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TheDFT-based frequency estimations have inherent limitations such as spectral leakage andpicket-fence effect due to asynchronous
sampling. This paper focuses on comparing the windowed interpolation FFT (WIFFT) and quasisynchronous sampling algorithm
(QSSA) for frequency estimation. The WIFFT uses windows to reduce spectral leakage and employs interpolation algorithm to
eliminate picket-fence effect. And the QSSA utilizes quasisynchronous weighted iterations for frequency estimation. The accuracy
and time complexity ofWIFFT and QSSA are theoretically studied. Computer simulations of frequency estimations with noise and
fluctuations by using WIFFT and QSSA are performed. Simulations results show that the wideband noise sensitivity of QSSA is
lower than that of WIFFT. However, the WIFFT exhibits less time complexity than QSSA.

1. Introduction

Frequency, as we all know, is an important parameter in
power system monitoring, control, and protection [1–3]. In
power systems, typical applications of frequency estimation
are for protection against loss of synchronism, underfre-
quency relaying, power-quality monitoring, and power sys-
tem stabilization [4–6]. However, fluctuation of fundamental
frequency has become a curse to the safe operation of
power system which deteriorates the accuracy of frequency
estimation. Thus, accurate frequency estimation of distorted
and noisy signals in industrial power systems is a challenge
that has attracted much attention.

Recently, various frequency estimation algorithms have
been proposed in the literature, which can be classified as
time-domain (parametric) and frequency-domain (nonpara-
metric) methods [7–10]. Time-domain methods, including
iterative method, Kalman filtering, and neural network, are
model-based and have very good selectivity and statistical
efficiency [11, 12]. However, time-domain methods employ
computationally intensive algorithms and require very good
model agreement with a real multicomponent signal.

Frequency-domain approaches are based on the well-
known discrete Fourier transform (DFT), which exhibit a
lower computational effort due to the availability of fast
Fourier transform (FFT). To obtain the accurate frequency,
a direct application of the DFT has the requirement of the
periodicity of signal and the synchronization of sampling
process [13, 14]. However, fluctuations of signals in power
system, including fundamental frequency instability, funda-
mental variations, time varying harmonics, and harmonic
interference, make synchronous sampling unattainable. The
performances of DFT-based frequency estimations have
inherent limitations such as spectral leakage and picket-fence
effect due to asynchronous sampling. It is well known that a
considerable reduction of spectral leakage can be achieved by
weighting samples with a suitable window, and the picket-
fence effect can be eliminated by adopting interpolation
FFT algorithms with dual-spectrum line or multispectrum
line. Although the drawback of DFT-based frequency esti-
mations can be improved by the windowed interpolation
FFT (WIFFT) [15–17], additional computational costs will be
introduced. Also, traditional DFT-based approaches require
more than one cycle of the signal samples for computation.
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Therefore, the performance of real-time monitoring may be
deteriorated.

Quasisynchronous sampling algorithm (QSSA) is a popu-
lar approach for reducing spectral leakage [18–20]. It employs
quasisynchronous weighted iterations for the spectrum anal-
ysis and estimates frequency by the phase angle difference
between two periodic signals. The QSSA has the advantages
of requiring simple hardware and high accuracy. However,
the time complexity of the QSSA has not been analyzed. Also,
the noise sensitivity of the QSSA is still not clear.

The worldwide increasing applications of frequencymea-
surement have made the choosing of frequency estimation
methods a vital issue than ever before. Unfortunately, in the
scientific literature the accuracy achieved by the WIFFT has
not yet been compared with that of the QSSA. This is the
goal of this paper. In Section 2, the WIFFT and QSSA for
frequency estimation are discussed in brief. Comparisons of
the WIFFT and QSSA, computational burden, are presented
in Section 3. Simulations results are provided in Section 4.
The conclusions are drawn in Section 5.

2. Frequency Estimation Algorithm

In order to better compare the performance of the QSSA and
WIFFT, brief introductions are provided in this section.

2.1. Quasisynchronous Sampling Algorithm. Consider a sine-
wave 𝑥(𝑚) of amplitude 𝐴, frequency 𝑓 = 1/𝑇, phase 𝜑, and
sampled at frequency 𝑓

𝑠
= 1/𝑇

𝑠
, which can be expressed as

𝑥 (𝑚) = 𝐴 sin(

2𝜋𝑓𝑚

𝑓
𝑠

+ 𝜑) , 𝑚 ∈ [0, +∞) . (1)

Let the sequence 𝑥
1
(𝑛) be selected from 𝑥(𝑚) that start

at 𝑚 = 𝑏
1
and consist of the 𝐿𝑁 + 1 samples {𝑥

1
(1) =

𝑥(𝑏
1
), 𝑥
1
(2) = 𝑥(𝑏

1
+ 1), . . . , 𝑥

1
(𝐿𝑁 + 1) = 𝑥(𝑏

1
+ 𝐿𝑁)}.

According to the definition of Fourier transform of the 𝑥
1
(𝑛)

it can be calculated as

𝑋 (𝑘)|
𝑏
1

=

2

𝐿𝑁 + 1

𝐿𝑁+1

∑

𝑛=1

𝑥
1

(𝑛) exp(−𝑗

2𝜋𝑛

𝐿𝑁 + 1

𝑘) ,

𝑘 ∈ [0, 𝐿𝑁] .

(2)

When 𝑘 = 1, we can obtain the real part and image part
of the second spectral line of the DFT of 𝑥

1
(𝑛), which can,

respectively, be calculated as

𝑅|
𝑏
1

=

2

𝐿𝑁 + 1

𝐿𝑁+1

∑

𝑛=1

𝑥
1

(𝑛) cos(

2𝜋𝑛

𝐿𝑁 + 1

) ,

𝐼|
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1

=

2
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∑

𝑛=1

𝑥
1

(𝑛) sin(

2𝜋𝑛

𝐿𝑁 + 1

) .

(3)

If the sine-wave is sampled synchronously, the frequency
can be accurately obtained from the from the spectral lines,
that is, 𝑅|

𝑏
1

and 𝐼|
𝑏
1

. Otherwise, the spectral leakage caused
by the asynchronous sampling will deteriorate the accuracy

of frequency estimation. To reduce the effect of the asyn-
chronous sampling, a quasisynchronous iteration process for
calculating 𝑅|

𝑏
1

and 𝐼|
𝑏
1

can be applied as shown in Figure 1.
In Figure 1, the upper index 𝑙 represents the number of

recursions (𝑙 = 1, 2, 3, . . . , 𝐿) and 𝑞(𝑛) represents the original
sequence of length 𝐿𝑁 + 1. The weighted recursion can be
expressed as [20]
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(4)

where 𝜌
𝑟

(𝑟 = 𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑁) are weights according to the
window function.

The real part 𝑅|
𝑏
1

and image part 𝐼|
𝑏
1

of the DFT
of the 𝑥

1
(𝑛) can be obtained from Figure 1 when the
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1
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results of 𝑅|
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where 𝛾
𝑚𝑚

is the iteration factor.
Another sequence 𝑥

2
(𝑛) can also be selected from 𝑥(𝑚)

that start at 𝑚 = 𝑏
2
and consist of the 𝐿𝑁 + 1 sample {𝑥

2
(1) =

𝑥(𝑏
2
), 𝑥
2
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2
+ 1), . . . , 𝑥

2
(𝐿𝑁 + 1) = 𝑥(𝑏

2
+ 𝐿𝑁)}. Using

the same procedure as mentioned above, the real part and
image part of the second spectral line of the DFT of 𝑥

2
(𝑛),

that is, 𝑅|
𝑏
2

and 𝐼|
𝑏
2

, can be obtained similarly.
The equivalent initial phase angles of 𝑥

1
(𝑛) and 𝑥
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thus be calculated as
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(6)

By subtracting 𝜗|
𝑏
2

from 𝜗|
𝑏
1

, we can calculate the frequency
of 𝑥(𝑚) as

𝑓 =

(𝜗|
𝑏
1

− 𝜗|
𝑏
2

) 𝑓
𝑠

2𝜋 (𝑏
1

− 𝑏
2
)

. (7)

2.2. Windowed Interpolation FFT Algorithm. The windowed
interpolated FFT is an effective approach to eliminate the
spectral leakage and picket-fence effect [21, 22]. The signal as
shown in formula (1) is multiplied by a window function of
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Figure 1: The 𝐿th iteration process based on the quasisynchronous sampling algorithm with 𝐿𝑁 + 1 samples.

length 𝑁; that is, 𝑥
𝑤

(𝑛) = 𝑥(𝑚)𝑤(𝑛) with 𝑛 = 1, 2, . . . , 𝑁.The
DFT of the windowed signal can be expressed as

𝑋 (𝑘) =

𝐴

2𝑗

[𝑒
𝑗𝜑

𝑊
𝑁

(𝑘 − 𝜆) − 𝑒
−𝑗𝜑

𝑊
𝑁

(𝑘 + 𝜆)] ,

𝑘 ∈ [0, 𝑁 − 1] ,

(8)

where 𝑊() is the DFT of the adopted window 𝑤(𝑛) and
𝜆 = 𝑓𝑁/𝑓

𝑠
is the signal frequency divided by the frequency

resolution Δ𝑓 = 𝑓
𝑠
/𝑁. The 𝜆 would be an integer number

if synchronous sampling is achieved. Otherwise the 𝜆 can be
written as the sum of an integer part 𝜂 and a fractional part
𝛿 under asynchronous sampling; that is, 𝜆 = 𝜂 + 𝛿. Without
loss of generality, assume that theminimumdistance between
spectral lines is larger than themain lobewidth of the adopted
window,which is sufficient for avoiding spectral interferences
from the imaginary part of the spectrum. So, the imaginary
part of the spectrumcan be ignored; (8) can thus be simplified
as

𝑋 (𝑘) =

𝐴

2𝑗

𝑒
𝑗𝜑

𝑊 (𝑘 − 𝜆) . (9)

TheWIFFT applies a peak-search procedure to 𝑋(𝑘) and
thus obtains two spectral lines with the maximum and the
second maximum magnitudes, that is, the 𝑘

1
th and 𝑘

2
th

spectral lines with 𝑘
2

= 𝑘
1

+ 1. As shown in Figure 2, the
𝜆 should be larger than 𝑘

1
and smaller than 𝑘

2
(𝑘
1

≤ 𝜆 ≤

𝑘
2

= 𝑘
1

+ 1). By defining a coefficient 𝛼 = 𝜆 − 𝑘
1

− 0.5

with −0.5 < 𝛼 < 0.5, we can get 𝑘
1

− 𝜆 = −0.5 − 𝛼 and
𝑘
2

− 𝜆 = 0.5 − 𝛼. Thus the magnitudes of the 𝑘
1
th and 𝑘

2
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spectral lines are |𝑋(𝑘
1
)| = 𝐴|𝑊(−0.5 − 𝛼)|/2 and |𝑋(𝑘

2
)| =

𝐴|𝑊(0.5 − 𝛼)|/2, respectively. Since the inverse of an odd
and symmetric function does not contain any even order
items, an odd and symmetric coefficient 𝛽 can be defined as
a function of 𝛼 to simplify the calculation procedure, which
can be written as

𝛽 =
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Figure 2: Discrete spectrum of nonsynchronized sampling.

As the expression of (10) is complex, it is hard to get the
inverse of (10) directly. The least square method is a good
choice to obtain an approximate polynomial. Firstly, a set of
data points (𝛽

𝑖
, 𝛼
𝑖
) can be obtained by giving a series of values

𝛼
𝑖
by using (10). Then, the 𝛽

𝑖
and 𝛼

𝑖
are referred to as the

independent variable and dependent variable, respectively.
Finally, the least square method is applied to obtain the
approximate polynomial

𝛼 = 𝑔
−1

(𝛽) =

𝐽−1

∑

𝑗=0

V
𝑗
𝛽
𝑗

, (11)

where 𝐽 and V
𝑗
are the order and coefficients of the approx-

imate polynomial, respectively. Once the coefficients V
𝑗
are

determined, the 𝛼 can be calculated by submitting 𝛽 into (11).
Consequently, the signal frequency 𝑓 can be estimated by

𝑓 =

𝜆𝑓
𝑠

𝑁

=

(𝑘
1

+ 0.5 + 𝛼) 𝑓
𝑠

𝑁

. (12)

3. Comparisons of Time Complexity

As the real-time frequency estimation is of great importance
in power systems, it is of interest to know the time complexity
of different algorithms of frequency estimations.
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Algorithm: iteration procedure of QSSA
Input: 𝑞(𝑡) = 𝑥 (𝑡) sin(2𝜋𝑡/(𝐿𝑁 − 𝐿 + 1)) for image part

𝑞(𝑡) = 𝑥 (𝑡) cos(2𝜋𝑡/(𝐿𝑁 − 𝐿 + 1)) for real part
Output: 𝑄—calculated image or real part
(1) for 𝑙 = 1 : 𝐿
(2) for 𝑖 = 1 : (𝐿 − 𝑙)𝑁 + 1

(3) if 𝑖 == 1

(4) for 𝑛 = 1 :𝑁 + 1

(5) 𝑄(𝑖) = 𝑄(𝑖) + 𝑞(𝑛)

(6) end for
(7) else 𝑄(𝑖) = 𝑄(𝑖 − 1) − 𝑞(𝑖 − 1) + 𝑞(𝑁 + 𝑖)

(8) end if
(9) end for
(10) for 𝑖 = 1 : (𝐿 − 𝑙)𝑁 + 1

(11) 𝑞(𝑖) = 𝑄(𝑖)

(12) end for
(13) end for
(14) return

Pseudocode 1: Pseudocode description of QSSA.

Table 1: Comparisons of time complexities.

QSSA WIFFT
Addition 𝐿

2

𝑁 3(𝐿𝑁 + 1) log 2(𝐿𝑁 + 1)

Multiplication 𝐿𝑁/2 + 𝐿𝑁
2

/2 + 𝐿 + 1 2(𝐿𝑁 + 1) log 2(𝐿𝑁 + 1)

Time complexity 𝑂(𝑁
2

) 𝑂(𝑁 log 2𝑁)

The time complexity of an algorithm quantifies the
amount of time taken by an algorithm to run as a function
of the length of the string representing the input and is
commonly expressed using 𝑂() notation, which excludes
coefficients and lower order terms. Time complexity is
commonly estimated by counting the number of elementary
operations performed by the algorithm, where an elementary
operation takes a fixed amount of time to perform. Thus
the amount of time taken and the number of elementary
operations performed by the algorithm differ by at most a
constant factor. The elementary operations include addition,
subtraction, multiplication, and division. Normally, divisions
and subtractions are, respectively, counted into multiplica-
tions and additions. Comparisons of time complexities of
WIFFT and QSSA are provided in Table 1.

The time complexity of the WIFFT is caused by the FFT
operations. Thus, according to the definition of FFT, the
WIFFT with 𝐿𝑁 + 1 samples requires 3(𝐿𝑁 + 1)log

2
(𝐿𝑁 + 1)

additions and 2(𝐿𝑁 + 1)log
2
(𝐿𝑁 + 1) multiplications. So, the

time complexity of the WIFFT is 𝑂(𝑁 log𝑁).
The time complexity of the QSSA is caused by the

iteration procedure, which is listed in Pseudocode 1. As
shown in Figure 1 and (4), for the QSSAwith 𝐿𝑁+1 samples,
there are 𝐿𝑁/2 + 𝐿𝑁

2

/2 + 𝐿 + 1 multiplications and 𝐿
2

𝑁

additions. Thus the time complexity of the QSSA is 𝑂(𝑁
2

).

4. Simulation and Analysis

The aim of this section is to compare frequency estimations
provided by the QSSA and WIFFT by using MATLAB. First,

frequency estimations of a sine-wave signal are simulated
under asynchronous sampling. Second, the influence of
frequency fluctuation on frequency estimation is considered.
Third, the sine-wave signal with white noise is simulated.
Last, the joint influence of frequency fluctuation and white
noise on frequency estimation is analyzed. Comparison
summary is also presented at the end of this section. Notice
that, in the following simulation, 𝑏

2
− 𝑏
1

= 6 is adopted in
QSSA.

4.1.WithAsynchronous Sampling. Suppose a sine-wave signal
as shown in (1) with 𝐴 = 220V, 𝜑 = 𝜋/3, and 𝑓 =

50.2Hz is simulated. The sampling rate is set as 𝑓
𝑠
= 3.2 kHz

and 𝑓
𝑠
= 6.4 kHz to make comparisons. The QSSA with 513

samples and 641 samples and the WIFFT based on the 4-
term maximum decay windows (MDW 4-III) with 512 and
1024 samples are adopted. The absolute error of frequency
estimation and computational burden of the two adopted
algorithms are shown in Table 2.

When the sampling frequency is 𝑓
𝑠
= 3.2 kHz, 513 sam-

ples, 641 samples, and 1024 samples mean about 8, 10, and 16
periods of the sine-wave signal are used, respectively. When
the sampling frequency is 𝑓

𝑠
= 6.4 kHz, 513 samples, 641

samples, and 1024 samples mean about 4, 5, and 8 periods
of the sine-wave signal are used, respectively. As shown in
Table 2, with the increasing of number of signal periods, that
is, the decreasing of sampling frequency, the absolute errors
of frequency estimation provided by the QSSA and WIFFT
both decrease. Notice that the absolute errors of frequency
estimation provided by WIFFT are more affected by the
sampling frequency or the number of signal periods than that
of the QSSA.

As shown in Table 2, the absolute errors of frequency
estimation provided by the QSSA with 513 samples are much
lower than that of the WIFFT with 512 samples. That is to
say, by using almost the same numbers of samples, the QSSA
outperforms the WIFFT in absolute errors of frequency
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Table 2: Comparisons of absolute errors of frequency estimation without frequency fluctuations.

QSSA WIFFT (MDW 4-III)
𝑁 = 128; 𝐿 = 4 𝑁 = 128; 𝐿 = 5 512 1024

𝑓
𝑠

= 3.2 kHz 1.45𝐸 − 09 2.93𝐸 − 12 5.88𝐸 − 08 5.83𝐸 − 10

𝑓
𝑠

= 6.4 kHz 1.21𝐸 − 09 2.25𝐸 − 12 2.01𝐸 − 05 5.88𝐸 − 08

Additions 2048 3200 13824 30720
Multiplications 33029 41286 9216 20480
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QSSA 513 samples
WIFFT (MDW 4-III) 512 samples
QSSA 641 samples
WIFFT (MDW 4-III) 1024 samples

Figure 3: Results of frequency estimations with frequency fluctua-
tions when the sampling frequency is set as 𝑓

𝑠
= 3.2 kHz.

estimation. However, Table 2 shows that the computational
burden of the WIFFT is much less than that of the QSSA.

4.2. With Frequency Fluctuations. To investigate the influ-
ence of frequency fluctuations on frequency estimation, sim-
ulations are done with the frequency changing from 49.5Hz
to 50.5Hz with a step of 0.1 Hz. The sampling frequency is
set as 𝑓

𝑠
= 3.2 kHz. The QSSA with 513 samples and 641

samples and the WIFFT based on the 4-term maximum
decay windows (MDW 4-III) with 512 and 1024 samples are
adopted. Results of frequency estimations with frequency
fluctuations are shown in Figure 3.

Obviously, Figure 3 shows that both QSSA and WIFFT
can overcome the influence of frequency fluctuations on
frequency estimation. Notice that, in Figure 3, the WIFFT
(MDW 4-III) shows the lowest errors when the frequency is
𝑓 = 50Hz with 𝑓

𝑠
= 3.2 kHz. However, it is well known that

the 𝑓 = 50Hzmeans synchronous sampling which is hard to
be achieved in power system.

Moreover, Figure 3 also provides comparisons of two
adopted algorithms when the asynchronous sampling proce-
dure is considered; that is, 𝑓 ̸= 50Hz with 𝑓

𝑠
= 3.2 kHz. The

simulation results show that the absolute errors provided by
the QSSA are less than that of theWIFFT (MDW4-III) when
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Figure 4: Biases of frequency estimations withwhite noise when the
SNR changes from 20 dB to 100 dB.

the two adopted algorithms use almost the same numbers of
samples.

4.3. With White Noise. Frequency estimation system may be
influenced by external noise (electromagnetic interference),
and the detection process cannot completely eliminate noise
but is subject to the statistical law (normal or uniform
distribution).We can regard noise in frequency estimation as
white noise and study the impact of noise on the stability of
frequency estimation by simulations with different signal-to-
noise ratio (SNR).

The frequency and sampling frequency are set as 𝑓 =

50.2Hz and𝑓
𝑠
= 3.2 kHz, respectively.The SNR changes from

10 dB to 100 dB with a step of 10 dB. For each SNR, 500
times of simulation are performed. The biases and variances
of frequency estimations provided by the QSSA with 513
samples and 641 samples and theWIFFT based on the 4-term
maximum decay windows (MDW 4-III) with 512 and 1024
samples are shown in Figures 4 and 5, respectively.

As shown in Figure 4, when the SNR ≤ 60 dB, theWIFFT
(MDW 4-III) with 1024 samples provides the minimum
biases among four adopted methods. However, when the
SNR > 60 dB, the WIFFT (MDW 4-III) with 1024 samples
and QSSA with 513 samples and 641 samples have almost
the same biases of frequency estimation. This shows that
the power of white noise has significant influence on the
accuracy of frequency estimation. In Figure 5, the WIFFT
(MDW 4-III) with 1024 samples provides the minimum
variances among four adoptedmethods. Also, comparedwith
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Figure 5: Variances of frequency estimations with white noise when
the SNR changes from 20 dB to 100 dB.
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Figure 6: Biases of frequency estimations with SNR = 40 dB when
the frequency changes from 49.5Hz to 50.5Hz.

the QSSA with 513 samples, the QSSA with 641 samples
provides less variance of frequency estimation.This is because
the increasing of samples with a fixed sampling frequency
means the increasing of frequency resolution and thus can
suppress the influence of white noise. Figure 5 shows that the
variances provided by theQSSAwith 513 samples are less than
that of the WIFFT (MDW 4-III) with 512 samples. That is to
say, by using almost the same numbers of samples, the QSSA
outperforms theWIFFT in variances of frequency estimation
with white noise.

4.4. With Frequency Fluctuations and White Noise. In this
part, simulations are performed with SNR = 40 dB when the
frequency changes from 49.5Hz to 50.5Hz. The sampling
frequency is set as 𝑓

𝑠
= 3.2 kHz. The biases and variances

of frequency estimations provided by the QSSA with 513
samples and 641 samples and theWIFFT based on the 4-term
maximum decay windows (MDW 4-III) with 512 and 1024
samples are shown in Figures 6 and 7, respectively.
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Figure 7: Variances of frequency estimations with SNR = 40 dB
when the frequency changes from 49.5Hz to 50.5Hz.

In Figure 6, the biases of frequency estimation obtained
by the four adopted methods are less than 1𝐸 − 5 with
SNR = 40 dB when the frequency changes from 49.5Hz
to 50.5Hz. Figure 7 shows that the variances of frequency
estimation obtained by the four adopted methods are less
than 1𝐸 − 8 with SNR = 40 dB when the frequency changes
from 49.5Hz to 50.5Hz. And the WIFFT (MDW 4-III) with
1024 samples has almost the minimum biases and variances
among four adopted methods. Notice that the increasing of
numbers of samples will lead to the significant increment of
computational burden. Figures 6 and 7 show that the number
of samples plays an important role in frequency estimation.
As shown in Figure 7, when using almost the same numbers
of samples, the variances of frequency estimation provided by
the QSSA are less than that of the WIFFT (MDW 4-III).

5. Conclusion

This paper compares the performances of the QSSA and the
WIFFT for frequency estimation. It has been shown that the
absolute errors provided by the QSSA are less than that of
the WIFFT (MDW 4-III) when the two adopted algorithms
use about 512 samples when the fundamental frequency has
fluctuations.Moreover, the variances of frequency estimation
provided by theQSSA are less than that of theWIFFT (MDW
4-III) when the number of acquired samples is about 512.
That is to say, the wideband noise sensitivity of QSSA is lower
than that of WIFFT. However, we should also notice that
the computational burden required by the QSSA is higher
than that of the WIFFT. Thus, for frequency estimation with
high accuracy and less required samples, the QSSA could be
preferred. For fast frequency estimation with large numbers
of samples, WIFFT would be a good choice.
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