

To
ta

l s
ee

k
di

sta
nc

e
(n

um
be

r o
f t

ra
ck

s)

Scaling factor of average interarrival times

(b) Real workload

Figure 6: Total seek distances of the algorithms as a function of workload intensities.

Interarrival time (ms)

C-SCAN
EDF
SCAN-EDF
Kamel’s

G-SCAN
OPT-G
OPT-T

1500

1600

1700

1800

1900

2000

2100

1 2 3 4

Th
ro

ug
hp

ut
 (K

B/
s)

(a) Synthetic workload

Scaling factor of average interarrival times

C-SCAN
EDF
SCAN-EDF
Kamel’s

G-SCAN
OPT-G
OPT-T

2500

2700

2900

3100

3300

3500

3700

3900

4100

4300

4500

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Th
ro

ug
hp

ut
 (K

B/
s)

(b) Real workload

Figure 7: Throughput of the algorithms as a function of workload intensities.

algorithms such as EDF and SCAN-EDF perform well for
most cases. C-SCAN and Kamel’s algorithm do not show
competitive performances. G-SCAN shows reasonably good
performances in terms of the deadline miss rate for all cases.
Specifically, G-SCAN performs better than even EDF when
real workloads (workloads 5 and 6) are used. In summary, G-
SCAN satisfies the deadline constraints of real-time requests
and at the same time exhibits good performances in terms of

the average response time, throughput, and seek distances for
both synthetic and real-world traces.

To show the upper boundof performance,we additionally
measured the performance of several unrealistic algorithms
that have more information to schedule, namely, OPT-D,
OPT-T, and OPT-G. OPT-D is an optimal algorithm in terms
of the deadline miss rate that minimizes the number of
requests missing its deadline. OPT-T moves the disk head

14 The Scientific World Journal

Av
er

ag
e r

es
po

ns
e t

im
e (

m
s)

Interarrival time (ms)

C-SCAN
EDF
SCAN-EDF
Kamel’s

G-SCAN
OPT-G
OPT-T

0

100

200

300

400

500

600

700

800

900

1000

1 1.5 2 2.5 3 3.5 4

(a) Synthetic workload
Av

er
ag

e r
es

po
ns

e t
im

e (
m

s)

Scaling factor of average interarrival times

C-SCAN
EDF
SCAN-EDF
Kamel’s

G-SCAN
OPT-G
OPT-T

0

100

200

300

400

500

600

700

800

900

1000

1.0 1.5 2.0 2.5 3.0 3.5 4.0

(b) Real workload

Figure 8: Average response time of the algorithms as a function of workload intensities.

D
ea

dl
in

e m
iss

 ra
te

 (%
)

Interarrival time (ms)

C-SCAN
EDF
SCAN-EDF
Kamel’s

G-SCAN
OPT-G
OPT-D

0

5

10

15

20

25

30

35

40

45

1.51 2 2.5 3 3.5 4

(a) Synthetic workload

D
ea

dl
in

e m
iss

 ra
te

 (%
)

Scaling factor of average interarrival times

C-SCAN
EDF
SCAN-EDF
Kamel’s

G-SCAN
OPT-G
OPT-D

0

2

4

6

8

10

12

14

16

18

20

1.0 1.5 2.0 2.5 3.0 3.5 4.0

(b) Real workload

Figure 9: Deadline miss rate of the algorithms as a function of workload intensities.

in order to minimize the total seek time irrespective of
deadline misses, which performs similarly to the original
SCAN algorithm. Finally, OPT-G moves the disk head to
minimize the seek time and meet the deadlines of real-time
requests simultaneously if a feasible schedule exists. When
no feasible schedule exists, OPT-G moves the disk head to
minimize the seek time. OPT-G is a complete version of G-
SCAN that does not use neither grouping nor branch-and-
bound scheme.

Figures 6, 7, and 8 show the total seek distance, the
throughput, and the average response time of the algorithms,
respectively.The experiments were performedwith workload
1 (synthetic workload) and workload 5 (real workload),
respectively. We scale the original interarrival times of the
workloads to explore a range of workload intensities. For
example, a scaling factor of two generates a workload whose
average interarrival time is twice longer than original work-
load. As can be seen in the figures, G-SCAN shows almost

The Scientific World Journal 15

1

10

100

1000

10000

100000

1000000

1.0 1.5 2.0 2.5 3.0 3.5 4.0

N
um

be
r o

f s
ch

ed
ul

es

Scaling factor of average interarrival times

Number of all possible schedules
Number of schedules in G-SCAN

(a) Synthetic workload

1.0 1.5 2.0 2.5 3.0 3.5 4.0

N
um

be
r o

f s
ch

ed
ul

es

Scaling factor of average interarrival times

1.E + 24

1.E + 20

1.E + 16

1.E + 12

1.E + 08

1.E + 04

1.E + 00

Number of all possible schedules
Number of schedules in G-SCAN

(b) Real workload

Figure 10: Comparison of G-SCAN and complete searching mechanism as a function of the scaling factor.

1 251 501 751 1001 1251

N
um

be
r o

f s
ch

ed
ul

es

Request number

Number of schedules expanded by G-SCAN
Number of all possible schedules

E + 24

E + 22

E + 20

E + 18

E + 16

E + 14

E + 10

E + 08

E + 06

E + 04

E + 02

E + 00

(a) Synthetic Workload

1 251 501 751 1001 1251

N
um

be
r o

f s
ch

ed
ul

es

Request number

Number of schedules expanded by G-SCAN
Number of all possible schedules

E + 30

E + 27

E + 24

E + 21

E + 18

E + 15

E + 12

E + 09

E + 06

E + 03

E + 00

(b) Real Workload

Figure 11: The overhead of G-SCAN as time progresses.

identical performances with OPT-T and OPT-G in terms
of the total seek distance, the throughput, and the average
response time. As expected, EDF results in extremely poor
performance in terms of the three metrics because it does not
consider the movement of the disk head.

Figure 9 compares the deadline miss rate of the algo-
rithms. Since G-SCAN aims at reducing the seek time as
well as the deadline misses, it could not exhibit better
performance than OPT-D that only considers the deadline
miss rate. However, G-SCAN consistently shows competitive
performances in terms of the deadline miss rate. Specifically,
the performance of G-SCAN is similar to that of OTP-
G which pursues identical goals but does not use either
grouping or pruning mechanism. Consequently, we can

conclude that the grouping and the pruning mechanism of
G-SCAN significantly reduce the searching space without
degradation of the performance in all aspects of the total seek
distance, the throughput, the average response time, and the
deadline miss rate.

4.4. Overhead of G-SCAN. To show the overhead of G-
SCAN, we measured the number of schedules expanded by
G-SCAN and compared it with the number of all possible
schedules. Figure 10 shows the result for different scaling
factors when workload 1 (synthetic workload) and workload
5 (real workload) are used. It is important to note that the 𝑦-
axis in the graph is in log-scale. As shown in the figure, the

16 The Scientific World Journal

number of schedules maintained by G-SCAN is reasonable
for all cases. Specifically, when the scaling factor of 1.0 is used
forworkload 1 that refers to the original workload, the average
number of schedules expanded by G-SCAN is only 298. Note
that the average number of all possible schedules in this case
is 7.455 × 1015. Similarly, the average numbers of schedules
expanded by G-SCAN for real workload are smaller than 100
for all cases.

Figure 11 compares the schedules expanded by G-SCAN
with all possible schedules when the scaling factor of 1.0 is
used for workload 1 (synthetic workload) and workload 5
(real workload), respectively, as time progresses. Note that
the 𝑦-axis is again in log-scale. As can be seen, G-SCAN
explores only a small fraction of total possible schedules, and
its overhead is reasonable for on-line execution.

5. Conclusions

In this paper, we presented a novel disk scheduling algorithm
called G-SCAN that supports requests with different QoS
requirements. G-SCAN reduces the huge searching space
to a feasible level through grouping and branch-and-bound
strategies.Wehave shown thatG-SCAN is suitable for dealing
with heterogeneous workloads since (1) it is based on the on-
line request handling mechanism, (2) it meets the deadlines
of real-time requests, (3) it minimizes the seek time, and
(4) it has low enough overhead to be implemented. Through
extensive experiments, we demonstrated that G-SCAN out-
performs other scheduling algorithms in terms of the average
response time, throughput, total seek distances, and deadline
miss rate. We also showed that G-SCAN has reasonable
overhead to be implemented for on-line execution.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was supported by Basic Science Research
Program through theNational Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (no. 2012-0001924 and no. 2011-0028825). The
present research has been also conducted by the Research
Grant of Kwangwoon University in 2013.

References

[1] M. Andrews, M. A. Bender, and L. Zhang, “New algorithms for
the disk scheduling problem,” in Proceedings of the 37th Annual
Symposium on Foundations of Computer Science, pp. 550–559,
October 1996.

[2] Y.-F. Huang and J.-M. Huang, “Disk scheduling on multimedia
storage servers,” IEEE Transactions on Computers, vol. 53, no. 1,
pp. 77–82, 2004.

[3] P. J. Denning, “Effects of scheduling on filememory operations,”
in Proceedings of the AFIPS Spring Joint Computer Conference,
pp. 9–21, 1967.

[4] D. M. Jacobson and J. Wilkes, “Disk scheduling algorithms
based on rotational position,” Tech. Rep. HPL-CSP-91-7,
Hewlett-Packard Lab., Palo Alto, Calif, USA, 1991.

[5] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling
algorithms for modern disk drives,” in Proceedings of the ACM
Sigmetrics on Measurement and Modeling of Computer Systems,
pp. 241–251, May 1994.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in hard-real-time environment,” Journal of the
ACM, vol. 20, no. 1, pp. 47–61, 1973.

[7] A. L. N. Reddy and J. Wyllie, “Disk scheduling in a multimedia
I/O system,” in Proceedings of the 1st ACM International Confer-
ence on Multimedia, pp. 225–233, August 1993.

[8] A. L. N. Reddy, J. Wyllie, and K. B. R. Wijayaratne, “Disk
scheduling in a multimedia I/O system,” ACM Transactions on
Multimedia Computing, Communications, and Applications, vol.
1, no. 1, pp. 37–59, 2005.

[9] S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley, “Perfor-
mance evaluation of two new disk scheduling algorithms for
real-time systems,” Real-Time Systems, vol. 3, no. 3, pp. 307–336,
1991.

[10] R. K. Abbott and H. Garcia-Molina, “Scheduling I/O requests
with deadlines: a performance evaluation,” in Proceedings of the
11th Real-Time Systems Symposium, pp. 113–124, December 1990.

[11] I. Kamel andY. Ito, “A proposal on disk bandwidth definition for
video servers,” in Proceedings of the Society Conference of IEICE,
1996.

[12] R.-I. Chang, W.-K. Shih, and R.-C. Chang, “Deadline-modi-
fication-SCAN with maximum-scannable-groups for multime-
dia real-time disk scheduling,” in Proceedings of the 19th IEEE
Real-Time Systems Symposium, pp. 40–49, December 1998.

[13] I. Kamel, T. Niranjan, and S. Ghandeharizedah, “Novel deadline
driven disk scheduling algorithm formulti-priority multimedia
objects,” inProceedings of the IEEE 16th International Conference
on Data Engineering (ICDE ’00), pp. 349–361, March 2000.

[14] H.M.Vin andP.V. Rangan, “Designing amultiuserHDTV stor-
age server,” IEEE Journal on Selected Areas in Communications,
vol. 11, no. 1, pp. 153–164, 1993.

[15] P. S. Yu, M. S. Chen, and D. D. Kandlur, “Design and analysis
of a grouped sweeping scheme for multimedia storage manage-
ment,” in Proceedings of the of Network and Operating Systems
Support for Digital Audio and Video, pp. 44–55, 1992.

[16] D. J. Gemmell, “Multimedia network file servers: multi-channel
delay sensitive data retrieval,” in Proceedings of the 1st ACM
International Conference on Multimedia, pp. 243–250, August
1993.

[17] H. J. Chen and T. D. C. Little, “Physical storage organizations
for time-dependent multimedia data,” in Proceedings of the
International Conference on Foundations of Data Organization
and Algorithms, pp. 19–34, 1993.

[18] P. Shenoy and H. M. Vin, “Cello: a disk scheduling framework
for next generation operating systems,” Real-Time Systems, vol.
22, no. 1-2, pp. 9–48, 2002.

[19] Y. Won and Y. S. Ryu, “Handling sporadic tasks in multimedia
file system,” in Proceedings of the 8th ACM International Confer-
ence on Multimedia, pp. 462–464, November 2000.

[20] R. Wijayaratne and A. L. Narasimha Reddy, “Providing QOS
guarantees for disk I/O,” Multimedia Systems, vol. 8, no. 1, pp.
57–68, 2000.

[21] C.-H. Tsai, E. T.-H. Chu, and T.-Y. Huang, “WRR-SCAN: a rate-
based real-time disk-scheduling algorithm,” in Proceedings of

The Scientific World Journal 17

the 4th ACM International Conference on Embedded Software
(EMSOFT ’04), pp. 86–94, September 2004.

[22] M. F. Mokbel, W. G. Aref, K. Elbassioni, and I. Kamel, “Scalable
multimedia disk scheduling,” in Proceedings of the 20th Interna-
tional Conference on Data Engineering (ICDE ’04), pp. 498–509,
April 2004.

[23] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T.M.Wong, and
C.Maltzahn, “Efficient guaranteed disk request scheduling with
fahrrad,” in Proceedings of the 3rd ACMEuropean Conference on
Computer Systems (EuroSys ’08), pp. 13–25, April 2008.

[24] A. Povzner, D. Sawyer, and S. Brandt, “Horizon: efficient
deadline-driven disk I/O management for distributed storage
systems,” in Proceedings of the 19th ACM International Sympo-
sium on High Performance Distributed Computing (HPDC ’10),
pp. 1–12, New York, NY, USA, June 2010.

[25] IOZONE, http://www.iozone.org.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

