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A beam-type absorber has been known as one of the dynamic vibration absorbers used to suppress excessive vibration of an
engineering structure. This paper studies an absorbing beam which is attached through a visco-elastic layer on a primary beam
structure. Solutions of the dynamic response are presented at the midspan of the primary and absorbing beams in simply supported
edges subjected to a stationary harmonic load. The effect of structural parameters, namely, rigidity ratio, mass ratio, and damping
of the layer and the structure as well as the layer stiffness on the response is investigated to reduce the vibration amplitude at the
fundamental frequency of the original single primary beam. It is found that this can considerably reduce the amplitude at the
corresponding troublesome frequency, but compromised situation should be noted by controlling the structural parameters. The
model is also validated with measured data with reasonable agreement.

1. Introduction

A beam-type absorber is one of the techniques to reduce
undesirable vibration of many vibrating systems, such as
a synchronous machine, mounting structure for a sensitive
instrument, and other continuous structure in engineering.
The absorber system usually consists of a beam attached
to the host structure using an elastic element. The natural
frequency of the absorber is then tuned to be the same as
the troublesome operating frequency of the host structure to
create counter force, which in return reduces the vibration
of the structure. As beams are important structures in civil
or mechanical engineering, several works have also been
established to investigate the performance of the absorbing
beam which is attached also to a beam structure.

Among the earliest studies of the double-beam system
is one proposed by Yamaguchi [1], which investigated the
effectiveness of the dynamic vibration absorber consisting

of double-cantilever visco-elastic beam connected by spring
and viscous damper. The auxiliary beam is attached to the
center of the main beam excited at its end by a sinusoidal
force. It is found that the amplitude at resonances of the main
beam is sensitive to the stiffness and mass of the absorbing
beam. The damping ratio was formulated as a function
of mass and layer stiffness of the absorber. Vu et al. [2]
studied the distributed vibration absorber under stationary
distributed force. A closed form was developed by utilizing
change of variables and modal analysis to decouple and
solve differential equations. Oniszczuk [3] studied the free
vibrations of two identical parallel simply supported beams
continuously joined by an elastic layer. The eigen frequencies
and mode shapes of vibration of the double-beam system
were found using the classical assumed mode summation.

Another theoretical study for finding the optimum
design of beam-type absorber was presented by Aida et al.
[4]. A uniform absorbing beam with the same boundary
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Figure 1: (a) Schematic diagram of a visco-elastically connected simply supported double-beam system and (b) the two-degree-of-freedom
system of distributed lumped parameter model.

condition is connected to the main beam by spring and
damper components. In the study, an optimum tuning
method to reduce the main beam vibration was proposed.
Another structural analysis and optimum design of a
dynamic absorbing beam with free edges was studied by
Chen and Lin [5]. The effect of mass ratio and the stiffness
layer on the vibration response was discussed.

The effect of different forcing types on the double-beam
system has also been discussed by several authors. Zhang
et al. [6] studied vibration characteristics of the double-
beam system under axial compressive load. The studies were
limited for two identical simply supported double-beam
system and the effect of the axial load on the beams vibration
amplitude was reported. Abu-Hilal [7] studied the effect of
a moving constant load on the dynamic response of the
beams. This was done for different values of speed parameter,
damping ratio, and stiffness parameter.

Several works focus on the development of mathematical
model to provide solutions of the vibration response. De
Rosa and Lippiello [8] studied free vibration of double-
identical beam system using the Differential Quadrature
Method (DQM). Sadek et al. [9] presented a computational
method for solving optimal control of transverse vibration
of a two-parallel-beam system based on legendry wavelets
approach. It is found here that the reduction of the beam
vibration depends on the spring location on the beam.

This paper investigates the effect of structural param-
eters, namely, the rigidity ratio, mass ratio, damping loss
factor, the stiffness, as well as the damping ratio of the layer
on the dynamic response of simply supported double-beam
system to provide a thorough analysis. The discussion is
limited on controlling the fundamental mode of a single-
beam structure using a dynamic absorbing beam. The fol-
lowing section discusses the derivation of the mathematical
model.

2. Mathematical Modeling

The schematic diagram of a beam connected with an
absorbing beam having the same length L and simply
supported is shown in Figure 1(a). Here distributed lumped
system of two degrees of freedom is assumed, where the
visco-elastic element between the beams consists of parallel
distributed springs and dampers as shown in Figure 1(b).

The equation of motion of the dynamic model can
therefore be written as

E1I1
∂4w1

∂x4
+ m1ẅ1 + c(ẇ1 − ẇ2) + k(w1 −w2) = Peiωt,

(1)

E2I2
∂4w2

∂x4
+ m2ẅ2 + c(ẇ2 − ẇ1) + k(w2 −w1) = 0, (2)

where P = F0δ(x − L/2) is the external point force with
frequency ω at the midspan of the beam, F0 is the force
magnitude, K= EIis the flexural rigidity, cis the damping
constant, kis the stiffness constant of the viscous layer, and
mis the mass of the beam. The subscripts 1 and 2 refer to
the main beam and the absorber beam, respectively. The
damping of the beam can be introduced by replacing the
flexural rigidity in (1) and (2) by K(1 + iη), where η is the
damping loss factor. The vertical displacement of the main
beam w1 and the absorber w2 can be expressed as a series
expansion in terms of mode shape function Xn(x) for the nth
mode.The amplitudes in generalized time coordinates q1n are
given by

w1(x, t) =
∞∑

n=1

Xn(x) q1n(t), (3)

w2(x, t) =
∞∑

n=1

Xn(x) q2n(t), (4)
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Figure 2: Effect of the rigidity ratio e and the mass ratio μ on the vibration amplitude at the midspan location of the primary beam: (a)
μ = 0.1, (b) μ = 0.2, (c) μ = 0.4, and (d) μ = 0.8.

where x is the position on the beam at which the load is
applied. For the simply supported boundary condition, the
nth mode shape function can be written as

Xn(x) = sin(σnx), (5)

where σn is the eigenvalue of the mode shape which can be
expressed as:

σn = nπ

L
. (6)

The orthogonality conditions can be used for simplifying the
equations of motion which is represented in the following
form [1]:

∫ L

0
Xn(x)Xm(x)dx = 0 , n /=m. (7)

Equations (3) and (4) can be substituted to (1) and (2).
Multiplying both sides of the equations by mode shape
function Xm then integrating through the beam length
and applying the orthogonality condition as in (7) yield
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Figure 3: The vibration amplitude at the midspan location of the double-beam system (e = 0.25): (a) μ = 0.1, (b) μ = 0.2, (c) μ = 0.4, and
(d) μ = 0.8.

a matrix form for the equations of motion expressed as (see
Appendix)
[
m1 0
0 μm1

][
q̈1

q̈2

]
+

[
c −c
−c c

][
q̇1

q̇2

]

+

[
K1σ4

n + k −k
−k eK1σ4

n + k

][
q1

q2

]
=
[
F0

0

]
2
L

sin
(
nπ

2

)
eiωt,

(8)

where μ = m2/m1 is the mass ratio and e = E2I2/E1I1 is the
rigidity ratio. The damping of the layer between the main
beam and the absorbing beam can be approached by using
the concept of “mixed damping ratio” in discrete dynamic

vibration absorber [10]. The damping ratio of the visco-
elastic layer can be defined as

ξ = c

2m2ωn
= c

2μm1ωn
, (9)

where ωn is the original natural frequency of the primary
beam (without the absorber attached) which is given by

ωn =
√

E1I1 σ4
n

m1
. (10)

For a stationary harmonic load, it is therefore necessary to
analyze the system performance in the frequency domain
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Figure 4: Effect of visco-elastic layer damping on the vibration
amplitude at the midspan location of the double-beam system (e
= 0.25, μ = 0.4, η 1= η 2= 0.01).

to clearly identify the distinct responses in the resonant
frequencies. By defining the amplitude q in terms of the
complex exponential notation it gives

[
q1

q2

]
= Re

{[
Q1

Q2

]
eiωt
}

, (11)

where Q is the complex amplitude of q.
Substituting (11) into (8) yields[

K1σ4
n + k + iωc − ω2m1 −iωc − k
−iωc − k eK1σ4

n + k + iωc − ω2μm1

][
Q1

Q2

]

=
[
F0

0

]
2
L

sin
(
nπ

2

)
,

(12)

where the solutions for the complex amplitude of the
frequency response function in terms of the receptance, that
is, Q/F0 can then be obtained for each mode n which are
given by

Q1

F0
= 2

(
eK1σ4

n +k+iωc − ω2μm1
)

sin(nπ/2)[(
K1σ4

n +k+iωc − ω2m1
)(

eK1σ4
n +k+iωc − ω2μm1

)−(iωc+k)2
]
L

, (13)

Q2

F0
= 2(iωc + k) sin(nπ/2)[(

K1σ4
n +k+iωc − ω2m1

)(
eK1σ4

n +k+iωc − ω2μm1
)− (iωc+k)2

]
L
. (14)

As observed from (13) and (14), the double-beam structure
is expected to have two natural frequencies for each mode
of vibration, as the system is modeled using two-degree-
of-freedom system. It can also be seen in (13), where for
the lumped parameter system with K1 = 0 and for an
undamped case where c = 0, the magnitude of the numerator
is proportional to k − ω2m2. The main beam amplitude can
therefore be suppressed to zero by tuning the layer stiffness
and the mass of the absorbing beam to be equal to the forcing
frequency, that is, ω = √

k/m2. The subsequent sections
discuss the effect of structural parameters on the response
in (13) and (14).

3. Effects of Rigidity and Mass Ratio

In this investigation, the rigidity ratio and mass ratio are
varied to observe their effects on the main beam response.
This is calculated for a steel beam (Young’s modulus E =
2.1 × 1011 Pa, density ρ = 7800 kg/m3) having length 2 m,
width 0.065 m, and thickness 0.02 m. The stiffness of the
layer is assumed 100 kN/m. The calculation here is done for
the first mode of vibration (n = 1) for each beam. Figure 2
shows the vibration amplitude for the first two resonances
of the primary beam plotted in logarithmic scale. Here the
damping ratio of the visco-elastic layer and the structural

damping loss factor of the beams are assumed very small, that
is, ζ = η = 0.01.

It can be seen that the double-beam system successfully
suppresses the amplitude at the fundamental frequency of
the single beam (at 12 Hz) as a result of countering some of
the energy force from the main beam. However, the system
now behaves as a two-degree-of-freedom system which, in
consequence, creates new resonances. Thus, a significant
level of vibration amplitude appears at lower frequency
around 8–10 Hz and much lower amplitude level for the
second resonance around 25–30 Hz. Increasing the elasticity
ratio gives insignificant effect to reduce the amplitude at the
first resonance. Instead, this shifts both resonant frequencies
to higher frequency, which causes the first resonance to
approach that of the single beam; a situation which should
be avoided especially if forcing frequency from the primary
beam is not stable, for example, a nonsynchronous machine
having certain range of operating frequency. Meanwhile,
increasing the mass ratio of the double-beam is shown to
decrease the frequency of both first and second resonances,
although it has less effect on the former. This hence reduces
the frequency gap of the two resonances. However, one
can observe that the amplitude of the primary beam is
reduced with the increasing mass ratio (note the dips
just before the second resonance which approaches the
fundamental frequency of the single primary beam). It can
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Figure 5: Effect of structural damping of the beam on the vibration amplitude at the midspan location of the double-beam system (e = 0.25,
μ = 0.4): (a)–(c) ζ = 0.01 and (d) ζ = 0.1.

also be observed that the amplitude at the second resonance
increases as the mass ratio is increased.

Figure 3 presents the amplitudes of the primary beam
and the absorbing beam. Both amplitudes at the first reso-
nance can be seen not affected by the mass ratio. However,
the response of the primary beam at the second resonance
is considerably lower than that of the absorbing beam for
low mass ratio, but both amplitudes become comparable
as the mass ratio increases. As also seen in Figure 2, the
compromised situation is that the vibration amplitude of the
primary beam becomes lower as the mass ratio increases. The

amplitude of the absorber at the second resonance can also be
observed to have negligible effect due to the change of mass
ratio, and it steeply decreases above this resonant frequency.

4. Effect of Damping and Layer Stiffness

Previous results in Figures 2 and 3 assume very small
damping of the visco-elastic layer as well as the structural
damping loss factor of the beam. Figure 4 plots the effect
of the layer damping, which yields reduction of vibration
amplitude only at the second resonance of both the primary
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Figure 6: Effect of visco-elastic stiffness on the vibration amplitude at the midspan location of the double-beam system (e = 0.25): (a) μ =
0.1 and (b) μ = 0.4.
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Figure 7: (a) Diagram of the experimental setup and (b) laboratory test.

beam and the absorbing beam as the damping is increased.
At this frequency, the primary beam and the absorber move
out of phase for which the role of the visco-elastic layer
damping is important to absorb the vibration energy. At the
first resonance, as the two beams move in-phase, the layer
damping can therefore be seen to have negligible effect on
the vibration amplitude.

Figure 5 shows the effect of the structural damping. It
can be seen in Figure 5(a) that increasing the damping of the
absorbing beam does not give significant effect to reduce the
vibration amplitude. Increasing only the damping of the pri-
mary beam reduces only the amplitude at the first resonance,
but not at the second resonance as shown in Figure 5(b).
The same applies if the damping of the absorbing beam is
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Figure 8: Comparison of experimental and theoretical results of the vibration amplitude of the double-beam system for the case of (a)
ST-ST, (b) ST-WD, and (c) ST-AL.

also increased (see Figure 5(c)). Figure 5(d) shows that the
amplitude of the second resonance is mainly controlled by
the damping of the visco-elastic layer.

Figure 6 plots the results for the effect of stiffness of
the visco-elastic layer. Here the stiffness is presented using a
non-dimensional parameter as a function of the rigidity and
length of the main beam, that is, β = kL4/K1. By reducing
the stiffness of the layer, the second resonance shifts to low
frequency, while no effect is given to the first resonance.
Again same for the case of the layer damping, the in-phase
motion of both beams at the first resonance will not be
affected by the hardness (stiffness) of the layer. As the mass

ratio increases, this frequency shift becomes greater, which
also reduces the frequency gap of the two resonances.

5. Experimental Validation

Figure 7 shows the schematic diagram and the laboratory
setup of the experiment. As in the simulation, the primary
beam is placed at the upper side of the absorbing beam.
However, it was difficult to realize a simply supported
boundary condition. Both beams were therefore clamped
to the supporting columns. As the measurement point is at
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Table 1: Physical parameters of the materials used in the experiment.

Material Cross section Mass per unit length (kg/m) Young’s modulus (GPa)

Steel Solid 10.27 210

Wood Solid 1.12 10.3

Aluminum Hollow 0.77 69

the midspan of the primary beam, the edge condition has
negligible effect on the vibration amplitude.

The primary beam was excited by broadband pseudo-
random signal at location close to the midspan of the
primary beam using TIRA electromagnetic shaker type
TV50018. The input force was measured by a Dytran
force gauge type 1051V1. A stud was tightly bolted on
the transducer surface and then glued to the beam surface
using an epoxy glue. A 200 mm long stinger was used to
connect the force gauge and the shaker to minimize the
effect of moments transmitted from the shaker. A Dytran
accelerometer type 3225F1 was attached exactly at the mid
point to measure the vibration amplitude.

The experimental test was conducted with the primary
beam made of steel having thickness 20 mm, width 60 mm,
and length 2 m. Four measurement cases were made with
different configuration and material of the absorber beam as
follows:

(a) steel single beam without absorber (ST),

(b) steel main beam with steel absorber beam; double-
identical beams (ST-ST),

(c) steel main beam with wood absorber beam (ST-WD),
and

(d) steel main beam with aluminum absorber beam (ST-
AL).

A rubber material was used as the viscoelastic layer between
the beams having stiffness of 131 kN/m.

The physical parameters of the beam materials are listed
in Table 1.

Figure 8 presents the experimental results for the double-
beam structure. It can be seen that it demonstrates good
agreement with the theory especially around the resonance,
although for each case, broader frequency response from
the measured results can also be observed, which slightly
overestimated the model.

6. Conclusions

The effect of structural parameters on the dynamic response
of a beam structure attached with a beam vibration absorber
through a visco-elastic layer under a stationary harmonic
load has been studied. The amplitude of the original primary
single beam at the fundamental frequency can be consider-
ably reduced. It is found that increasing the rigidity ratio
shifts the resulting resonances of the double-system to higher
frequency but gives small effect on reducing the vibration
amplitude of the resonances. Reducing the mass ratio reduces
considerable level of the second resonance of the primary
beam as well as widens the gap between the resonant

frequencies. However, this increases the first resonance to
approach the troublesome resonant frequency of the original
single beam but further reduces the vibration of the primary
beam, a compromised situation which should be taken into
account in the absorber design. The same phenomena apply
for the absorbing beam, but it does not affect its vibration
amplitude. Adding more damping to the layer has been
shown to reduce only the second resonant amplitude. The
amplitude at the first resonance can be reduced by increasing
the damping of the primary beam. Meanwhile, increasing
the layer elasticity (reducing stiffness) reduces the second
resonance. The theoretical results have been validated by
experimental data with a reasonable agreement.

Appendix

Substituting (3) and (4) into (1) and (2) gives

E1I1
∂4Xn(x)
∂x4

q1n(t) + m1Xn(x)q̈1n(t)

+ cXn(x)
[
q̇1n(t)− q̇2n(t)

]
+ kXn(x)

[
q1n(t)− q2n(t)

]

= Peiωt,
(A.1)

E2I2
∂4Xn(x)
∂x4

q2n(t) + m2Xn(x)q̈2n(t)

+ cXn(x)
[
q̇2n(t)− q̇1n(t)

]
+ kXn(x)

[
q1n(t)− q2n(t)

] = 0.
(A.2)

Substituting (5) into (A.1) and (A.2) with P = F0δ(x −
L/2) yields

E1I1σ
4
nXn(x) q1n(t) + m1Xn(x)q̈1n(t)

+ cXn(x)
[
q̇1n(t)− q̇2n(t)

]
+ kXn(x)

[
q1n(t)− q2n(t)

]

= F0 δ
(
x − L

2

)
eiωt,

(A.3)

E2I2σ
4
nXn(x) q2n(t) + m2Xn(x)q̈2n(t)

+ cXn(x)
[
q̇1n(t)− q̇2n(t)

]
+ kXn(x)

[
q1n(t)− q2n(t)

] = 0.
(A.4)

Equations (A.3) and (A.4) can be simplified to
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[
m1q̈1n(t) + cq̇1n(t)− cq̇2n(t)

+
(
E1I1σ

4
n + k

)
q1n(t)− kq2n(t)

]
Xn(x)

= F0 δ
(
x − L

2

)
eiωt,

(A.5)

[
m2q̈2n(t) + cq̇2n(t)− cq̇1n(t)

+
(
E2I2σ

4
n + k

)
q2n(t)− kq1n(t)

]
Xn(x) = 0.

(A.6)

Multiplying both sides of (A.5) and (A.6) by mode shape
function Xm

[
m1q̈1n(t) + cq̇1n(t)− cq̇2n(t)

+
(
E1I1σ

4
n + k

)
q1n(t)− kq2n(t)

]
Xn(x)Xm(x)

= F0δ
(
x − L

2

)
Xm(x) eiωt,

(A.7)

[
m2q̈2n(t) + cq̇2n(t)− cq̇1n(t)

+
(
E2I2σ

4
n + k

)
q2n(t)− kq1n(t)

]
Xn(x)Xm(x) = 0

(A.8)

Integrating (A.7) and (A.8) through the beam length
[
m1q̈1n(t) + cq̇1n(t)− cq̇2n(t)

+
(
E1I1σ

4
n + k

)
q1n(t)− kq2n(t)

] ∫ L

0
Xn(x)Xm(x)

= F0e
iωt

∫ L

0
Xm(x)δ

(
x − L

2

)
= F0e

iωt sin
(

nπ
2

)
(A.9)

[
m2q̈2n(t) + cq̇2n(t)− cq̇1n(t)

+
(
E2I2σ

4
n + k

)
q2n(t)− kq1n(t)

] ∫ L

0
Xn(x)Xm(x) = 0.

(A.10)

Applying the orthogonality conditions

∫ L

0
Xn(x)Xm(x)dx = 0 , n /=m, (A.11)

and for n = m, (A-11) gives

∫ L

0
X2
n(x)dx =

∫ L

0
sin2(σnx)dx =

[
x

2
− sin(2σnx)

4σn

]L

2
= L

2
.

(A.12)

Equations (A-9) and (A-10) can therefore be expressed
in a matrix form in terms of mass ratio (μ = m2/m1) and
rigidity ratio (e = E1I1/E2I2),

[
m1 0
0 μm1

][
q̈1

q̈2

]
+

[
c −c
−c c

][
q̇1

q̇2

]

+

[
K1σ4

n + k −k
−k eK1σ4

n + k

][
q1

q2

]

=
[
F0

0

]
2
L

sin
(
nπ

2

)
eiωt

(A.13)

Nomenclature

E : Modulus of elasticity of the beam (N/m2)
I : Area moment of inertia of the beam (m4)
w: Vertical displacement of the beam (m)
x: Position coordinate (m)
t: Time (s)
m: Mass per unit length (kg/m)
k: Layer stiffness (N/m2)
β: Non-dimensional layer stiffness parameter
ω: Radial frequency (rad/s)
ωn: Natural frequency at the nth mode (rad/s)
μ: Mass ratio of absorbing beam to primary beam
ζ : Damping ratio of layer
e: Rigidity ratio of absorbing beam to primary beam
F0: Magnitude of the external load (N)
σ : Eigenvalue of the mode shape function
X : Mode shape function
q: Generalized time function of amplitude (m)
Q: Complex displacement amplitude (m)
δ: Dirac delta function
L: Length of beam (m)
N : Newton, unit of force.
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