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In heterogeneous I/O workload environments, disk scheduling algorithms should support different QoS (Quality-of-Service) for
each I/O request. For example, the algorithm should meet the deadlines of real-time requests and at the same time provide
reasonable response time for best-effort requests. This paper presents a novel disk scheduling algorithm called G-SCAN (Grouping-
SCAN) for handling heterogeneous I/O workloads. To find a schedule that satisfies the deadline constraints and seek time
minimization simultaneously, G-SCAN maintains a series of candidate schedules and expands the schedules whenever a new
request arrives. Maintaining these candidate schedules requires excessive spatial and temporal overhead, but G-SCAN reduces
the overhead to a manageable level via pruning the state space using two heuristics. One is grouping that clusters adjacent best-
effort requests into a single scheduling unit and the other is the branch-and-bound strategy that cuts off inefficient or impractical
schedules. Experiments with various synthetic and real-world I/O workloads show that G-SCAN outperforms existing disk
scheduling algorithms significantly in terms of the average response time, throughput, and QoS-guarantees for heterogeneous I/O

workloads. We also show that the overhead of G-SCAN is reasonable for on-line execution.

1. Introduction

As an increasingly large variety of applications are developed
and equipped in modern computer systems, there is a need
to support heterogeneous performance requirements for
each application simultaneously. For example, a deadline-
guaranteed service is required for real-time applications (e.g.,
audio or video playback), while reasonable response time
and high throughput are important for interactive best-effort
applications (e.g., web navigation or file editing). Since these
applications require different QoS- (Quality-of-Service-)
guarantees, an efficient disk scheduling algorithm that can
deal with heterogeneous I/O requests is needed.

Due to the mechanical overhead for accessing data in hard
disk-based storage systems, I/O scheduling has been a long-
standing problem for operating system and storage system
designers. An optimal I/O schedule in the traditional disk
scheduling domain usually refers to a sequence of requests
that has minimum scanning time. In order to find this

optimal schedule, all possible request sequences need to be
searched. This is a complicated searching problem which
is known as NP hard [1]. The location of each requested
blockis represented as cylinder, head, and sector information.
The distance between two points in this three-dimensional
space does not satisfy the Euclidean property. Therefore, to
obtain an optimal solution, we should enumerate all possible
orderings of a given set of I/O requests. For example, if there
are n requests in the I/O request queue, the number of all
possible combinations is 7 factorial. Unfortunately, finding
an optimal schedule from this huge searching space is not
feasible due to the excessive spatial and temporal overhead.
For this reason, most practical scheduling algorithms simply
use deterministic heuristic approaches instead of searching
huge spaces.

Unlike traditional scheduling problems, scheduling in
heterogeneous workload environments is even more com-
plicated because it should meet the deadlines of real-time



requests and provide reasonable response times for best-
effort requests, simultaneously. This implies the necessity of
scanning huge search spaces rather than simple deterministic
processes as in traditional scheduling problems. Y.-E Huang
and J.-M. Huang presented a new approach called MS-EDF
(Minimizing Seek time Earliest Deadline First) that effec-
tively reduces the huge state space to a feasible extent through
the branch-and-bound strategy [2]. Though MS-EDF shows
superior performances, it has some limitations. First, MS-
EDF handles requests in a batch manner and thus it cannot
be practically used for on-line scheduling. Second, MS-EDF
considers only real-time requests, so adopting it directly to
the domain of heterogeneous workload environments is not
possible.

In this paper, we present a novel disk scheduling algo-
rithm called G-SCAN (Grouping-SCAN) for handling het-
erogeneous workloads. G-SCAN resolves the aforementioned
problems by employing an on-line mechanism and several
rules exploiting the QoS requirements of I/O requests. Specif-
ically, G-SCAN first arranges requests in the queue by the
SCAN order and then clusters adjacent best-effort requests
into a group to schedule them together. Then, G-SCAN
reduces the huge searching space to a reasonable extent by
pruning unnecessary schedules using the branch-and-bound
strategy. Experimental results show that G-SCAN performs
better than existing disk scheduling algorithms in terms of
average response time, throughput, and QoS-guarantees for
heterogeneous workload environments. We also show that
the space and time overhead of G-SCAN is reasonable for on-
line execution.

The remainder of this paper is organized as follows.
Section 2 presents the state of the art of disk scheduling
algorithms. In Section 3, the proposed scheduling algorithm,
namely, G-SCAN, is explained in detail. The validation of
G-SCAN is described in Section 4 by extensive experiments.
Finally, we conclude this paper in Section 5.

2. Related Works

Since disk-based storage is always one of the performance
bottlenecks in computer systems, disk scheduling algorithms
have been studied extensively in the last few decades.
Recently, as disks are used as the storage for multimedia data
with soft real-time constraints, I/O scheduling problems have
become more complicated. In this section, we classify existing
disk scheduling algorithms into several classes according to
the design purpose.

The first class is throughput-oriented scheduling algo-
rithms. This class of algorithms concentrates on the opti-
mization of disk head movement. SSTF [3], SATF [4], SCAN
[5], and C-SCAN [5] are such examples. Of these, SSTF and
SATF require an elaborate disk model in order to predict
disk seek time or access time, which are not required for
SCAN-like algorithms. This is the reason why SCAN and
its variants such as C-SCAN are widely used in commodity
operating systems. Note that this class of algorithms does not
consider the priority of requests, and thus they do not have
the function of real-time supports.
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The second class is real-time scheduling algorithms, and
they again can be classified into two categories: deadline-
based algorithms and round-based algorithms. Deadline-
based algorithms aim at servicing I/O requests within given
deadlines. EDF (Earliest Deadline First) is a representative
algorithm in this category [6]. The concept of EDF comes
from the real-time CPU scheduling technique. As EDF
focuses only on deadlines, it exhibits poor performance in
terms of disk head movement. Hence, a number of policies
have been proposed to reduce the disk head movement of
EDE They include SCAN-EDF [7, 8], SSEDO/SSEDV [9],
FD-SCAN [10], SCAN-RT [11], DM-SCAN [12], and Kamel’s
algorithm [13]. Most of these algorithms combine the features
of EDF and SCAN in order to meet the deadlines of real-
time requests and maximize the disk utilization. However,
since this approach is based on priority, they may induce the
starvation of requests with low priorities.

Round-based algorithms are designed for continuous
media data and they exploit the periodicity of data retrieval
in audio/video playback. They first define the size of round
and service all I/O requests before the round expires. Ran-
gan’s algorithm [14], Grouped Sweep Scheduling (GSS) [15],
Preseeking Sweep algorithm [16], and Chen’s algorithm [17]
can be classified into this category. These algorithms pri-
marily focus on the efficiency of underlying resources rather
than explicitly consider the deadlines of real-time requests.
Instead, deadlines could be satisfied in the round-based
algorithms by careful load control through the admission
control mechanism. These algorithms mandate the in-depth
knowledge of disk internals, such as the number of cylinders,
the number of sectors per cylinder, and the curve function of
seek distance and seek time, which are not usually accessible
from the operating system’s standpoint.

The third class is algorithms for heterogeneous I/O
workloads. During the last years, handling heterogeneous
workloads in a single storage device has become an impor-
tant issue as integrated file systems get momentum as the
choice for next generation file systems. The most famous
work is Cello [18]. Shenoy and Vin proposed the Cello
disk scheduling framework using two-level disk scheduling
architectures: a class-independent scheduler and a set of
class-specific schedulers. Cello first classifies disk requests
into several classes based on their requirement of service.
Then it assigns weights to the application classes and allocates
disk bandwidth to the application classes in proportion to
their weights. Won and Ryu [19], Wijayaratne and Narasimha
Reddy [20], and Tsai et al. [21] also proposed scheduling
strategies for heterogeneous workloads.

More recently, general frameworks that can control dif-
ferent scheduling parameters such as deadline, priority, and
disk utilization were presented. For example, Mokbel et al.
proposed Cascaded-SFC which provides a unified framework
that can scale scheduling parameters [22]. It models multi-
media I/O requests as points in multidimensional subspaces,
where each dimension represents one of the parameters.
These general scheduling frameworks require many tuning
parameters to be set by the system itself or end users. Povzner
et al. proposed Fahrrad that allows applications to reserve a
fixed fraction of a disK’s utilization [23]. Fahrrad reserves disk
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resources in terms of the utilization by using disk time utiliza-
tion and period. They also proposed a multilayered approach
called Horizon to manage QoS in distributed storage systems
[24]. Horizon has an upper-level control mechanism to assign
deadlines to requests based on workload performance targets
and a low-level disk I/O scheduler deigned to meet deadlines
while maximizing throughput.

Most of the aforementioned scheduling algorithms
employ deterministic approaches. “Deterministic” here
means that the algorithms maintain only a single schedule
to be actually executed, and each time a new request arrives
the schedule is simply updated. Though deterministic
algorithms are effective for fast on-line processing, they have
difficulty in maximizing the performance. For example, a
new request in the future may change the order of the optimal
schedule of existing requests, but this cannot be reflected
in deterministic algorithms. Y.-F. Huang and J.-M. Huang
presented MS-EDF (Minimizing Seek time Earliest Deadline
First) for multimedia server environments that is not a
deterministic algorithm [2]. They recognized I/O scheduling
as an NP-hard problem and made an initial attempt to reduce
the searching space. However, MS-EDF is a kind of oft-line
algorithm, so it cannot be adopted directly as the on-line
scheduler of heterogeneous workload environments. Table 1
lists a summary of various disk scheduling algorithms.

3. G-SCAN: A Pruning-Based Disk Scheduling

3.1 Goal and Assumptions. Our goal is to design a disk
scheduling algorithm that satisfies the deadline requirement
of real-time requests and at the same time minimizes the seek
distance of the disk head as much as possible. In addition
to this, the scheduling algorithm should be feasible to be
implemented; that is, the execution overhead of the algorithm
should be reasonable in terms of both space and time for on-
line execution.

We first classify I/O requests into two classes: real-time
requests and best-effort requests. We assume that each I/O
request R; consists of (d;, t;), where d; is the deadline and t; is
the track number of R; on the disk. Real-time requests have
their own deadlines and they can be periodic or aperiodic.
Best-effort requests have no specific deadlines, and thus we
assume their deadlines to be infinite. We also assume that all
requests are independent, which implies that a request does
not synchronize or communicate with other requests and all
requests are nonpreemptive while being serviced in the disk.

Since G-SCAN is an on-line scheduling mechanism, it
should decide the schedule of requests immediately when a
new request arrives or the service of a request is completed.
Though G-SCAN expands existing schedules whenever an
arrival or a departure of a request occurs, it reduces the
searching space significantly by grouping and branch-and-
bound strategies.

3.2. Grouping of Best-Effort Requests. We group adjacent best-
effort requests and consider them as a single request to service
them together. To do this, we arrange the requests in the

queue by the SCAN order and then cluster adjacent best-
effort requests into a group. Since best-effort requests have
no deadlines, it is reasonable to service them together within
a group. This grouping reduces the huge searching space
significantly by removing unnecessary combinations.

Figure1 illustrates the grouping of adjacent best-effort
requests. There are 11 requests sorted by the SCAN order, and
the searching space is 11 factorial as shown in Figure 1(a). In
this example, for best-effort requests R;, Rq, Ry, and R, the
ordered schedule R, - R; - Ry — RjjorR;; — Ry —
Ry — R; is always superior to the nonordered schedules
suchas R, — R,y — Ry — Ry in terms of the seek
distance.

Figure 1(b) shows the state after grouping adjacent best-
effort requests. Basically, G-SCAN clusters all best-effort
requests between two real-time requests into a single group.
However, if the seek distance between any two best-effort
requests is too long, they are not put together into the same
group. This is because a group that spans too long distance
may decrease the possibility of finding good schedules.
Hence, we put any two adjacent best-effort requests whose
distance is below the threshold 7 into the same group,
where 7 is an experimental parameter. In Figure 1(b), R4
and R, belong to separate groups because their distance
is longer than 7. If 7 is large, the number of possible
schedules decreases and thus the searching space becomes
smaller, but the possibility of finding the best schedule also
decreases.

When a new request arrives at the queue, G-SCAN groups
it by the aforementioned method. If the new request is a best-
effort one, it may be merged into an existing group, bridge a
gap between two groups, or create a new group. On the other
hand, if the new request is a real-time one, it may split an
existing group or just be inserted by the SCAN order without
any specific actions.

3.3. The Branch-and-Bound Strategy. To reduce the searching
space even more, we employ the branch-and-bound strategy
similar to the approach of Y.-FE. Huang and J.-M. Huang [2].
The branch-and-bound strategy is an algorithmic technique
to find an optimal solution in combinatorial optimization
problems by keeping the best solution found so far. If a partial
solution cannot improve at best, it is pruned not to produce
unnecessary combinations any more. Since I/O scheduling
is a typical combinatorial optimization problem, the branch-
and-bound strategy can be effectively used for this problem.
We cut down two kinds of unnecessary schedules from
huge searching spaces using the QoS requirements of het-
erogeneous workloads. The first class is schedules that have
any deadline missed request and the second class is schedules
that incur too long seek time. Figure 2 illustrates an example
of the cutting-down process. Let us assume that R is a real-
time request with the deadline of 200 ms, and R, and R; are
best-effort requests. In this example, for simplicity, we assume
that the seek time of track-to-track is 1 ms and the seek time
is proportional to the track distance of the requests. We also
assume that the rotational latency for each request is constant
and do not consider the transfer time because it is very small
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FIGURE 1: An example of grouping best-effort requests located closely to each other. In (a), the number of all possible combinations before
grouping is 11 factorial. On the other hand, as in (b), the number of all possible combinations after grouping becomes 6 factorial.
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(a) Requests R;(d;, t;) in the queue: d; is the deadline and ¢; is the track number
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1
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Sl| S, | S3|
3 (R3 Ry R;) (Ry,R3Ry) (R, Ry, Ry)
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(R}, Ry)
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=190 ms =190 ms =250ms

(b) All possible schedules: node (R;, Rj, R;.) denotes the scheduling order of Ri — R; — Ry

FIGURE 2: An example for pruning. There are three requests R;, R,, and R; in the queue. Schedules S, and S4 can be pruned because S; misses

the deadline 200 ms of R,, and S incurs too long seek times.

compared to the seek time and the rotational latency. Note
that these factors are considered in the experiment section.
In Figure 2(b), level denotes the number of requests in
the queue. For example, when the level is 3, the searching
space is 3 factorial. Among all possible combinations, some
schedules can be removed from this tree structure. For
example, schedule S; can be removed because request R; in
schedule S, cannot meet its deadline of 200 ms. Note that
any schedules inherited from this schedule cannot also satisfy

the deadline constraints, which we will show in Theorem 1.
Schedule S4 can also be removed because it incurs too long
seek time. A concrete yardstick for “too large” here will
be given more clearly in Theorem 2. As a result, practical
searches for finding the best schedule can be performed only
with the remaining schedules. An optimal schedule in this
example is S,, because its seek time is shortest among the
schedules satistying the deadline requirement of real-time
requests.
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Now, we will show why the two classes of schedules and
their successors cannot produce an optimal schedule and thus
can be pruned. These two pruning conditions can be proved
through the following two theorems.

Theorem 1. If a schedule does not meet the deadline of any
real-time request, then all new schedules inherited from that
schedule will not also meet the deadlines.

Proof. Let us assume that there is a schedule with the request
order (..., R;,...), where 1 < i < n, that cannot meet the
deadline of R;. When a new request R, arrives, G-SCAN
expands existing schedules by inserting R, into positions
either before or after R;, that is, (...,R,,1,...,R;,...) or
(...,R;..., R 15 .. .). In the latter case that R, is serviced
later than R;, the service time of R; does not change at all, and
thus R; still misses the deadline. In the former case that R, , is
serviced earlier than R;, the seek time of R; will not obviously
be reduced. Hence, the schedule cannot meet the deadline of
R;. O
Theorem 2. Assume that there are n requests in the queue and
the seek time of a schedule S;(n) is longer than that of an optimal
schedule S ,,(n) for a full sweep time of the disk head. Then, any
schedule S;(n + 1) expanded from S;(n) due to the arrival of a
new request cannot be an optimal schedule.

Proof. Let Copt(n) and C;(n) be the seek time of Sopt(n) and
S;(n), respectively. Then, by the assumption of this theorem,
the following expression holds:

Ci (1’1) - Copt (7’1) > Csweep’ (1)
where C., is the seek time of a full disk head sweep.
Similarly, let S, (n + 1) be an optimal schedule after arriving
(n+1)th request, and let C;(n+ 1) and Copt(n+ 1) be the seek
time of S;(n+1) and Sopt(n + 1), respectively. Since S;(n+ 1) is
inherited from S;(n) by including a new request, the following
expression holds:

Ci(n+1)>C;(n). 2)

Also, expression (3) is satisfied because an additional seek
time for the new request is not longer than the seek time of a
full disk head sweep in the case of the optimal algorithm:

Copt (n) + Csweep = Copt (n+1). 3)
Through expressions (1), (2), and (3), the following expression
is derived:

Ci(n+l) >Cyp(n+1). (4)

This implies that any schedule S;(n + 1) inherited from S; ()
which satisfies expression (1) cannot have shorter seek time
than that of S, (n + 1). Hence, S;(n + 1) cannot be an optimal
schedule. O

The above two pruning conditions are devised to reduce
the searching space when a new request arrives at the queue.
Similarly, it is also possible to reduce the searching space

when a request is removed from the queue. Specifically, when
the disk becomes ready to perform a new I/O operation,
G-SCAN selects the best schedule among the candidate
schedules and dispatches the first request in that schedule.
This makes schedules not beginning with the selected request
meaningless and thus they can be pruned. Details of this
pruning condition are explained in Theorem 3.

Theorem 3. When a request R; leaves from the queue to be
serviced, any schedules that do not begin with R; can be pruned.

Proof. Let us suppose that an optimal schedule with n
requests is S, () and the first request in Sy, (1) is R;. When
the disk becomes ready to service a request, the scheduling
algorithm selects S,,(n) and removes R; from the queue to
service it. In this case, all schedules that do not begin with R,
can be removed from the searching space because schedules
inherited from them as well as themselves are all invalid. On
the other hand, schedules beginning with R; are not pruned
but remain in the tree structure though they are not selected.
Itis because these schedules may become an optimal schedule
according to the arrival of new requests in the future even
though they are not optimal now. O

It is possible that all schedules will be removed through
the above pruning conditions. For example, when the I/O
subsystem is overloaded and no feasible schedule exists, all
schedules may be pruned. To resolve this phenomenon, if the
number of candidate schedules becomes less than threshold,
G-SCAN maintains a certain number of relatively superior
schedules even though they satisfy the pruning conditions.
The relative superiority here is evaluated by considering both
total seek time and deadline miss time of real-time requests.
On the other hand, there is a possibility of incurring large
overhead if too many schedules satisfy the conditions of
G-SCAN. To solve this problem, we give rankings to the
schedules according to the relative superiority and then cut
down schedules whose ranking is beyond another threshold.
Note that G-SCAN might not find an optimal schedule in the
true sense of the definition. Essentially, an optimal algorithm
requires the knowledge of request sequences that will arrive
in the future. Our goal is to design an algorithm which can
obtain a schedule close to optimal with reasonable execution
overhead. The algorithm of G-SCAN is listed in Algorithms
1 and 2. ADD_REQUEST() is invoked when a new request
arrives and SERVICE_REQUEST() is invoked when the disk
dispatches a request in the queue for I/O service.

4. Performance Evaluation

4.1. Experimental Methodology. To assess the effectiveness of
G-SCAN, we performed extensive experiments by replaying
various traces collected. We compare G-SCAN with other
representative on-line algorithms, namely, C-SCAN, EDE,
SCAN-EDE, and Kamels algorithm [I3] in terms of the
average response time, total seek distance, throughput, and
deadline miss rate. We also show that the overhead of G-
SCAN is feasible to be implemented. To evaluate the algo-
rithms in various heterogeneous workload environments, we
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[* request_list is a list of requests ordered by SCAN order.
schedule_list is a list of schedules that have a sequence of requests.
group_list is a list of groups that consist of adjacent best-effort requests.
Sy is @ schedule with the minimum seek time.*/
procedure ADD_REQUEST(request R)
/* insert R into request_list by SCAN order. */
for each request R; in request_list
if (R.track_num > R,.track_num) then
insert_request(R); /* insert request R in front of R;. */
break;
end if
end for
/* group adjacent best-effort requests. */
GROUP_REQUESTS(R);
/* expand existing schedules by inserting R. */
EXPAND_SCHEDULES(R);
/* remove schedules whose seek time is larger than that of S
by a disk’s full sweep time, Tpjqyeep /
for each schedule S; in schedule_list
if (|S;.seektime — Syyy.seektime | > Tpygyeep) then
remove_schedule(S;, schedule_list); /* remove S; from schedule_list*/
end if
end for
end procedure
procedure GROUP_REQUESTS(request R)
if (R.type = real-time) then
for each group G, in group_list
/* if R is located in Gy, split the G, into two groups */
if (Gy.start_track_num < R.track_num and R.track_num < G,.end_track_num) then
split_group (R, Gp);
return;
end if
end for
else /" R.type is best-effort. */
/"R; and R; are left and right neighbour requests of R, respectively,
and 7 is a threshold for grouping. */
if (R;.type = best-effort and R;.type = best-effort) then
if (|R;.track_num — R,.track_num | < 7) then
insert_into_group(R, G); /* add R to the group G including both

R;and R;."/
return;

else if (|R;.track_num — R.track_num | < T and |R.track_num —Rj.tmck,num | < 7) then
merge_groups(G;, G); /" merge group G; including R; and group G;
including R;. */
return;

else if (|R;.track_num — R.track_num | < 7) then
insert_into_group (R, G;); /* add R to the group G; including R;. */
return;

else if (|R.track_num — Rj.tmck,num | < 7) then
insert-into_group (R, G); /" add R to the group G, including R;. */
return;

end if

else if (R;.type = best-effort and R;.type = real-time) then
if (|R;.track_num — R.track_num | < ) then
insert_into_group (R, G;); /* add R to the group G; including R;. */
return;
end if
else if (R;.type = real-time and R;.type = best-effort) then
if (|R.track_num — R]-.tmck,num | < 1) then
insert-into_group (R, G); /* add R to the group G, including R;. */
return;

end if

ALGoriTHM 1: Continued.
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else
create_group (R);
end if
end if
end procedure
procedure EXPAND_SCHEDULES(request R)
old_schedule_list «— schedule_list;
for each schedule S; in old_schedule_list
remove_schedule (S;, old_schedule_list);

Snew

deadline_missed < FALSE;

temp « 0;

for each request R; in S,
temp + = R;.servicetime;

break;
end if
end for

new_schedule_list. */
if (Spenr

Smiv < S

end if
end if
end for

end for
schedule_list «— new_schedule_list;

end procedure

new?>

for each position 7 in request sequences of S;
— a new schedule created by inserting R into position 7.

if (Rj.deudlz'ne < temp) then
deadline_missed « TRUE;

if (deadline_missed = FALSE) then
insert_schedule (S,.,,, new_schedule_list);

.seektime < Sy y.seektime) then

/* creates a new group including R. */

/* remove S; from old_schedule_list. */

/* insert S,,, into

ALGORITHM I: Inserting a request into queue.

procedure SERVICE_REQUEST (schedule Sy;)
R « the first request in Sy
old_schedule_list «— schedule_list;
for each schedule S; in old_schedule_list
remove_schedule(S;, old_schedule_list);
R, « the first request in S;.
if (R =R,) then
Snew
end if
end for
schedule_list «— new_schedule_list;
return R;
end procedure

— a new schedule created by removing R, from S;;
insert_schedule(S,,.,,, new_schedule_list);

/* remove S; from old_schedule_list. "/

/" insert S_. into new_schedule_list. */

new

ALGoriTHM 2: Dispatching a request from queue.

use both synthetic and real-world I/O traces. For synthetic
traces, we generated four different types of workloads as
shown in Table2. Workloads 1 to 4 consist of various
heterogeneous I/0 workloads including real-time and best-
effort applications. We modeled two different types of real-
time applications based on their access patterns, namely,
random and periodic. In the random type, data positions, I/O
request times, and deadlines are determined randomly each

time, while the periodic type has regular values. Similarly,
we modeled best-effort applications as two different access
patterns, namely, random and sequential.

To show the effectiveness of G-SCAN under more real-
istic conditions, we also performed experiments with real-
world I/O traces gathered from Linux workstations (work-
loads 5 and 6 in Table 2). We executed the IOZONE program
and the mpeg2dec multimedia player together to generate
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TABLE 2: Summary of workloads used in the experiments.
Workload Type of application Access pattern Averz'a[ig;:)(trenr:)rnval De(?:i;ne I/(?(IS;)Z ¢ F?;;[SBI)Ze
M Real-time application Random 20 30-70 64 100
Best-effort application Random 20 Infinite 4-128 100
@) Real-time application Periodic 20 20 64 100
Best-effort application Random 20 Infinite 4-128 200
3) Real-time application Periodic 20 20 64 100
Best-effort application Sequential 20 Infinite 64 200
Real-time application Periodic 20 20 64 100
4) Best-effort application Random 45 Infinite 4-128 100
Best-effort application Sequential 20 Infinite 64 100
5) Real-time application Periodic 45 30 4-64 324
Best-effort application Random 10 Infinite 4-64 128
©6) Real-time application Periodic 90 30 4-64 324
Best-effort application Random 19 Infinite 4-64 128
25
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FIGURE 3: The number of groups after grouping adjacent best-effort requests. The searching space is significantly reduced by the grouping.

different types of I/O requests. IOZONE is a filesystem
benchmark tool which measures the performance of a given
file system. It generates various random I/O requests, and
their average interarrival times in workloads 5 and 6 are
10 ms and 19 ms, respectively [25]. mpeg2dec is a program for
playing video files, which generates real-time I/O requests
periodically. Average interarrival times of I/O requests gen-
erated by mpeg2dec in workloads 5 and 6 are about 45 ms and
90 ms, respectively. The deadline of real-time I/O requests in
mpeg2dec is about 30 ms.

4.2. Effects of Grouping. Before comparing the performances
of G-SCAN against other algorithms, we first investigate the
effect of grouping when workload 5 (real workload) is used.
Figure 3 shows the average number of groups as a function
of threshold 7. Note that the number of groups illustrated
in Figure 3 includes real-time requests as well as grouped
best-effort requests. The unit of 7 is defined as the track

distance of two requests. For example, if 7 is set to 100, best-
effort requests whose track distance is smaller than 100 can
belong to the same group. As can be seen from Figure 3
the searching space, namely, all possible combinations of
schedules, is significantly reduced after grouping.

For example, when grouping is not used, the average
number of requests in the queue is about 22 and thus the
size of entire searching space is 22! which is a number larger
than 10°'. Note that the zero extreme of threshold 7 in
the graph implies that grouping is not used. However, after
grouping is used, the searching space is significantly reduced.
For example, when the threshold 7 is 100 tracks, the average
number of groups becomes about 6, and thus the searching
space is reduced to 6! = 720. Moreover, G-SCAN does not
expand this searching space completely because it also uses
heuristics to reduce the searching space even more.

To see the effect of grouping, we investigate the perfor-
mance of G-SCAN in terms of various aspects as a function
of threshold 7. We also use workload 5 (real workload) in this
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FIGURE 4: The effect of grouping in G-SCAN.

experiment. As can be seen from Figures 4(a)-4(c), total seek
distances, throughput, and deadline miss rate are scarcely
influenced by the value of threshold 7. In the case of average
response time, however, the performance degrades signifi-
cantly when 7 is larger than 100 as shown in Figure 4(d). We
also compare the number of schedules actually expanded as

a function of threshold 7. As can be seen from Figure 4(e),
grouping significantly reduces the number of schedules to
be handled. Specifically, the number of expanded schedules
drops rapidly when the threshold 7 is larger than 60. With
these results, we can conclude that grouping of adjacent best-
effort requests can significantly reduce the searching space
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FIGURE 5: Performance comparison with various workloads.

without performance degradations when the threshold 7 is
set to a value around 100. In reality, finding an appropriate 7
value for each workload environment is not an easy matter
and is a topic that we are still pursuing. We use the default
value of 7 as 100 throughout this paper because it shows
good performances and incurs reasonably low scheduling
overhead for all workloads that we considered.

4.3. Performance Comparison. In this subsection, we com-
pare the performance of G-SCAN with other scheduling
algorithms. We use four synthetic workloads and two real
workloads listed in Table 2. Note that the performance of G-
SCAN is measured when 7 is set to 100. First, we investigate

the total seek distances of the five algorithms. As shown in
Figure 5(a), G-SCAN outperforms the other algorithms for
all workloads that we experimented. C-SCAN and Kamel’s
algorithm also show competitive performances though the
performance gap between G-SCAN and these two algorithms
is distinguishable for workloads 2 and 4. Figures 5(b) and
5(c) show the throughput and the average response time
of the algorithms, respectively. For both of the metrics, G-
SCAN again performs better than C-SCAN and Kamels
algorithm. EDF and SCAN-EDF result in excessively large
average response time for all cases. The reason is that EDF and
SCAN-EDF greedily follow the earliest deadline irrespective
of request positions. Figure 5(d) compares the deadline miss
rate of the five algorithms. As expected, deadline-based
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F1GURE 7: Throughput of the algorithms as a function of workload intensities.

algorithms such as EDF and SCAN-EDF perform well for  the average response time, throughput, and seek distances for
most cases. C-SCAN and Kamel’s algorithm do not show  both synthetic and real-world traces.

competitive performances. G-SCAN shows reasonably good To show the upper bound of performance, we additionally
performances in terms of the deadline miss rate for all cases. ~ measured the performance of several unrealistic algorithms
Specifically, G-SCAN performs better than even EDF when  that have more information to schedule, namely, OPT-D,
real workloads (workloads 5 and 6) are used. In summary, G- OPT-T, and OPT-G. OPT-D is an optimal algorithm in terms
SCAN satisfies the deadline constraints of real-time requests ~ of the deadline miss rate that minimizes the number of
and at the same time exhibits good performances in terms of ~ requests missing its deadline. OPT-T moves the disk head
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FIGURE 9: Deadline miss rate of the algorithms as a function of workload intensities.

in order to minimize the total seek time irrespective of
deadline misses, which performs similarly to the original
SCAN algorithm. Finally, OPT-G moves the disk head to
minimize the seek time and meet the deadlines of real-time
requests simultaneously if a feasible schedule exists. When
no feasible schedule exists, OPT-G moves the disk head to
minimize the seek time. OPT-G is a complete version of G-
SCAN that does not use neither grouping nor branch-and-
bound scheme.

Figures 6, 7, and 8 show the total seek distance, the
throughput, and the average response time of the algorithms,
respectively. The experiments were performed with workload
1 (synthetic workload) and workload 5 (real workload),
respectively. We scale the original interarrival times of the
workloads to explore a range of workload intensities. For
example, a scaling factor of two generates a workload whose
average interarrival time is twice longer than original work-
load. As can be seen in the figures, G-SCAN shows almost
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identical performances with OPT-T and OPT-G in terms
of the total seek distance, the throughput, and the average
response time. As expected, EDF results in extremely poor
performance in terms of the three metrics because it does not
consider the movement of the disk head.

Figure 9 compares the deadline miss rate of the algo-
rithms. Since G-SCAN aims at reducing the seek time as
well as the deadline misses, it could not exhibit better
performance than OPT-D that only considers the deadline
miss rate. However, G-SCAN consistently shows competitive
performances in terms of the deadline miss rate. Specifically,
the performance of G-SCAN is similar to that of OTP-
G which pursues identical goals but does not use either
grouping or pruning mechanism. Consequently, we can

conclude that the grouping and the pruning mechanism of
G-SCAN significantly reduce the searching space without
degradation of the performance in all aspects of the total seek
distance, the throughput, the average response time, and the
deadline miss rate.

4.4. Overhead of G-SCAN. To show the overhead of G-
SCAN, we measured the number of schedules expanded by
G-SCAN and compared it with the number of all possible
schedules. Figure 10 shows the result for different scaling
factors when workload 1 (synthetic workload) and workload
5 (real workload) are used. It is important to note that the y-
axis in the graph is in log-scale. As shown in the figure, the
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number of schedules maintained by G-SCAN is reasonable
for all cases. Specifically, when the scaling factor of 1.0 is used
for workload 1 that refers to the original workload, the average
number of schedules expanded by G-SCAN is only 298. Note
that the average number of all possible schedules in this case
is 7.455 x 10"°. Similarly, the average numbers of schedules
expanded by G-SCAN for real workload are smaller than 100
for all cases.

Figure 11 compares the schedules expanded by G-SCAN
with all possible schedules when the scaling factor of 1.0 is
used for workload 1 (synthetic workload) and workload 5
(real workload), respectively, as time progresses. Note that
the y-axis is again in log-scale. As can be seen, G-SCAN
explores only a small fraction of total possible schedules, and
its overhead is reasonable for on-line execution.

5. Conclusions

In this paper, we presented a novel disk scheduling algorithm
called G-SCAN that supports requests with different QoS
requirements. G-SCAN reduces the huge searching space
to a feasible level through grouping and branch-and-bound
strategies. We have shown that G-SCAN is suitable for dealing
with heterogeneous workloads since (1) it is based on the on-
line request handling mechanism, (2) it meets the deadlines
of real-time requests, (3) it minimizes the seek time, and
(4) it has low enough overhead to be implemented. Through
extensive experiments, we demonstrated that G-SCAN out-
performs other scheduling algorithms in terms of the average
response time, throughput, total seek distances, and deadline
miss rate. We also showed that G-SCAN has reasonable
overhead to be implemented for on-line execution.
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