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Optimum control parameter setting in complex and stochastic type processes is one of themost challenging problems to the process
engineers. As such, effectivemodel development and determination of optimal operating conditions of electric dischargemachining
process (EDM) are reasonably difficult. In this apper, an easy to handle optimization procedure, weight-varying multiobjective
simulated annealing, is proposed and is applied to optimize two conflicting type response parameters in EDM—material removal
rate (MRR) and average surface roughness (Ra) simultaneously. A solution set is generated.The Pareto optimal front thus developed
is further modeled. An inverse solution procedure is devised so that near-optimum process parameter settings can be determined
for specific need based requirements of process engineers. The results are validated.

1. Introduction

Electrical discharge machining (EDM) process is extensively
used in the machining industry for the manufacture of
mould, die, automotive, aerospace, and surgical components
[1]. The material is removed in this process by the erosive
action of spatially discrete and chaotic [2] high-frequency
electrical discharges (sparks) of high power density between
a tool electrode and the workpiece electrode with a dielectric
fluid in the gap between them. In the EDM process, the
material removal rate (MRR) and average surface roughness
(Ra) are two very important and conflicting response param-
eters of which process engineers are mostly interested. EDM
process is complex and stochastic in nature and, therefore,
modeling of it and determining the conditions for optimal
machining performance are reasonably difficult.

Several researchers have proposed variousmethodologies
for predicting and optimizing the performance of EDM
process [3]. Lin et al. [4] carried out their experiment with
orthogonal array (L

9
) based design considering pulse on time

(100, 150, and 300 𝜇s), duty factor (0.3, 0.5, and 0.7), and
discharge current (1.5, 4.0, and 6.0A) as control parameters
and material removal rate, electrode wear ratio, and surface
roughness as response parameters. They used SKD11 alloy

steel as workpiece material, copper as tool electrode, and
kerosene as dielectric fluid. Grey relational analysis and
fuzzy based Taguchi method were separately applied on
experimental data set and both gave same optimum result,
that is, pulse on time: 300𝜇s, duty factor: 0.3, discharge
current: 6 A, MRR: 0.00598 g/min, electrode wear ratio: 2.81,
and Ra: 2.05𝜇m.

J. L. Lin and C. L. Lin [5] employed grey-fuzzy logic on
same experimental results obtained in [4]. Also, they have
found the same optimal combination listed in [4].

Fuzzy based Taguchi method was also used by Tzeng and
Chen [6] performing their experiment on SKD11 tool steel
with 99.95% pure copper electrode. They added aluminum
powder to dielectric kerosene with different concentrations
(0.1, 0.3, and 0.5 cm3/L) and powder sizes (1, 10–20, and
40 𝜇m). L

18
orthogonal array of control parameters, namely,

open circuit voltage (120, 230V), pulsed duration (12, 75,
and 400 𝜇s), duty cycle (33, 50, and 66%), pulsed peak
current (12, 18, and 24A for 33%, 8, 12, and 16A for 50%,
and 6, 9, and 12A for 66% duty cycle), regular distance
for electrode lift (1, 6, and 12mm), and time interval for
electrode lift (0.6, 2.5, and 4.0 s), was considered for DOE and
electrode dimensionwasmeasured in each experimental run.
Optimum combination for maximum dimensional precision
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was listed as open circuit voltage: 120V, pulsed duration:
12 𝜇s, duty cycle: 66%, pulsed peak current: 6 A, regular
distance for electrode lift: 12mm, time interval for electrode
lift: 0.6 s, powder concentration: 0.5 cm3/L, and powder size:
40 𝜇m.

Wang et al. [7] performed their experiments using
graphite electrode and nickel base alloy workpiece. GA
trained (for adjusting weight vectors) neural network model-
ing was adopted for MRR and Ra with on time, off time, peak
current, voltage, compression, and gain as input variables.
GenHunter multiobjective optimization technique was fur-
ther applied to the trained model and optimum input factor
settings and corresponding MRR and Ra were found. Their
optimum results were on time: 25.49 𝜇s, off time: 13.73 𝜇s,
peak current: 9.8 A, voltage: 33.33 V, compression: 37.76mm,
gain: 28.04, MRR: 1038.58mm3/min, and Ra: 6.97 𝜇m.

Su et al. [8] trained their experimental results (electrode:
copper, workpiece: steel) by feedforward neural network
with backpropagation learning algorithm and used GA for
optimizing the trained model of MRR, tool wear ratio, and
Ra. Pulse on time (1.5–2400 𝜇s in 24 steps), pulse off time
(1.5–2400𝜇s in 24 steps), high-voltage discharge current
(0.3, 0.7, and 1.0 A), low-voltage discharge current (0–200A),
gap size, servo feed, jumping time (0.3–2.5 s in 16 steps),
and working time (0.3–10 s in 16 steps) were considered
as control factors. They performed their experiments with
rough, middle, and finish cut with 3 different machining
areas (1, 4, and 16 cm2). Finally, a list of optimum results was
given. In all of these works [7, 8], multiobjective problem was
converted to single objective function for optimization.

Kuriakose and Shunmugam [9] applied nondominated
sorting genetic algorithm (NSGA) for multiobjective opti-
mization of WEDM responses (cutting velocity and surface
finish on Ti alloy workpiece material) modeled by multiple
linear regression analysis. They reported 36 solution points
for optimum combination of responses with control factors
(ignition pulse current (8, 16A), pulse off time (4, 6, and 8𝜇s),
pulse duration (0.6, 0.9, and 1.2 𝜇s), servo control reference
mean voltage (30, 45, and 60V), maximum servo speed
variation (29.28, 58.56, and 87.84mm/min), wire speed (4, 6,
and 8m/min), wire tension (0.8, 0.9, and 1 kg), and injection
pressure (2, 3, and 4 bar)) settings.

Mandal et al. [10] carried out their experiment using
copper electrode on C40 steel with Rustlick EDM oil of grade
EDM 30 and flushing pressure as 0.25 kg/cm2. They used
BPNN procedure to model the EDM process with pulse on
time (23–506 𝜇s), pulse off time (23–186 𝜇s), and discharge
current (4–18A) as controllable machining parameters and
adopted NSGA-II to optimize simultaneously the responses
(MRR and tool wear). 100 points were obtained in their
Pareto optimal set. However, the validation of Pareto optimal
solution set, thus developed, was not reported in the above
literatures [8–10].

Yang et al. [11] applied simulated annealing to counter
propagation neural network (CPNN) model of EDM
(electrode: copper, workpiece: steel, dielectric: kerosene)
responses for optimization purpose. A comparison between
BPNN and CPNN techniques was also reported. They

considered MRR and Ra as the output parameters and
source voltage (80, 160, and 200V), discharge current (6,
16, and 48A), pulse on time (6.4, 100, and 800 𝜇s), and
pulse off time (12.8, 50, and 400 𝜇s) as control variables.
Two objective functions one each for MRR and Ra were
combined to a single one using weight vectors. Negative
weight vector for MRR was used for this purpose though
physical significance of considering negative MRR was not
clearly discussed. Further, weight vectors did not equally
influence the objective functions due to different range
in the values of responses. Though they had reported 10
different optimal combinations obtained during various
runs of the program, yet it was not explained that what
factors were varied during different trials; otherwise, same
settings of all factors with different initial starting point
should be ended up to same results in each trial for a single
objective optimization. Finally, a particular optimum result
was highlighted for maximumMRR and minimum Ra. They
also did not conduct any confirmation test.

Electrical discharge machining is a thermoelectric pro-
cess and the chosen range of parameters influences the
optimum settings substantially.The literature surveymade so
far reveals that a number of optimum combinations of con-
flicting EDMresponses are feasible but there exists no specific
procedure that could suggest what might be the possible
setting of input parameters for a need based optimum/near-
optimum combination of responses. The present work aims
at laying down a viable simple procedure towards that effect.

In the present work, therefore, electrical discharge
machining process is statistically modeled using regression
analysis with current setting, pulse on time, and pulse off
time as the input parameters. An easy to handle optimization
procedure, weight-varying multiobjective simulated anneal-
ing, is proposed and is applied to optimize two conflicting
type response parameters in EDM—material removal rate
(MRR) and average surface roughness (Ra) simultaneously.
A solution set is generated. A Pareto optimal front thus
obtained is further modeled as a continuous function so that
applying an inverse solution procedure the control parameter
setting can be found out for a specific need based machining
performance.

2. Weight-Varying Multiobjective
Simulated Annealing

Optimization technique based on the cooling phenomenon
of molten metal, simulated annealing (SA), is one of the most
popular and effective evolutionary algorithms for searching
the global optimum. SA gives a better performance than
classical optimization methods, irrespective of the modality
of the objective function [12], which is verymuch essential for
a newlymodeled system.However, in real world problem, it is
not sufficient to optimize a single objective function; rather,
a number of objective functions with similar or conflicting
nature are required to be optimized. So, multiobjective
optimization (MOO) has become an important research area
for scientists.

In contrast to single objective optimization, a solution to a
multiobjective problem ismore of a concept than a definition.
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In case of single objective problem, the global optimum is
unique. For multiobjective cases in many of the situations,
there exist a number of solution sets of parameters, all of
which equally satisfy the optimality criterion. In general,
multiobjective optimization problem can be stated as follows
[13]:

minimize : 𝐹 (𝑥) = [𝐹
1 (𝑥) , 𝐹

2 (𝑥) , . . . , 𝐹
𝑘 (𝑥)]
𝑇

subject to : 𝑔
𝑗 (𝑥) ≤ 0, 𝑗 = 1 (1) 𝑚

ℎ
𝑙 (𝑥) = 0, 𝑙 = 1 (1) 𝑒.

(1)

For any givenmultiobjective optimization problem, there
may be an infinite number of Pareto optimal points constitut-
ing the Pareto optimal set. But the engineers are very much
concerned with the extreme limit of the solution spectrum,
called Pareto front. Practically, Pareto front suggests a guide-
line to engineers not to go beyond this limit.

By definition, Pareto solution set is the nondominated
solutions among all optimum points. The predominant con-
cept in defining an optimal point is that of Pareto optimality
[13] which is defined as follows.

Definition 1 (Pareto optimal). A point, 𝑥
∗

∈ 𝑋, is Pareto
optimal if and only if there does not exist another point,
𝑥 ∈ 𝑋, such that 𝐹(𝑥) ≤ 𝐹(𝑥

∗
) and 𝐹

𝑖
(𝑥) < 𝐹

𝑖
(𝑥
∗
) for at

least one function.

All Pareto optimal points lie on the boundary of the
optimum criterion space [14]. Often, algorithms provide
solutions thatmay not be Pareto optimal butmay satisfy other
criteria, making them significant for practical applications.
For instance, weakly Pareto optimal is defined as follows.

Definition 2 (weakly Pareto optimal). A point, 𝑥
∗

∈ 𝑋, is
weakly Pareto optimal if and only if there does not exist
another point, 𝑥 ∈ 𝑋, such that 𝐹(𝑥) < 𝐹(𝑥

∗
).

A point is weakly Pareto optimal if there is no other point
that improves all of the objective functions simultaneously.
In contrast, a point is Pareto optimal if there is no other
point that improves at least one objective function without
detriment to another function. Pareto optimal points are
weakly Pareto optimal, but weakly Pareto optimal points are
not Pareto optimal.

A Pareto set is developed using the concept of an archive,
where the nondominated solutions seen so far are stored, and
is constantly updated. If the new solution is not updating the
set, then the nonarchive solution is accepted according to the
modified probability. It is different in various multiobjective
simulated annealing search algorithms. In archived multi-
objective simulated annealing (AMOSA) [15], a new state is
selected with a probability

𝑃
𝑞𝑠

=
1

(1 + 𝑒−(𝐸(𝑞,𝑇)−𝐸(𝑠,𝑇))/𝑇)
, (2)

where 𝑞 is the current energy state and𝐸(𝑠, 𝑇) and𝐸(𝑞, 𝑇) are
the corresponding energy values at states 𝑠 and 𝑞. In SMOSA
[16, 17], a new acceptance probability formulation based on

an annealing schedule with multiple temperatures (one for
each objective) is also proposed. The key probability step is
given as follows:

𝑃 = min (1, ∏ 𝑒
−Δ𝑠𝑖/𝑇𝑖) , (3)

where Δ𝑠
𝑖

= (𝑧
𝑖
(𝑌) − 𝑧

𝑖
(𝑋)), 𝑋 is the current solution, 𝑌 is

the generated solution, 𝑧
𝑖
is the objective function, and 𝑇

𝑖
is

the annealing temperature. Pareto simulated annealing (PSA)
[16, 18] suggests the acceptance of a new solution with the
following probability:

𝑃 = min (1, ∏ 𝑒
−Δ𝑠𝑖/𝑇𝑖) , (4)

where Δ𝑠
𝑖

= 𝜆
𝑖
(𝑧
𝑖
(𝑌) − 𝑧

𝑖
(𝑋)). Here, all objectives are

aggregated with a weighted sum of the objectives.
Adaptive simulated annealing [19] suggested that if some

local minima are encountered at a relatively low temperature
towards the end of search, traditional SA may not lead
to a near optimal solution. To avoid this uncertainty, an
adaptive cooling schedule was prescribed that adjusts the
temperature dynamically based on the profile of the search
path (including the possibility of reheating) instead of using
traditionalmonotonically nonincreasing cooling schedule. In
this method, the following temperature control function is
used:

𝜃
𝑖
= 𝜃min + 𝜆 ln (1 + 𝑟

𝑖
) , (5)

where 𝜃min is the minimum value that the temperature can
take, 𝜆 is a coefficient that controls the rate of temperature
rise, and 𝑟

𝑖
is the number of consecutive upward moves at

iteration 𝑖. The initial value of 𝑟
𝑖
is zero; thus the initial

temperature 𝜃
0

= 𝜃min.
In this present study, the proposed algorithm differs

effectively in the concept of archiving the optimal solutions.
The fundamental steps involved in the algorithm are as
follows.

Step 1. Choose a large starting temperature (𝑡max) for anneal-
ing, temperature reduction parameter (𝑟

𝑐
), number of iter-

ation at a particular temperature (𝑛) (both of these control
the cooling schedule), and accuracy level. Select midpoints of
the range of each variable as initial solution vector (current
solution vector).

Step 2. Select weight factor (say 𝑤
1
and 𝑤

2
) for each of the

objective functions satisfying always the condition 𝑤
1

+ 𝑤
2

=

1 and convert the objective functions into a single one by
using the following relationship:

converted objective function =
(𝑖=1,2)

Σ (𝑖th weight
factor) 𝑋 (𝑖th objective function at current solution
vector).

Step 3. Give a random perturbation in the neighborhood of
current solution vector, following the Gaussian distribution
and setting the 6𝜎 limit as the range of parameters, to get a
new solution.

Step 4. Calculate the converted objective function values at
both new and current solution vectors. Also, find the change
in function value, Δ𝐸.
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Step 5. Check the acceptance of the new solution vector for
converted objective function using Boltzmann probability
distribution and random number generation:

𝑃 = 1 if Δ𝐸 ≤ 0

= 𝑒
−Δ𝐸/𝑇 if Δ𝐸 ≥ 0.

(6)

Step 6. If the new solution is accepted, go to Step 7; otherwise,
go to Step 3.

Step 7. If number of iteration (random perturbation) at this
temperature is reached at the predefined limit (𝑛), go to
Step 8; or else, set the new solution vector to current solution
vector for next iteration at the same temperature and go to
Step 3.

Step 8. Calculate the change in converted objective function
value at the new solution point over the previous one.

Step 9. If the change in function value satisfies the accuracy
level, then go to Step 10; otherwise, reduce the temperature
using reducing parameter (𝑟

𝑐
) and set the new solution vector

to current solution vector and go to Step 3.

Step 10. This new solution vector is stored in the opti-
mum solution set. Then, choose a different weight factor
combination vector and restart the whole simulation for
obtaining another optimum solution. This iteration will take
place according to the number of choices of weight factor
combinations.

Finally, an archive of optimum solution will be obtained.
Each point of this archive satisfies the optimumcriteria. Here,
two extreme converted objective functions are basically either
of the two objective functions. Starting from one of the pure
objective functions, the shape of converted objective function
is gradually changed to another pure objective function.

Then, the Pareto solution sets are marked from this
archive which indicates the extreme boundary of the opti-
mum region. An approximate fitting is done through the
Pareto solution vector to get a Pareto front. From this
Pareto front, process engineers can easily determine and
select the near-optimumoperating conditions of the response
parameters.

3. Experiment

The equipment used for the experiment is an EDM machine
(Tool Craft A25 EDM machine). The machine operates with
commercially available kerosene oil as dielectric medium
and an open circuit voltage of 70 volts. High speed steel
of specimen C—0.80%, W—6%, Mo—5%, Cr—4%, V—2%
equivalent to gradeM2was chosen as the workpiecematerial.
The density of material is 8144 kg/m3. The tool material
selected is electrolytic copper with density 8904 kg/m3 and
has circular cross section of 14mm2. The polarity of the
tool electrode is set as positive, while that of workpiece as
negative. Current setting (cur), pulse on time (𝑡on), and pulse
off time (𝑡off ) are considered as input parameters andmaterial

Table 1: Parameters and their levels.

Level 1 Level 2 Level 3 Level 4
Current setting (A) 3 6 9 12
Pulse on time (𝜇s) 50 100 150 200
Pulse off time (𝜇s) 50 100 150 200

removal rate (MRR) and surface roughness (Ra) of machined
surface of workpiece are taken as response parameters. Based
on the availability of the machine setting, levels of the control
parameters are selected and presented in Table 1.

Experiment is carried out with 60 unique combinations
of levels of the three different parameters. Material removal
rate and average value of surface roughness are measured
in each experimental run. For the purpose of determining
the material removal rate (MRR), the loss in weight is
measured by standard measuring balance. It is then divided
by the density of workpiece material in order to convert it
into volumetric term and is further divided by the actual
machining time to obtain theMRR in terms ofmm3/min.The
average surface roughness (Ra) of the machined workpiece is
then evaluated by the Taylor Hobson Precision Surtronics 3+
roughness checker. Here, a sample length of 4mm is taken
and stylus tip radius of 5 𝜇m is used. The value of surface
roughness parameter Ra in micron for each experiment was
obtained directly from the Talyprofile software integrated
with machine. The arithmetic mean of the values of the
measurements taken along three mutual 120∘ directions over
the area subjected to the EDM process is taken as the repre-
sentative value of Ra. The values of responses thus obtained
are then considered for model building and optimization.

4. Analysis and Discussion

For the purpose of analysis, initially statisticalmodels ofMRR
and Ra as a function of control parameters are developed
from the experimental data. They are then considered as
the pure objective functions in order to obtain the optimal
working conditions in EDM process.

4.1. Model Development. Power law based models are simple
to understand and include the higher order modeling in itself
(as the power of the variable parameters is not predefined, but
rather estimated from the experimental results). Logarithmic
transformation of power law model to linear model renders
simplification in mathematical treatment, both in forward
and reverse directions. Power law functions are, therefore,
assumed for model development and can be presented in the
following form:

MRR = 𝑎
0
cur𝑎1𝑡𝑎2on𝑡

𝑎3

off ,

Ra = 𝑏
0
cur𝑏1𝑡𝑏2on𝑡

𝑏3

off .

(7)

Here, cur, 𝑡on, and 𝑡off indicate current setting, pulse on
time, and pulse off time, respectively, while 𝑎

𝑖
and 𝑏

𝑖
are

constants of the corresponding power functions. They are
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then linearized by taking natural logarithmic values and the
equations become

ln (MRR) = ln (𝑎
0
) + 𝑎
1
ln (cur) + 𝑎

2
ln (𝑡on) + 𝑎

3
ln (𝑡off) ,

ln (Ra) = ln (𝑏
0
) + 𝑏
1
ln (cur) + 𝑏

2
ln (𝑡on) + 𝑏

3
ln (𝑡off) .

(8)

Based on the above linear models, simple regression
analysis is performed with 60 experimental data in the
MATLAB environment and unknown coefficients are found
out. The expressions thus developed are given below:

ln (MRR) = − 2.382413 + 2.135817 ln (cur)

+ 0.248408 + ln (𝑡on) − 0.334234 ln (𝑡off) ,

ln (Ra) = − 0.321897 + 0.775938 ln (cur) + 0.050886

+ ln (𝑡on) + 0.035708 ln (𝑡off) .

(9)

Correlation coefficients are calculated and analysis of
variance (ANOVA) is performed. High value of correlation
coefficient (MRR: 𝑟2 = 0.9397 and Ra: 𝑟2 = 0.9059) of each of
the fitted models indicates its adequacy. The ANOVA depicts
the contributive effect of the factors and their interactions
with material removal rate and average surface roughness,
respectively (Tables 2 and 3).

The linear relationships are then returned back to the
power law functions, that is, in exponential form:

MRR = 𝑒
−2.382413cur2.135817𝑡0.248408on 𝑡

−0.334234

off

Ra = 𝑒
−0.321897cur0.775938𝑡0.050886on 𝑡

0.035708

off .

(10)

To depict the different factor effects, the surface plots
are generated. The representative surface plots are shown
in Figures 1, 2, 3, 4, 5, and 6. Current, pulse on time, and
their interaction are observed as the common significant
contributive factors to both the material removal rate and
average surface roughness.

4.2. Weight-Varying Multiobjective Simulated Annealing.
Higher MRR indicates high productivity, while lower Ra
provides better surface finish. So, for better machining
performance, MRR should be maximized and Ra should be
minimized simultaneously. For optimization, two objective
functions are set as follows:

𝑓 (cur, 𝑡on, 𝑡off) = MRR,

ℎ (cur, 𝑡on, 𝑡off) = Ra,
(11)

where 𝑓 and ℎ are to be maximized and minimized, respec-
tively. Generally, simulated annealing is used for minimiza-
tion problem. So, for this purpose, maximization problem
is converted to minimization problem by just taking the
reciprocal:

𝑓
1

=
1

MRR
,

𝑓
2

= Ra.
(12)

According to the newly proposed simulated annealing
based weight-varyingmultiobjective optimization technique,
at first pure objective functions are converted to a single
objective function in the following way:

converted objective function : 𝑓 = 𝑤
1

(
1

MRR
) + 𝑤

2 (Ra) .

(13)

Here, 𝑤
1
and 𝑤

2
are the weight factors satisfying the

relation 𝑤
1

+ 𝑤
2

= 1. Value of this function is effectively
controlled by the value of each objective function. As a
result, both of these functions will not be fairly weighted. To
avoid this problem, normalization of the function is done by
dividing each of the function values by its maximum value:

normalized converted objective function :

𝑓
∗

= 𝑤
1

1/MRR
(1/MRR)max

+ 𝑤
2

Ra
Ramax

.

(14)

Two extreme cases of this normalized converted objective
function (𝑓

∗
) are either 𝑓

∗

1
or 𝑓
∗

2
. The change in the shape

of 𝑓
∗ with the most effective control parameter, current, is

shown in Figure 7.
Here, input factors for optimization are set as follows.

Annealing begins from (𝑡max) 250∘C and cooling schedule
is controlled by temperature reduction parameter (𝑟

𝑐
) 0.975

and number of iteration at a particular temperature (𝑛) 100.
Termination criterion is set by accuracy level, 0.001. Also,
(1/MRR)max and Ramax are set as 3.0 and 10.0, respectively,
as found from experimental data.

Generally, in case of multiobjective optimization, differ-
ent optimum points would be obtained if started from differ-
ent initial solution vectors. But, for the weight-varyingmulti-
objective simulated annealing, initial solution vector may be
fixed at a position of user’s choice. In the present problem,
midpoint of the search space, that is, current setting = 7.5 A,
pulse on time = 125 𝜇s, and pulse off time = 125𝜇s is chosen
for the purpose. Now, the weight factors are being changed
from zero to unity in steps of 0.001. So, 1001 combinations of
weight factors are obtained. Each combination changes the
shape of normalized converted objective function. Different
shapes of objective functions give different optimal responses
(a set of MRR and Ra) and corresponding control parameter
settings. Flow chart for optimization by above proposed
weight-varying multiobjective simulated annealing method
is shown in Figure 8.

Optimizing the normalized converted objective function
(𝑓
∗
) by weight-varying multiobjective simulated annealing,

a set of 1001 optimal points is obtained (Figure 9). Ranges
of optimum values of MRR and Ra are 0.5663mm3/min to
16.5910mm3/min and 2.5623𝜇m to 7.7542𝜇m, respectively.
Each point of these spectra provides optimum performance.
From these sets, an extreme limit, called Pareto front (the
lowest boundary of Ra versus MRR plotting gives the Pareto
front), is determined in the following way, assuming the front
as a continuous function.

Pareto optimal data are first identified (Table 4). The data
are then fitted in a 4th order polynomial equation using
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Figure 1: Effect of current and pulse on time on material removal
rate (MRR) at pulse off time = 125𝜇s.
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Figure 2: Effect of pulse on time and pulse off time on material
removal rate (MRR) at current = 7.5 A.
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Figure 3: Effect of pulse off time and current on material removal
rate (MRR) at pulse on time = 125𝜇s.

MATLAB R2012a environment. Equation (15) thus generated
with estimated correlation coefficient 𝑟

2
= 0.9997 presents

the Pareto front for the present problem shown by solid line
in Figure 9:

Ra = − 0.000167(MRR)
4

+ 0.006818(MRR)
3

− 0.106529(MRR)
2

+ 0.977000 (MRR) + 1.802258.

(15)
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Figure 5: Effect of pulse on time and pulse off time on surface
roughness (Ra) at current = 7.5 A.

The Pareto front equation (see (15)) representing Ra
as a polynomial function of MRR is validated through
experimental observations. Validation results are listed in
Table 5. Percentage deviation of estimated surface roughness
(using (15)) values from corresponding experimental results
lies in between −9.5684% and +8.5938%. The significance
of the front is that all optimum points should lie behind it;
that is, no other optimum setting would cross this limit. This
line shows that as MRR increases, the extreme boundary of
possible near-optimum Ra also increases.

4.2.1. Validation. In real world practice, control parameter
settings to obtain optimum responses are verymuch essential
for better machining performance. Though Pareto optimal
data set gives a list of such settings, practically it is reasonably
difficult to set these values in EDM machine. That is why an
inverse solution procedure is devised for getting reasonably
close settings of control parameters according to their avail-
ability in the machine. To the best of authors’ knowledge, still
no such work is reported in literature regarding the optimum
control parameter settings to obtain a specific MRR and Ra
combination.

From Pareto front equation (15), Ra value can be easily
predicted for a particular MRR value. To get a particular
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Figure 6: Effect of pulse off time and current on surface roughness
(Ra) at pulse on time = 125 𝜇s.
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for different weight factor combination.

MRR, different combinations of current, pulse on time,
and pulse off time are possible. This line would guide to
select a specific combination among these which gives lowest
Ra simultaneously. Still, confusion remains regarding the
settings of control parameters in the machine to obtain that
particular MRR and Ra combination. The following method
will give a way to arrive at control parameter settings.

First, this set of MRR and Ra values is substituted in (10).
These equations are turned to be a set of 2 equations with 3
unknowns (nothing but control parameters).Mathematically,
this gives infinite number of solutions. Hence, pulse off time
is chosen as fixed parameter having four (50𝜇s, 100 𝜇s, 150 𝜇s,
and 200𝜇s) different values.This is justified as this parameter
does not have any significant effect on Ra. The equations are
then solved to obtain a set of current setting and pulse on
time for a fixed pulse off time. Thus, to get a particular MRR
and Ra combination, four combinations of control parameter
settings are available. All of these settings may or may not be
within the experimental range. The out of range data are just
omitted.

In the present study, for the sake of simplicity, exper-
imental data are used for the purpose of validation. All
experimental MRR values are put in (15) and a set of

corresponding optimum Ra values are obtained. Following
the above stated steps of solving (10), a set of current, pulse on
time, and pulse off time corresponding to each combination
of MRR and Ra is obtained.

A comparison is done among the calculated control
parameter settings and nearest experimental settings. Con-
sidering maximum 20% deviation between optimum and
experimental values, a list is thus prepared (shown inTable 6).
It is easily observed that the experimental results approach
closely the optimum values.

4.3. Discussion. As electrical discharge machining is a ther-
moelectric material removal process, so each of the thermal
and electrical attributes substantially influences the process.
Thus, values of responses like MRR and Ra are found
differently in different ranges of parameter settings including
electrode materials. To the best of the authors’ knowledge,
still no unique procedure exists that could direct a process
engineer for selecting optimum parameter settings for a need
based requirement of responses.

In the present work, therefore, a simple procedure is
adopted for effective modeling of two conflicting responses,
MRR and Ra in EDM, and an easy to operate weight-varying
simulated annealing procedure is proposed for optimization
with an aim to develop a Pareto optimal front.

In previous published papers onmultiobjective optimiza-
tion of EDM responses, researchers mostly implemented
either simulated annealing [11] or NSGA-II [10]. Simulated
annealing is applied to single objective function which is
obtained as a weighted combination of multiple objectives
[11]. So, for a particular combination of MRR and Ra, SA
gives a specific optimum setting, even if started fromdifferent
location in the search space. The best value of parameter
settings thus obtained for a fixed value (not reported) of
associated weights was voltage 127.88V, current 33.90A, on
time 412.22𝜇s, and off time 109.58𝜇s [11] (not achievable
without stepless variation of machine settings). This would
not provide any idea of exhaustive possible optimum settings
of machine parameters which will satisfy both the responses
simultaneously. Once themultiple objectives are combined to
a single one, the essence of simultaneous optimization may
be pale. If the weighted combinations are varied between two
extreme cases, that is, two pure single objectives assigned
with 1.0 weight factor to either of them, different possibilities
of their contributive effect may be studied. Another well-
known multiobjective optimization technique is NSGA-II.
All points of the initial population are directed to the
optimum points; that is, a set of equally probable optimum
points can be obtained. [10]. Optimum results, whatever
were found, may be changed with different initial population,
with different combination of selection pressure and popula-
tion diversity, with different strategy of mutation, and with
different combination of GA parameters for multiobjective
optimization. The procedure depends largely on heuristics
and is computationally complex.

Thus, a simple procedure is forwarded in the present
study. Though MRR and Ra are combined with weight
factors, simulation is carried out with different 1001 sets of
weight factor combinations. Actually, the objective function
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Figure 8: Flow chart for weight-varying multiobjective simulated annealing.

Table 2: ANOVA for MRR.

Control factors Degrees of freedom Sum of squares Mean square 𝐹 value 𝑃 value % contribution
Current 3 69.2335 23.0778 979.87 0 85.1978
Pulse on time 3 1.3227 0.4409 18.72 0 1.6277
Pulse off time 3 2.4216 0.8072 34.27 0 2.9800
Current ∗ pulse on time 9 0.7013 0.0779 3.31 0.0098 0.8630
Current ∗ pulse off time 9 0.6058 0.0673 2.86 0.0203 0.7455
Pulse on time ∗ pulse off time 9 0.4232 0.0470 2.00 0.0874 0.5208
Error 23 0.5417 0.0236 0.6666
Total 59 81.2621
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Table 3: ANOVA for Ra.

Control factors Degrees of freedom Sum of squares Mean square 𝐹 value 𝑃 value % contribution
Current 3 9.2521 3.08403 572.93 0 87.1713
Pulse on time 3 0.0468 0.01560 2.90 0.0568 0.4409
Pulse off time 3 0.0251 0.00836 1.55 0.2279 0.2365
Current ∗ pulse on time 9 0.3186 0.03540 6.58 0.0001 3.0018
Current ∗ pulse off time 9 0.0509 0.00565 1.05 0.4331 0.4796
Pulse on time ∗ pulse off time 9 0.0439 0.00487 0.91 0.5369 0.4136
Error 23 0.1238 0.00538 1.1664
Total 59 10.6137

Table 4: Pareto optimal data.

Sl. number Current (A) Pulse on time (𝜇s) Pulse off time (𝜇s) MRR (mm3/min) Surface roughness Ra (𝜇m)
1 3.2505 112.2513 51.1226 0.9931 2.6472
2 3.2007 186.2101 62.8999 1.0167 2.7039
3 3.5159 152.0621 59.5258 1.2034 2.8727
4 4.3200 184.0898 52.4232 2.0442 3.3881
5 5.3498 142.3933 50.7613 3.0607 3.9430
6 6.1709 149.2655 58.1771 4.0139 4.4372
7 6.4110 160.3530 57.4053 4.4528 4.5850
8 6.4784 148.9181 54.8232 4.5398 4.5975
9 6.9351 143.8910 55.0203 5.1999 4.8392
10 7.6679 120.8713 52.4492 6.2705 5.1764
11 7.9184 167.9898 55.8643 7.1365 5.4089
12 7.9896 166.5864 56.0781 7.2498 5.4450
13 8.2197 153.3664 51.0527 7.7870 5.5244
14 8.2791 163.1149 52.4431 7.9579 5.5782
15 9.3241 161.3686 54.3023 10.1120 6.1214
16 9.7196 167.6475 52.6972 11.2680 6.3275
17 11.0491 173.2534 57.0642 14.5464 7.0209
18 11.2095 185.5017 54.1914 15.5237 7.1115
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Figure 9: Optimal solution set for weighted objective functions and
Pareto front (𝑛 = 100, accuracy = 0.001).

is gradually varied from one objective to another one. This
includes almost all possible practical combinations of these
two responses. In each of these, a single optimum result
is found and finally the spectrum of all possible optimum
points gives an idea of exhaustive optimum zone of responses
(Figure 9). So, the extreme boundary of this zone could
ensure that no other optimum lies below it. This boundary
line is identified as the Pareto optimal front. This is an easy
way to mark the Pareto front for multiple objectives.

Further, in all previously published papers, optimum
points are reported, but to set these values in machine is very
difficult unless any stepless variation with higher precision
is available. Here, a simple way to solve this problem is sug-
gested. Also, the Pareto front (assuming it to be a continuous
one) equation shows a guideline tomeet user specific demand
of MRR or Ra. For a particular MRR or Ra, number of
machine parameter combinations is possible, but to identify
that specific combination which would give minimum Ra
or maximum MRR simultaneously with the user specified
demand is very difficult.This front line would give achievable
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Table 5: Validation of Pareto front equation.

Sl. number MRR (mm3/min) Ra (𝜇m)
(estimated)

Ra (𝜇m)
(experimental) % deviation

1 5.7718 5.0192 5.02 0.0165
2 0.6497 2.3939 2.41 0.6685
3 0.7899 2.5108 2.48 1.2427
4 0.9071 2.6058 2.57 1.3936
5 0.7061 2.4414 2.48 1.5579
6 8.2535 5.6721 5.77 1.6962
7 6.5304 5.2363 5.34 1.9421
8 12.6351 6.6619 6.51 2.3334
9 10.1742 6.1170 6.29 2.7504
10 0.7731 2.4970 2.57 2.8406
11 4.1619 4.4649 4.33 3.1156
12 11.4031 6.3937 6.65 3.8536
13 18.8113 7.0825 7.45 4.9324
14 3.7873 4.1307 4.54 5.0515
15 0.6134 2.3630 2.24 5.4918
16 0.6099 2.3600 2.22 6.3076
17 14.1423 6.9576 6.53 6.5478
18 12.3972 6.6113 7.18 7.7902
19 0.5608 2.3178 2.15 7.8066
20 0.3427 2.1248 2.31 8.0157
21 8.1302 5.6426 6.15 8.2499
22 15.3902 7.1469 7.79 8.2550
23 4.886 4.7334 4.36 8.5638
24 3.7811 4.3080 4.77 9.0853
25 0.3924 2.1696 2.40 9.5984

near-optimum value of other responses when one is made
fixed. It would be then easier to find the machine parameter
setting using the backpropagation technique discussed in
Section 4.2.1. Thus, it is possible to find process parameter
setting among the available settings of the parameters in
the machine, which would give near optimum of the other
response simultaneously for any need based requirement of
one response. Here lies the novelty of this study.

5. Conclusion

As technology advances, stochastic type EDM process
becomes more popular for precision engineering and opti-
mum machining performance becomes important to the
manufacturer. In the present paper, an easy to handle pro-
cedure for engineers, weight-varying multiobjective simu-
lated annealing, is proposed to find the optimal settings of
process parameters that will optimize simultaneously two
conflicting type responses, MRR and Ra, in EDM. A Pareto
front is estimated which will guide the process engineers
regarding the extreme boundary of optimum responses and
suggest the possible near-optimum combination of MRR
and Ra. The proposed inverse solution procedure for vali-
dation will effectively help the engineers to estimate and set

the control parameters to get specific near-optimumMRR-Ra
combination in real world practice. Thus, operator can easily
predict and select the input factors’ value according to output
requirement.

Nomenclature

𝑎
𝑖
, 𝑏
𝑖
: Coefficients of power law models

cur: Current setting (A)

𝐸(𝑞, 𝑇), 𝐸(𝑠, 𝑇): Energy value at states 𝑞 and 𝑠

𝑒: Number of equality constraints
𝐹(𝑥): Vector of objective functions (points in

the criteria space)
𝑓
∗: Normalized converted objective

function
𝑓
1
, 𝑓
2
, 𝑍
𝑖
: Objective function

𝑘: Number of objective functions
MRR: Material removal rate (mm3/min)

𝑚: Number of inequality constraints
𝑃: Probability
Ra: Average surface roughness (𝜇m)
𝑟
𝑖
: Consecutive upward move in 𝑖th

iteration
𝑇: Annealing temperature
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Table 6: Validation.

Sl. number Current (A) Pulse on time (𝜇s) Pulse off time (𝜇s) MRR (mm3/min) Surface roughness Ra (𝜇m)

1
Optimum 11.7129 108.3082 50.0000 15.3242 7.1387

Experimental 12.0000 100.0000 50.0000 14.1423 6.5300
% deviation 2.4511 7.6709 0.0000 7.7126 8.5268

2
Optimum 11.7221 109.4571 50.0000 15.3902 7.1469

Experimental 12.0000 100.0000 50.0000 14.1423 6.5300
% deviation 2.3707 8.6400 0.0000 8.1084 8.6317

3
Optimum 10.1138 116.4332 50.0000 11.4031 6.3937

Experimental 9.0000 100.0000 50.0000 11.4031 6.6500
% deviation 11.0127 14.1138 0.0000 0.0000 4.0086

4
Optimum 11.3966 99.2134 50.0000 14.1423 6.9576

Experimental 12.0000 100.0000 50.0000 14.1423 6.5300
% deviation 5.2946 0.7928 0.0000 0.0000 6.1458

5
Optimum 7.0399 97.3798 50.0000 5.0313 4.7831

Experimental 6.0000 100.0000 50.0000 5.7718 5.0200
% deviation 14.7715 2.6907 0.0000 14.7179 4.9528

6
Optimum 10.7318 105.6763 50.0000 12.6351 6.6619

Experimental 12.0000 100.0000 50.0000 14.1423 6.5300
% deviation 11.8172 5.3714 0.0000 11.9287 1.9799

7
Optimum 10.2723 113.6373 50.0000 11.7172 6.4633

Experimental 9.0000 100.0000 50.0000 11.4031 6.6500
% deviation 12.3857 12.0007 0.0000 2.6807 2.8886

8
Optimum 10.6142 107.6154 50.0000 12.3972 6.6113

Experimental 12.0000 100.0000 50.0000 14.1423 6.5300
% deviation 13.0561 7.0765 0.0000 14.0766 1.2297

9
Optimum 11.4466 211.3767 50.0000 17.2259 7.2552

Experimental 12.0000 200.0000 50.0000 17.2259 8.3500
% deviation 4.8346 5.3822 0.0000 0.0000 15.0899

10
Optimum 9.9756 118.7713 50.0000 11.1278 6.3323

Experimental 9.0000 100.0000 50.0000 11.4031 6.6500
% deviation 9.7799 15.8046 0.0000 2.4740 5.0171

11
Optimum 9.0204 126.8568 50.0000 9.1232 5.8762

Experimental 9.0000 150.0000 50.0000 10.1742 6.2900
% deviation 0.2261 18.2456 0.0000 11.5201 7.0420

12
Optimum 2.5232 195.9626 100.0000 0.5306 2.2917

Experimental 3.0000 200.0000 100.0000 0.5306 1.9200
% deviation 18.8966 2.0603 0.0000 0.0000 16.2194

13
Optimum 7.4694 101.7217 50.0000 5.7718 5.0192

Experimental 6.0000 100.0000 50.0000 5.7718 5.0200
% deviation 19.6723 1.6926 0.0000 0.0000 0.0159

14
Optimum 9.1521 127.0085 50.0000 9.4129 5.9430

Experimental 9.0000 150.0000 50.0000 10.1742 6.2900
% deviation 1.6619 18.1023 0.0000 8.0878 5.8388

15
Optimum 7.1133 97.8662 50.0000 5.1503 4.8230

Experimental 6.0000 100.0000 50.0000 5.7718 5.0200
% deviation 15.6551 2.1803 0.0000 12.0673 4.0846

16
Optimum 9.8250 121.1347 50.0000 10.8249 6.2642

Experimental 9.0000 100.0000 50.0000 11.4031 6.6500
% deviation 8.3969 17.4473 0.0000 5.3414 6.1588

17
Optimum 7.0629 97.5206 50.0000 5.0682 4.7956

Experimental 6.0000 100.0000 50.0000 5.7718 5.0200
% deviation 15.0491 2.5424 0.0000 13.8826 4.6793
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Table 6: Continued.

Sl. number Current (A) Pulse on time (𝜇s) Pulse off time (𝜇s) MRR (mm3/min) Surface roughness Ra (𝜇m)

18
Optimum 2.5234 244.7705 100.0000 0.5608 2.3178

Experimental 3.0000 200.0000 100.0000 0.5306 1.9200
% deviation 18.8872 18.2908 0.0000 5.3852 17.1628

19
Optimum 7.0874 97.6826 50.0000 5.1080 4.8089

Experimental 6.0000 100.0000 50.0000 5.7718 5.0200
% deviation 15.3427 2.3724 0.0000 12.9953 4.3898

20
Optimum 7.2141 98.7074 50.0000 5.3188 4.8781

Experimental 6.000 100.0000 50.0000 5.7718 5.0200
% deviation 16.8295 1.3095 0.0000 8.5170 2.9089

𝑡off : Pulse off time (𝜇s)
𝑡on: Pulse on time (𝜇s)
𝑤
1
, 𝑤
2
, 𝜆: Weight factors

𝑋: Feasible design space, current solution
𝑥: Vector of design variable (points in the

design space)
𝑌: Generated solution
Δ𝐸: Change of energy value
Δ𝑠
𝑖
: Change in 𝑖th objective function value.
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