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A new family of eighth-order derivative-free methods for solving nonlinear equations is presented.
It is proved that these methods have the convergence order of eight. These new methods are
derivative-free and only use four evaluations of the function per iteration. In fact, we have obtained
the optimal order of convergence which supports the Kung and Traub conjecture. Kung and Traub
conjectured that the multipoint iteration methods, without memory based on 1 evaluations could
achieve optimal convergence order of 2""!. Thus, we present new derivative-free methods which
agree with Kung and Traub conjecture for n = 4. Numerical comparisons are made to demonstrate
the performance of the methods presented.

1. Introduction

In this paper, we present a new family of the eighth-order methods to find a simple root a of
the nonlinear equation:

fx) =0, (1.1)

where f: D C R — Ris a scalar function on an open interval D and it is sufficiently smooth
in a neighbourhood of a. It is well known that the techniques to solve nonlinear equations
have many applications in science and engineering. We will compare our new methods with
well-known methods, namely, the classical Steffensen method for its simplicity [1, 2] and
recently introduced eighth-order methods [3-5].

The eighth-order methods presented in this paper are derivative-free and only use
four evaluations of the function per iteration. In fact, we have obtained the optimal order
of convergence which supports the Kung and Traub conjecture. Kung and Traub conjectured
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that the multipoint iteration methods, without memory based on n evaluations, could achieve
optimal convergence order 2""!. Thus, we present new derivative-free methods which
agree with the Kung and Traub conjecture for n = 4. In addition, these new eighth-order
derivative-free methods have an equivalent efficiency index to the established eighth-order
derivative based methods presented in [3-5]. Furthermore, the new eighth-order derivative-
free methods have a better efficiency index than the sixth-order derivative-free methods
presented recently in [6, 7] and in view of this fact, the new methods are significantly better
when compared with the established methods. Consequently, we have found that the new
eighth-order derivative-free methods are consistent, stable, and convergent.

This paper is organised as follows. In Section 2, we describe the eighth-order methods
that are free from derivatives and prove the important fact that the methods obtained
preserve their convergence order. In Section 3, we will briefly state the established methods in
order to compare the effectiveness of the new methods. Finally, in Section 4 we demonstrate
the performance of each of the methods described.

2. Development of the Eighth-Order Derivative-Free Methods and
Analysis of Convergence

In this section, we will define a new family of eighth-order derivative-free methods. In
order to establish the order of convergence of these new methods, we state three essential
definitions.

Definition 2.1. Let f(x) be a real function with a simple root & and let {x,} be a sequence of
real numbers that converge towards a. The order of convergence m is given by

Xpn+1 — &

=670, (2.1)

lim
n—oo (x, — a)
where { is the asymptotic error constant and m € R*.
Definition 2.2. Suppose that x,_1, x, and x,.; are three successive iterations closer to the root

a of (1.1). Then, the computational order of convergence [8] may be approximated by

ln| (xpe1 — a)(xp — a)_ll
COC =

ln| (2 — ) (X1 — a)—ll' (2.2)

where n € N.

Definition 2.3. Let p be the number of function evaluations of the new method. The efficiency
of the new method is measured by the concept of efficiency index [9, 10] and defined as

u'’b, (2.3)

where y is the order of the method.
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2.1. The Eighth-Order Derivative-Free Methods

In this subsection, we will define the new eighth-order derivative-free iterative method. In
fact, we define different types of eighth-order method by varying the parameters f;, ¢;, wi,
and ¢;. Therefore, the general formula of the new eighth-order method for determining the
simple root of (1.1) is given as:

wy, = X, + ﬂi‘lf(xn), (2.4)
. f(xn)2
= (f(wn) = Fa) > (29)
Xn _]/n
n=Yn—Pi\ 7 <~ n)s 2.6
z y ¢]<f(xn) _f(yn)>f(y ) ( )
-1

Xy = 2 _wk§l<f(zn) _f(yﬂ) _ f(yn) _f(xn) + f(zn) _f(xn)> f(Zn), (2.7)

Zn_yn yn_xn Zp — Xnp

where n € N, f € R*, provided that the denominators (2.5)—(2.7) are not equal to zero.
The parameters used in the above eighth-order method are given as:

ﬁi = i_l, i €R",

NI /o F)
= <1 f(wn)> , $a = (1 + f(wn)>,
oy fE)\T - flzn) [ flza)\2 (2.8)
e <1 f(wn)> o <1+ flwn) " <f(wn)> >

3 3 -1
‘- QM) - <1M>
f(wn)zf(xn) f(wn)zf(xn)

In order to obtain a solution of the formula (2.7), we take one parameter from each
set given above. Simply varying these parameters, we have many variants of eighth-order
derivative-free methods. Furthermore, we will demonstrate the performance of the eighth-
order methods with the parameters given in (2.8). To obtain the solution of (1.1) by the new
derivative-free methods, we must set a particular initial approximation xy, ideally close to the
simple root. In numerical mathematics, it is very useful and essential to know the behaviour

of an approximate method. Therefore, we will prove the order of convergence of the new
eighth-order method.

Theorem 2.4. Assume that the functionf : D C R — R for an open interval D has a simple root
a € D. Let f(x) be sufficiently smooth in the interval D, the initial approximation x is sufficiently
close to a then the order of convergence of the new derivative-free method defined by (2.7) is eight.

Proof. Let a be a simple root of f(x), thatis, f(a) =0and f'(a) #0, and the error is expressed
as

e=x-a. (2.9)
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Using the Taylor expansion, we have
Fotn) = fla) + f@en 271 prien g1 el | og=t fiv(g)ed 4. (2.10)

Taking f(a) = 0 and simplifying, expression (2.10) becomes

f(xn) =cren + 626121 + C3e;°; + C4ei +-, (2.11)
where n € N and
(k)
ckz% for k=1,2,3,4,.... (2.12)

Expanding the Taylor series of f(w,) and substituting f(x,) given by (2.10), we have
flwn) =c1(L+cif)en + <3ﬂclcz +fAcier + cz>e,21 +e (2.13)

Substituting (2.11) and (2.13) in the expression (2.5) gives us

Xp — Wy _ C2
Yn—a=Xp—a— <m)f(xn) = <C—l>(ﬂC1+1>€.,21+ (214)

The expansion of f(1,) about « is given as

f(yn) = [Cl (Yn—a) +c2(yn—a) + c3(yn— )’ +-- ] (2.15)

Simplifying (2.15), we have

34 (216)

3 2 2 2 20 2
Pcics —2c5 + 3Pcics + 2c1c3 — frcicy — 2Pcicy E
1

F () = ex(crfp+ 1) + (

The expansion of the particular term used in (2.6) is given as

_ f(y") B _ €2 ﬁC%CS - 2‘5016% + Peics — ch )
) I Y (e e E

Substituting appropriate expressions in (2.6), we obtain

—a= —a-— _f(y") xn_yn
R <1 f(wn)> < o) —f(yn)>f (). (218)

The Taylor series expansion of f(z,) about a is given as

f(zn) = [cl(zn —a)+c(zy — zx)2 +c3(z, — a)3 + - ] (2.19)
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Simplifying (2.19), we have

g (2.20)

25 — c10203 + 4Peic; + 22 cic; — 2Bcicacs — cleacs
f(ZTl) = en +
G

In order to evaluate the essential terms of (2.7), we expand term by term

<f(yn) -f(xn)> st <ﬂ—>

Yn — Xn (5]

<f<zn> - f(yn)> - (ﬂ * >€ . (221)
Zp —Yn C1

<f(zn) — f(xn)

=C1+C2€n+C3€i+"~.
Zp — Xp

Collecting the above terms
y - [<M> _ <f<yn) —f(xn)> . (f(zn) —f(xn))]l
]/n_xn yn_xn Zpn — Xn

1 CrC3 + ﬂC1C2C3 3
= — 4+ _— e +-- .,
3 n
€1 c

s = (1 _ flzn) >—1 . <ﬁc%cZC3 - 2fcicy + c1cac3 — 25)63 . (2.22)

f(wn) ;

1

§1_<1 f(wnff(xn))_l < c R

ﬁC1C2C3 + C2C3 3
W1§1=1—<—2 e,+--
1

C

pwié
1

1

2 2 4 2.2 232 4 3 4_ 2 2 2 4
. prcic;y + 6Pcicics + 3 cicies + Peics — 2Py cacy + 3¢, — cicacy + 3c1C5¢3 — frcicacy
c
)ed oo
(2.23)

Substituting appropriate expressions in (2.7), we obtain

en+1 = Zn — A — pwiéi f (zn). (2.24)
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Simplifying (2.24), we obtain the error equation

ens1 =y’ [8ﬁ3cfcgc§ - 10c) - 32f%cic) — Pcicyes + 12p7clc3cl + 8fcicycl — Belcscsca
+8fcicycy + 12B%cicres — 9B clcyes — 8PP cicscs — 3B cicyes + 2 S csea
—6B*cicscscs — APcicscscs — 4P cScscsen + 2B S c; — clcycsen — 2B cich
— 30Bcicy — 14f°cic) + cicyc3 + 2¢ic5c5 + 2¢icyca + 8[33(:;_’(:‘21(:4] e,

(2.25)

The expression (2.25) establishes the asymptotic error constant for the eighth order of
convergence for the new eighth-order derivative-free method defined by (2.7). O

3. The Established Eighth-Order Methods

The eight particular eighth-order derivative-based methods considered are given in [3-5].
Since these methods are well established, we will state the essential expressions used in order
to calculate the approximate solution of the given nonlinear equations and thus compare the
effectiveness of the new eighth-order derivative-free method.

3.1. The Bi, Wu, and Ren Methods
The first of the established eighth-order methods was presented by Bi et al. [3].

Method 1.

Yn =Xn— f]:((z;;))/ (3.1)

[ =) T Fw)
T [2f<xn>—5f<yn>]<f’<xn> > 52

fen) + (r +2)f(z0) < f(zn) > (33)
f(xn) + Yf(zn) f[zn/ yn] + f[zn/ Xn, xn] (Zn - yn) ’ ‘

Xn+l = Zn — [

where [z, yu] = (f(zn) = f(Wn))/ (20 — Yn), ¥ € R, f(yn) is given by (3.1), xo is the initial
approximation and provided that the denominators of (3.1)—(3.3) are not equal to zero.

R S (AR (AN N S LA LD
Zn = Yn [1 +2f(xn) +5<f(xn)> + <f(xn)> ] < f'(xn) >, (34)
Fln) + (r + 2)f(zn)] < fz) > .
f(xn) + Yf(z‘rl) f[znr yn] + f[an Xn, xn] (Zn - yn) ’ .

Method 2.

Xn+l = Zn — [
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where y, 1 € R, f(y,) is given by (3.1) and provided that the denominators of (3.4) and (3.5)
are not equal to zero.

Method 3.
I RN NN LD
Zn = Yn [1 2500 (f(xn)> + <f(xn)> ] <—f,(xn) > (3.6)
fen) + (y + 2)f<zn>] < f(zn) > 57)
f(xn) + Yf(z‘rl) f[znr yn] + f[an Xn, xn] (Zn - yn) ’ .

Xn+l = Zn — [

where v, € R, f(yn) is given by (3.1), xo is the initial approximation and provided that the
denominators of (3.6) and (3.7) are not equal to zero.

Method 4.
e =3F ) 17 F ()
Zn = Yn — [W] f’(xn) , (3.8)
o [ fGn) + (r+2) f(za) f(zn)
e = A [ fQn) +yf(zn) ] <f[zn,yn] + f[2n, Xn, 0] (20 = Yn) > (39)

where y € R, f(y,) is given by (3.1) and provided that the denominators of (3.8) and (3.9)
are not equal to zero.

3.2. The Sharma Methods

The three particular eighth-order methods considered are given in [4]. Since these methods
are well established, we will state the essential expressions used in order to calculate the
approximate solution of the given nonlinear equations and thus compare the effectiveness of
the new iterative eighth-order method.

Method 5.
Zn = Yn — S (xn) f(yn)>
o [f(xn) - 2f(yn)] < fla ) (3.10)
=z — f(zn) f(Zn) 2 f[xn/ ]/n]f(Zn)
Xn+l = Zn [1 + f(xn) + Y(f(xn)> ] <f[yn/ Zn]f[xn, Zn] >/ (3.11)

where y € R, f(y,) is given by (3.1) and provided that the denominators of (3.10) and (3.11)
are not equal to zero.
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Z, = — f(xn) f(yn)
e [f(xn) - 2f(yn)] < ) >’ (3.12)

fn) + (y + 1)f(Zn)] < S [xn yn] f (zn) >
f(xn) + Yf(zn) f[}/n, Zn]f[xn/ Zn] ’

Method 6.

Xpsl = Zn — [ (3.13)

where v, € R, f(y,) is given by (3.1) and provided that the denominators of (3.12) and
(3.13) are not equal to zero.

Z, = — f(xn) f(yn)
e [f(xn) —Zf(yn)] < ) > (3.14)

MAGh) “/”< F [ Y] f (z0) >
fxn) Flyn za] fl2%n, 20l )’

Method 7.

Xpsl = Zn — |1 + (3.15)

where y € R, f(y,) is given by (3.1), x¢ is the initial approximation and provided that the
denominator of (3.14) and (3.15) are not equal to zero.

3.3. The Thukral Eighth-Order Method

The following eighth-order method is actually presented in [5] and since it is well established,
we will state the essential expressions used in order to calculate the approximate solution of
the given nonlinear equations and thus compare the effectiveness of the new iterative eighth-
order method. The Newton-type eighth-order iterative method is expressed as

2 2
I (GO (DN (3.16)
f,(xn)(f(xn)ff(yn))

12\’ Fz) )| [ fz
Xn+l = Zn — [<1 _/’ln> —2(/4”)2 - 6(/"")3 + f(]/n) +4f(xn)] <f,(x") >/ (317)

where p, = (f(yn)/ f(xn)) n €N, f(yy) is given by (3.1) and provided that the denominators
of (3.16) and (3.17) are not equal to zero.

4. Application of the New Derivative-Free Iterative Methods

To demonstrate the performance of the new eighth-order methods, we take six particular
nonlinear equations. We will determine the consistency and stability of results by examining
the convergence of the new derivative-free iterative methods. The findings are generalised
by illustrating the effectiveness of the eighth-order methods for determining the simple root
of a nonlinear equation. Consequently, we will give estimates of the approximate solution
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Table 1: Errors occurring in the estimates of the root of (4.1) by the methods described.

Methods |x1 — af |22 — af |3 — af COC
(2.7) 0.690e - 3 0.933e - 34 0.255e - 373 11.0000
(3.3) 0.228e -1 0.281e - 13 0.213e - 108 7.9863
(3.5) — — — —
(3.7) 0.795e - 1 0.229¢ -9 0.295e - 77 8.0425
(3.9) 0.281e -2 0.104e - 20 0.386e — 168 8.0266
(3.11) 0414e -2 0.164e - 18 0.997e — 150 7.9992
(3.13) 0.654e -2 0.625e — 17 0.452¢ - 137 7.9986
(3.15) 0.523e -2 0.105e - 17 0.295¢ — 143 7.9990
(3.17) — — — —

produced by the eighth-order methods and list the errors obtained by each of the methods.
The numerical computations listed in the tables were performed on an algebraic system called
Maple. In addition, we need to set a particular value of the parameters used in all the eighth-
order formula given in this paper. Therefore, we take i = y = f = 1 as an arbitrary value. In
fact, the errors displayed are of absolute value.

Remark 4.1. The family of three-point methods requires four function evaluations and has the
order of convergence eight. Therefore, this family is of optimal order and supports the Kung-
Traub conjecture [11]. To determine the efficiency index of these new derivative-free methods,
we will use the definition (2.2). Hence, the efficiency index of the eighth-order derivative-free
methods given is v/8 = 1.68.

Remark 4.2. In Tables 1-6, it is observed that the new eighth-order derivative-free methods
are competitive with the existing eighth-order derivative-based methods. Furthermore, in
these tables we have omitted the insignificant approximations by the various methods and
the absolute errors |x, — a| < 1071°% in the first three iterations are given in Tables 1-6.

4.1. Numerical Example 1

In our first example, we will demonstrate the convergence of the new eighth-order derivative-
free methods for the following nonlinear equation:

f(x)=e —cos(x), (4.1)

and the exact value of the simple root of (4.1) is a = -0.666273126. .. .. In Table 1 are the errors
obtained by each of the methods described, based on the initial approximation xp = 371.

4.2. Numerical Example 2

In our second example, we will demonstrate the convergence of new eighth-order derivative-
free methods for a different type of nonlinear equation:

f(x) = ln<x2+x+2> -x+1, (4.2)
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Table 2: Errors occurring in the estimates of the root of (4.2) by the methods described.

Methods |x1 — af |22 — af |3 — af COC
(2.7) 0.193e - 14 0.982¢ — 127 0.443e - 1025 8.0000
(3.3) 0.244e - 12 0.248e - 108 0.279¢ - 876 8.0000
(3.5) 0.104e - 11 0.169¢ - 102 0.806e — 829 8.0675
(3.7) 0.289%¢ - 12 0.119e - 107 0.102e - 870 8.0693
(3.9) 0.321e - 12 0.320e — 107 0.308e — 867 8.0689
(3.11) 0.109e - 11 0.220e - 102 0.591e — 828 7.9999
(3.13) 0.109e - 11 0.220e - 102 0.599¢ — 828 8.0003
(3.15) 0.109e - 11 0.220e - 102 0.595e — 828 7.9999
(3.17) 0.743e - 11 0.760e — 95 0.905e - 767 8.0000

Table 3: Errors occurring in the estimates of the root of (4.3) by the methods described.

Methods |x1 — af [x2 — af |3 — af COC
(2.7) 0.241e -4 0.872e — 37 0.258e — 296 7.9859
(3.3) 0.813e -2 0.152e - 17 0.264e — 143 7.9961
(3.5) 0.416 0.370 0.661e — 4 0.8817
(3.7) 0.750e — 2 0.599¢ — 18 0.110e — 146 8.0254
(3.9) 0.128e -2 0.355¢ — 24 0.123e — 196 8.0317
(3.11) 0.153e -2 0.101e — 22 0.367e — 184 7.9999
(3.13) 0.205e -2 0.104e - 21 0.447e - 176 7.9998
(3.15) 0.178e -2 0.332e — 22 0.502e — 180 7.9998
(3.17) — — — —

and the exact value of the simple root of (4.2) is & = 4.15259074 .. .. In Table 2 are the errors
obtained by each of the methods described, based on the initial approximation xy = 4.4.

4.3. Numerical Example 3

In this subsection, we take another nonlinear equation. We will demonstrate the convergence
of the new eighth-order derivative-free methods for the following nonlinear equation:

f(x) =sin (x)2 - x> +1, (4.3)

and the exact value of the simple root of (4.3) is & = 1.40449165. ... In Table 3 are the errors
obtained by each of the methods described, based on the initial approximation xo = 1.

4.4. Numerical Example 4

In the next examples, we take another different type of nonlinear equation. We will
demonstrate the convergence of new eighth-order derivative-free methods for the following
nonlinear equation:

f(x) =exp <—x2 + X+ 2> —cos(x+1)+x>+1, (4.4)



International Journal of Mathematics and Mathematical Sciences 11

Table 4: Errors occurring in the estimates of the root of (4.4) by the methods described.

Methods |21 — |22 — af |xc3 — at COC
(2.7) 0.228¢ -5 0.453e — 44 0.110e - 353 7.9901
(3.3) 0.216e — 4 0.143e - 39 0.526e - 321 7.9940
(3.5) 0.180e - 5 0.500e - 48 0.176e — 388 7.9940
(3.7) 0.217e -4 0.149¢ - 39 0.736e — 321 7.9940
(3.9) 0.218¢e -4 0.153e - 39 0.891e — 321 8.0000
(3.11) 0.295e -5 0.235e - 46 0.376e — 375 8.0428
(3.13) 0.295e -5 0.235e — 46 0.372e - 375 8.0551
(3.15) 0.481e -3 0.217e — 24 0.391e - 195 8.0553
(3.17) 0.127e - 4 0.959%¢ — 42 0.101e - 338 7.9892

Table 5: Errors occurring in the estimates of the root of (4.5) by the methods described.

Methods |x1 — af [x2 — af |3 — af COC
(2.7) 0.933e -2 0.595e -9 0.211e - 66 7.7073
(3.3) 0.225¢ -1 0.363e - 8 0.179e — 62 7.9964
(3.5) 0.924e -2 0.358e — 10 0.102e - 77 7.4660
(3.7) 0.247e -2 0.132e — 15 0.930e — 122 7.6851
(3.9) 0.408 0.310e - 1 0.256e -7 2.7679
(3.11) 0.474e -3 0.192e - 24 0.141e - 195 7.9668
(3.13) 0.489%¢ -3 0.246e — 24 0.103e — 194 7.9666
(3.15) 0.481e -3 0.217e - 24 0.391e - 195 7.9666
(3.17) 0.609¢ — 2 0.428e - 12 0.259¢ - 93 7.9992

and the exact value of the simple root of (4.4) is a = —1. In Table 4 are the errors obtained by
each of the methods described, based on the initial approximation xo = 2.
4.5. Numerical Example 5

In this subsection, we take another nonlinear equation. We will demonstrate the convergence
of the new eighth-order derivative-free methods for the following nonlinear equation:

f(x) = M+ x+1, (4.5)

and the exact value of the simple root of (4.5) is @ = —0.8443975. ... In Table 5 are the errors
obtained by each of the methods described, based on the initial approximation xq = —1.

4.6. Numerical Example 6

In the last but not least of the examples, we take another different type of nonlinear equation.
We will demonstrate the convergence of new eighth-order derivative-free methods for the
following nonlinear equation:

fx)=(x-2) <x10 +x+ 1)6*"*1, (4.6)
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Table 6: Errors occurring in the estimates of the root of (4.6) by the methods described.

Methods |21 — |22 — af |xc3 — at COC
(2.7) 0.320e -2 0.116e - 10 0.114e -75 7.5078
(3.3) 0.778e -2 0.270e - 12 0.725e - 96 7.9904
(3.5) 143 - — —

(3.7) 0.282 — — —

(3.9) 0.119e -2 0.568e — 19 0.153e — 149 7.7503
(3.11) 0.790e - 3 0.193e - 20 0.250e - 161 7.9997
(3.13) 0.115¢ -2 0.390e - 19 0.693e — 151 7.9996
(3.15) 0.957¢ -3 0.896e - 20 0.535e - 156 7.9997
(3.17) — — — —

and the exact value of the simple root of (4.6) is a = 2. In Table 6 are the errors obtained by
each of the methods described, based on the initial approximation xo = 1.9.

5. Remarks and Conclusion

We have demonstrated the performance of a new family of eighth-order derivative-free
methods. Convergence analysis proves that the new methods preserve their order of
convergence. There are two major advantages of the eighth-order derivative-free methods.
Firstly, we do not have to evaluate the derivative of the functions; therefore, they are
especially efficient where the computational cost of the derivative is expensive, and secondly
we have established a higher order of convergence method than the existing derivative-free
methods [6, 7]. We have examined the effectiveness of the new derivative-free methods
by showing the accuracy of the simple root of a nonlinear equation. The main purpose
of demonstrating the new eighth-order methods for six types of nonlinear equations was
purely to illustrate the accuracy of the approximate solution and the computational order of
convergence.
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