View metadata, citation and similar papers at core.ac.uk

Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences
Volume 2014, Article ID 570361, 10 pages
http://dx.doi.org/10.1155/2014/570361

Research Article

brought to you by .{ CORE

provided by Crossref

Hindawi

On a Subclass of Analytic Functions Related to a Hyperbola

Jagannath Patel' and Ashok Kumar Sahoo>

! Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar 751004, India
2 Department of Mathematics, Institute of Technical Education and Research, Jagmohan Nagar, Khandagiri,

Bhubaneswar 751030, India

Correspondence should be addressed to Jagannath Patel; jpatelmath@yahoo.co.in

Received 14 January 2014; Accepted 12 April 2014; Published 7 May 2014

Academic Editor: Gelu Popescu

Copyright © 2014 J. Patel and A. K. Sahoo. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

The object of the present investigation is to solve Fekete-Szeg6 problem and determine the sharp upper bound to the second Hankel
determinant for a new class %(a, ¢, p) of analytic functions in the unit disk. We also obtain a sufficient condition for an analytic

function to be in this class.

1. Introduction and Preliminaries

Let of be the class of functions f of the form:
f@=z+)a,z" )
n=2

which are analytic in the open unitdisk % = {z € C : |z| < 1}.

A function f € o/ is said to be starlike function of order
p and convex function of order p, respectively, if and only if
Re{zf'(2)/f(z)} > pand Re{l + (zf"(2)/f'(2))} > p, for
0 < p < land forall z € Z. By usual notations, we denote
these classes of functions by §*(p) and F(p) (0 < p < 1),
respectively. We write §*(0) = &* and #(0) = %, the
familiar subclasses of starlike functions and convex functions
in#%.

Furthermore, a function f € & is said to in the class
RK(p), if it satisfies the inequality:

Re{f' @} >p (0<p<lize). )

Note that Z(p) is a subclass of close-to-convex functions of
orderp(0<p<1)in?.
Let & denote the class of analytic functions of the form:

p)=1+pz+pz+- (z€) 3)

satisfying the condition Re{¢(z)} > 0in %.

Let the functions f and g be analytic in U. We say that f
is subordinate to g, written as f < g or f(z) < g(z) (z € U),
if there exists a Schwarz function w, which (by definition)
is analytic in U with w(0) = 0,|w(z)] < 1 and f(z) =
g(w(z)), z € U. Furthermore, if the function g is univalent in
U, then we have the following equivalence relation (cf., e.g.,

[1]):
f@)<g() = f(0)=g0), fU)cgU). (@)

For the functions f, g analytic in % and given by the
power series

f@=Yaz, g@=)Yb, (5)
n=0 n=0

their Hadamard product (or convolution), denoted by f * g
is defined as

(fx9)@=Yab"=(g*f)z) (ec%. (6
n=0

Note that f * g is analytic in %.
The Gauss hypergeometric function ,F, is defined by the
infinite series
[ee] b n
2Fl (a’b’c;z) - sz_
=0 (C)n n! (7)

(a,b,ceCic¢ Zy ={0,-1,-2,..};z € U),
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where (k), denotes the Pochhammer symbol (or shifted
factorial) given, in terms of the Gamma function I', by

(8)

I'(k +n) K(k+1)---(k+n-1), neN
(K)p = —7— ={

I' (x) 1, n=0.

We note that the series, given by (7), converges absolutely for
z € % and hence the function ,F, represents an analytic
function in the unit disc % [2].

We further observe that the Gauss hypergeometric func-
tion ,F, plays an important role in the study of vari-
ous properties and characteristics of subclasses of univa-
lent/multivalent functions in geometric function theory (cf.,
e.g. [3-5]). In our present investigation, we consider the
incomplete beta function v, defined by

() n+1
v (a,cz) =z ,F (a,1;¢62) = Z 1
2f 2O, ©)
(a,ceCic¢ ZyzeU).

By making use of the Hadamard product and the func-
tion vy, Carlson and Shaffer [6] defined the linear operator
Z(a,c): d — o by

Z(a,c) f (2)
If f € o is given by (1), then it follows from (10) that

=y(acz)x f(z) (fedize¥). (10)

Sf(ac)f(z)—z+z() a,,2"" (2%, Q)

2(Z @) f) (2)

=aZ(a+1lc) f(z) -

(@a-1)Zac)f(z) (z€U).

(12)

The operator Z(a,c) extends several operators introduced
and studied by earlier researchers in geometric function
theory. For example, Z(m + 1,1)f(z) = 2" f(z) (f «€
d,m e Z,m > -1,z € %), the well-known Ruscheweyh
derivative operator [7] of f and £(2,2 - A)f(z) =
Q}f(2) (f € 94,0 < A < 1;z € %), the familiar Owa-
Srivastava fractional differential operator [8] of f.

With the aid of the linear operator #(a, ¢), we introduce
a subclass of &f as follows.

Definition 1. A function f € & is said to be in the class
R(a,c, p), if it satisfies the following subordination relation:

Z(a,¢) f (2) . {1+(1—2p)z

0<p<lize),
: S Gsperzen)

(13)

where the power in the right hand side of (13) indicates the
principal branch. Note that if f € %(a, c, p), then by (13)

Z(a,c) f (2)

z

1/2

={p+(1- (pePszeU).

(14)

p) ¢ (2)}
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We denote by R(2,1, p) = @(p), the class of functions
f € o satisfying the subordination condition:

~ 112
1+(11_Z2P)Z} (0<p<Lize%). (15

f' (@) < <]
In fact, by suitably specializing the parameters g, ¢, and p in
the class Z(a, c, p), we can obtain several subclasses of <.

Remark 2. To bring out the geometrical significance of the
class %(a,c, p), we set
1+(1- 2p)z]}1/2

hp(z):{ - (0<p<Lizeu) (16)

and note that

o 15(1-29)"
w=hp(e)=7 (0<80<2n) (17)

which gives eie(w2—2p+1) =w’—lor|w’-1| = |w2+1—2p|.

Letting w = u + iv, we deduce that

1- (uz - v2)2 + 4ty = (uz —V - 2p)2 +4u’v?, (18)

which on simplification reduces to u* — v* = p. Thus, h, (%)

is the interior of the right half branch of the hyperbola u* —
v* = p. Hence, if f € Z(a,c,p), then the set of values
Z(a,c)f(z)/z for z € % lie in hp(%), where hp is given by

(16).

Fekete and Szeg6 [9] defined the Hankel determinant of
a function f, given by (1) as

B _

2
H, (1)— az as =a;—a,

(a, =1). (19)

In our present investigation, we also consider the second
Hankel determinant of f, given by

H,(2) = ZQ 3 = aya, - a’. (20)

It is known [10] that if f given by (1) is analytic and univalent
in %, then the sharp inequality H,(1) = l|a; — 022 | <1
holds. For a family # of functions in & of the form (1), the
more general problem of finding the sharp upper bounds for
the functionals (a; — ptaf) (4 € R/C) is popularly known
as Fekete-Szegd problem for the class . The Fekete-Szego
problem for the known classes of univalent functions, starlike
functions, convex functions, and close-to-convex functions
has been completely settled [9, 11-18]. Recently, Janteng et al.
[19, 20] have obtained the sharp upper bounds to the second
Hankel determinant H,(2) for the family &% of functions in
o whose derivatives have positive real part in %. For initial
work on the class %, one may refer to the paper by MacGregor
[21].

Our objective in the present paper is to solve the Fekete-
Szegd problem and also to determine the sharp upper bound
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to the second Hankel determinant for the class Z%(a, ¢, p) by
following the techniques devised by Libera and Ztotkiewicz
[22, 23]. The criteria for functions in & to be in this class are
also obtained.

To establish our main results, we will need the following
results about the functions belonging to the class .

Lemma 3. Let the function ¢, given by (3), be a member of the
class . Then

lpel <2 (k>1), (21)

|p, - vpi| <2max{L|2v-1]} (ve©), (22)

{P1 (4_Pf)x}’ (23)

NI»—A

2 =}L{p1 +2(4-py) prx= (4= p)) i’

+2(4-p}) (1- 1) 2}

for some complex numbers x, z satisfying |x| < 1 and |z| < 1.
The estimates in (21) and (22) are sharp.

(24)

We note that the estimate (21) is contained in [10]; the
estimate (22) is obtained by Ma and Minda [24]; the results
in (23) and (24) are due to Libera and Ztotkiewicz [23] (see
also [22]).

2. Main Results

Unless otherwise mentioned, we assume throughout the
sequel that

a>0, c>0, 0<p<l (25)

Now, we determine the sharp upper bound for the
functional |a; — ‘uag | (u € C) for functions of the form (1)

belonging to the class %(a, c, p).
Theorem 4. Let a > 0 and ¢ > 0. If the function f, given by
(1), belongs to the class R(a, c, p), then for any y € C
2
|a3 - P‘a2|

B (©),(1-p)
(@),

xmax{

The estimate in (26) is sharp.

2@+ c(l-p)u—alc+1)(1+p)
2a(c+1) }
(26)

Proof. Since f € R(a,c, p), by (14) we have

Z(a,c) f (2)

: P e zew), @7

={p+(1-

3
where ¢ € & is given by (3). It is easily seen that
o+ (- p)pia)}”
1 - 1-
=1+£(1_P)PIZ+ p{Pz ( p)Pl]’
1- - 1-

. zp{ps (1 p)plp2 a-p° P) }Z e

(ze¥).
(28)

Writing the series expansion of Z(a,c) f(z) given by (11),
{p+(1-p)p(2)}"/%, in (27) and equating the coefficients of
z,2°,2° in the resulting equation, we obtain

a = & ;;) CP1’ (29)
1-p)(0)
1- 1- -
ay = ( z(a)):C)3 {P3 ( )PIPZ u SP) ]’ (1)
Thus for any p € C,
|‘13 - ‘ua§|
_(c)z(l—p) _(1—p){a(c+1)+2(a+1)cy} )
T T ow, [P da(c+ 1) P
(32)
and by using (22) in the above expression, we get
'“3 - P‘a22|
< (©;(1-p)
(a),
x max {1 M{a(c+ D+2(a+)cu}—1
12a(c+1)

(33)

which, upon simplification, gives the required assertion of
Theorem 4.
Equality in (26) holds for the function f, defined in % by

fo (2)

w(caz)*zh (2),
|2(a+1)c(1— p)u—a(c+1) 1+p)|
2a(c+1)

)

] v (c,a;2) * zh, (z
2a+)c(l-p)p—a(c+1)(1+p)| -
2a(c+1)

(34)

where the function h,, is given by (16). This completes the
proof of Theorem 4. O



Theorem 5. Leta > 0, ¢ > 0 and u € R. If the function f,
given by (1), belongs to the class R(as c, p), then

'%‘//‘“ﬂ
({a(c+1)(1+p)-2@(a+1)c(1-p)utc(1-p)
2a(a), ’
B a(c+1)
2(a+1)c
(©),(1-p)
< @,
= a(c+1) - ac+1)(3+p)

2@+ KT 2(@+1)c(1-p)
{2(a+1)c(1—p)[4—a(c+1)(1+p)}c(1—p)
2a(a), ’
ac+1)(3+p)
2(@+c(1-p)

(35)
The estimates are sharp.
Proof. First, we assume that 4 < —{a(c + 1)}/2(a + 1)c. Then

2@+ c(1-p)u—-a(c+1)(1+p)

2a(c+1) <1 (36)
so that by (26), we obtain
2
.aa - P‘a2|
_falsn(+p)-2@+Dc(-p)ufc(1-p)
- 2a(a), '
(37)
Next, let
a(c+1) a(c+1)(3+p)
_2(a+1)cS”£2(a+1)c(1—p)' (38)
Then, a routine calculation yields
|2(a+1)c(1—p)/,t—a(c+1)(1+p)|Sl (39)
2a(c+1)
and by using (26) again, we get
(c), (1 -
|a3 - ya§| < %)Zp). (40)
Finally, if {a(c + 1)(3 + p)}/2(a + 1)c(1 — p) > 1, then
2(a+l)c(l—p)‘u—a(c+1)(1+p)>L (41)
2a(c+1)
Thus, by (26), we have
2
'as - l/‘az|
B 2@+ c(l-p)u-alc+1)(1+p)c(1-p)
- 2a(a), '
(42)
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The estimates are sharp for the function f;, defined in %
by

fo(2)
[ v (c.a:2) x zh, (2),
_alc+1) S a(c+1)(3+p)
) 2(@+1)c 2(@+1)c(l-p)
B w(c,a;z)*zhp(zz),
BCICER)) s a(c+1)(3+p))
2(a+1)c 2(a+1)c(1-p)

(43)

where the function h, is given by (16) and the proof of
Theorem 5 is completed. O

Using (21) in (29) and putting 4 = O and y = 1,
respectively, in Theorem 5, we get the following.

Corollary 6. Let a > ¢ > 0. If the function f, given by (1),
belongs to the class %(as c, p), then

|ay| < @, (44)
o < 202 )
2
|as - a3 < w. (46)
2

The estimates in (44) and (46) are sharp for the function f,
defined by
fo@) =v(c.a2) xzh,(2) (z €U), (47)

whereas the estimate in (45) is sharp for the function f, given
by

fo@ =v(caz)xzh, (") (ze), (48)
where the function h, is given by (16).

Lettinga = 2 and ¢ = 1 in Theorem 8, we obtain the
following.

Corollary 7. Ifthe function f, given by (1), belongs to the class

g%(p),then
[ 2(1+p)-3u(1-p)}(1-p)
12 ’
p<—3
(1—P)’
'%‘P‘“%l <9 2 B 2(3+p) (49)
3503302
Bu(1-p)-2(1+p)}(1-p)
12 ’
. 2(3+p)
3(1-p)
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The estimates are sharp for the function f, defined in U by

s z dt
2 2(3+p)
M<_§ or y>3(1_)
fo@ =1 = 4 . P (50)
j «zh (),
o 1—t
2 2(3+p)

——<uc< R
| 3‘”‘30—p)

where h, is given by (16).

Next, we find the sharp upper bound for the fourth
coefficient of functions in the class % (a, c, p).

Theorem 8. Let the function f, given by (1), belong to the class
%(a,c, p). Then

(C)3 P)

51
@ (51)

|ay| <
and the estimate in (51) is sharp.
Proof. From (31), we have

1-p (1-p)°

(©)s (
o = U2, bt pl (D)

2(a);

Since the functions ¢(z) and gb(eiez) (0 € R) are in the class
&P simultaneously, we assume without loss of generality that
p; > 0. For convenience of notation, we write p; = p (0 <
p < 2). Now, by using (23) and (24) in (52), we deduce that

|ay|
1-p)|1+p 1
=(C)32§a)3 °) g 2R (4 ) px
) e L (4-P) (- )4

(53)

for some complex numbers x (|x| < 1) and z (|z| < 1).

Applying the triangle inequality in the above expression
followed by the replacement of |x| with y in the resulting
equation, we obtain

la,| < (0); (1 P){l"‘P2 3+1+P(4

2
2(a); 8 4 ) py

+

(1-2)(p-27+ 1 (- ) |

(0<p<2,0<y<l)

N

=G(p.y) (say).

(54)

We next maximize the function G(p, y) on the closed
rectangle [0, 2] x [0, 1]. Since

aa—j=§(4—p2){p(1+p>—z(z—p>y}, (55)

we have 0G/dy < 0for0 < p < 2and 0 < y < 1. Thus,
G(p, y) cannot have a maximum in the interior on the closed
rectangle [0, 2] x [0, 1]. Therefore, for fixed p € [0, 2]

maxG (p, y) =G (p,0) =F(p) (say),  (56)

0<y<1
where

2
1+Pp3+%(4—p2) (0<p<2). (57

F(p)=

A routine calculation yields

3(1+p2) ) (58)

Fi(p)=——F—p -p=0

for p = 0 or p = 8/{3(1 + p*)}. Since F"(0) = -1 < 0 and
F"(8/{3(1+ pz)}) =1 > 0, we conclude that the maximum of
F is attained at p = 0. Thus, the upper bound of the function
G corresponds to p = y = 0. Putting p = y = 01in (54), we
get our desired estimate (51).

Equality in (51) holds for the function f,, defined by

fo@) =v(az) xzh, (%) (0<p<lLize¥), (59)

where h,, is given by (16). O

In the following theorem, we find the sharp upper bound
to the second Hankel determinant for the class %(a, ¢, p).

Theorem 9. Leta >c > 0and (a+2)(c+1)—-3(a—c) > 0. If
the function f, given by (1), belongs to the class %(a, c, p), then

2
'aza4 —a§| < {W} . (60)
2

The estimate in (60) is sharp.

Proof. From (29), (30), and (31), we deduce that

2
|aqa4 - “3'

_c0),(1-p)
B 4a(a),

|G ne (57

{c+2) @+ 1) +(@-)}(1-p)
" 16(a+1)(a+2) -

(a-¢)(1-p)
2(a+1)(a+2) 112

(61)



As in Theorem 8, we assume without loss of generality that
P > 0and for convenience of notation, we write p; = p (0 <
p < 2). By using (23) and (24) in (61), we get

2
aa, —a;

_ C(C)z(l - P)2
B 4a(a),

da-c)p+{c+2)@+1)+(a-o}(1-p) ,
x 16(a+1)(a+2) P

(a-c)(1+p) 2\ 2
Tar D@y PP

_ {4(a+2)(6+1)+(“‘c)p2} (4— 2)x2
4(a+1)(a+2) P

c+2

2a+2) (4—p2)p(1—|x|2)z .

+

(62)

Now, by applying the triangle inequality in (62) and replacing
|x| by y in the resulting equation, we get

2
a,a, — a,

< c(c),(1 - P)2
4a(a),

da-c)p+{la+1)(c+2)+@-o}(1-p) ,
x 16@+1)(c+2) P

N c+2
2(a+2)(4-p*)p

(a—c)(1+p) 2\ .2
4(a+1)(a+2)( 7)) Py

{@a-0p*-2@+1)(c+2)p+a@+2)(c+1)}
" 4@+1)(a+2)

} (4_p2)y2}

=Z(py) (0<p<2,0<y<l1) (say).
(63)
We next maximize the function &(p, y) on the closed
rectangle [0, 2] x [0, 1]. Since

99 _ (@a-o)(1+p) 2

dy _4(a+1)(a+2)( -p)p

2@+ 1) (c+2)-(2+p)(a-0)}
" 2@+1)(a+2)

«(4-p) 2= p)y >0

(64)
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for0 < p <2and 0 < y < 1, it follows that Z(p, y) cannot
have a maximum in the interior on the closed rectangle
[0,2] x [0, 1]. Thus, for fixed p € [0, 2]

max @ (p,y) = (p,1) = F (p)  (say),

0<y<1

(65)

where

ZF (p)

c(0)y(1-p)’
N 4“(‘1)2

d@@a-0)p+{a+)(c+2)+@-ot(1-p) ,
X 16@+1)(c+2) P

N c+2
2(a+2)(4-p*)p

(a—c)(1+p) 2\ 2
4(a+1)(a+2)( -r)p

{@a-0p*-2@+1)(c+2)p+a@+2)(c+1)}
" 4(@a+1)(a+2)

<=}
(66)

0 < p<1l.and 0 < p < 2. Differentiating & with respect to
P, we deduce that

7' (p)

_d0,(1-p)’
B 4a(a),

{@+1)(c+2)+@-)}(1-p)-8a—-c) ,
X 1@+ @+2) P

2{@+2)(c+1)—(a—¢c)(2+p)}
- (a+1)(a+2)

pl=0
(67)
for p=0or

2 _ 8{(a+2)(c+1)—(a—c)(2+p)}
{@a+D)(c+2)+@-o}(1-p)-8@a-c)

(68)

Since p* > 4 and

2{@+2)(c+1)=(a—c)(2+p)} .

7 O= (@a+1)(a+2)

0 (69)

by the hypothesis, we conclude that the maximum value of #
is attained at p = 0 so that the upper bound of the function
& corresponds to p = 0 and y = 1. Thus, by letting p = 0 and
y = 11in (63), we get the estimate (60).

The estimate in (60) is sharp for the function f, given by
(48). This completes the proof of Theorem 9. O
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Puttinga = 2and ¢ =

following.

1 in Theorem 9, we get the

Corollary 10. Ifthe function f, given by (1) belongs to the class
:%T(p), then

2
|a2a4 - ai' < @ (70)

and the estimate is sharp for the function f,, defined by

) cw2hy(2) (@ew), (D
0 1-

fo(2) = J ldt

where the function h, is given by (16).

Theorem 11. Lety >0, a > 1/(2y),c>0and1/2<p < 1. If
[ € o satisfies the following inequality

(2ay+1)p-1
2ayp

Re{g(aH,C)f(Z)} S

2@ f @) (e < %),

(72)

then

Z(a,c) f (2) p {1+(1—2p)z

1/y
} cew). 3
z 1-z

The result is the best possible.

Proof. We define the function w by

1/y
Sf(a,c)f(z):{1+(1 2p)w(z)} zew). (74)
z 1 -w(z)
Choosing the principal branch in the right hand side in (74),
we note that w is analytic in % with w(0) = 0. Furthermore,
logarithmically differentiating (74) and using the identity (12)
in the resulting equation, we find that

Z(a+1lc) f(z) 1-2p zw' (2)

Z(ac) f(z) ay 1+ (1-2p)w(z)
1 zw (2)
E—l—w(z) (ze¥).

We claim that |w(z)| < 1 for all z € %. If not, then there
exists a point z, € % such that

(w(zy) #1),
(76)

max {|w (2)] : Iz] < |z} = |w (2,)] = 1
and let w(z,) = €*. Now, by applying Jack’s lemma [25], we
have

zow' (z0) = kw(z,) (k=1). (77)

From (75) and (77), we obtain

Re{ff(a+1,c)f(z)}
Z(a,c) f (2)

i
=1+£R€ 6_
ay 1-e

1-2 0
+( p)kRe ¢ -
ay 1+(1-2p)e®

o (1-2p)k
2ay ay

=1- (78)
1-2p+cosO

1+2(1-2p)cosf + (1 -2p)°

l;+@p—nk
2ay 2ayp

- (2ay+1)p—1
T 2app

which contradicts the hypothesis (72). Thus, we conclude
that |w(z)| < 1for all z € % and (74) yields the required
subordination relation (73).

To see that the result is the best possible, we consider the
function f; € & defined by

X

<1-

1+(1-2p)z) """
1-z

fo(2) =v(caz) x z{
(79)

1 1
(y>0,a2—,c>0,—§p<1;ze%>
2y 2

from which it follows that

1/
3(61>C)fo(z):{l+(l_2p)z}y (zew). (80)

z 1-z

Thus, f, satisfies the subordination relation (73). On differ-
entiating the expression in (80) followed by the use of the
identity (12) in the resulting equation, we deduce that
Z(a+1,0) fy (=)
Z(a,c) f, (2)

1-2
=1+< P) z +<i>i (ze).
ay J1+(1-2p)z \ay)1l-z
(81)
This implies that
4 , 2 1)p-1
@+1,9fo(x)  (Qay+l)p-1 =
Z(a,c) fy (2) 2ayp
(82)
and the proof of Theorem 11 is completed. O

In the special case y = 2, we get the following sufficient
condition for the class %(a, c, p).



Corollary 12. Leta > 1/4,c > 0and 1/2 < p <L Iff e o
satisfies the following inequality:

e{$(a+1,c)f(z)}
Z(a,c) f (2)

N (4a+1)p-1
4a

(83)
<%Sp<1;ze%>,
then f € S(a,c,p). The result is the best possible for the
function f given by (47).

Lettinga = 2,¢ = 1 and y = 2 in Theorem 11, we obtain
the following.

Corollary13. If1/2 < p < 1 and f € o satisfies

f!l(z)
Re{1+ f’(z)} >

5p-1
P (lgp<1;ze%>, (84)
4p 2

then f € G(p). The result is the best possible for the function
fo defined by

fo(z)zjo 2, () (%Sp<l;ze%>, (85)

where the function h, is given by (16).

Theorem 14. Leta >0, ¢ > 0andy > 0.If f € o satisfies the
following subordination relation:

Z(a,¢c) f (2)

z

1+(1-2p)z) " (80
<{M} <%gp<1;z€%),

1-z

then

€<M> >p (|Z| <71 (a,y,p)), (87)

Z(a,c) f (2)
where
ro (@, p)
(rap) O rap) ~(@)' @p-1) 1
= ay(Zp— 1) ) p
ay _l
2+ay’ =3
(88)

The bound ry(a, y, p) in (88) is the best possible.

Proof. From (86), we get

<3(a,6)f(2)

z

)=lo+(-ps@)" (pemzew),
(89)
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where we choose the principal branch in (89). Taking loga-
rithmic differentiation in (89) and using the identity (12) in
the resulting equation, we deduce that

Z(a+1,0f(2)
'zc/)'(z)'
> (1 P)[l ay{lp+(1-p)¢ )|}

:| (ze¥).
(90)

Using the following well-known estimates [21]

9@ _ o

Re{¢(z)} ~ 1-72 (zl=r<1) (1)

@] <

1+7r
1-r

in (90), we get

$(a+1,c)f(z)}_
R% Z@o @

2r
ay{p(l -1+ (1-p)(1-12)}

2(1—P)[1— ] (92)

2r
ay{(2p-1)r2 - 2pr + 1}

which is certainly positive for |z| <
ro(a,y, p) is given by (88).

To show that the result is the best possible, we consider
the function f,, defined by

Z(I—p)[l— {

ro(a,y, p), where

1/y
-y fpr - 2]
(93)
(35p<r0<nzew).
Noting that
(Zertane)
Z(a,¢) fy (2)
2z
=(1- 1+ =0
( P)[ ay{p(l—z)2+(l—f>)(1—22)}]
(94)

for z = —ry(a,y, p), we conclude that the bound is the best
possible. This proves Theorem 14. O

Taking y = 2 in Theorem 14, we get the following.

Corollary 15. Ifa > 0,c > 0,1/2 < p < land f €
%(a,c, p), then

Re(.g(a+l,c)f(z)

Z(@0) f (2) ) >p (2l <x(ap)),  (95)
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where
«(a. p)
(1+2ap) - \/4a2(1—p)2+4ap+1 1 |
, —<p<
= 2a(2p-1) 2 <F
“ 1
l+a’ =7
(96)

The bound «(a, p) is the best possible for the function f,, given
by (47).

Settinga = 2,c¢ = 1 and y = 1 in Theorem 14, we get the
following.

Corollary 16. If f €  satisfies

Re{f’(z)}>p (%Sp<1;ze%>, (97)
then
Re {1 + Z;, ((ZZ))]» >2p-1 (lz| <x(p)), (98)
where
1+2p)—\[4p*> —4p+5
(1+2p) —4p p+,1<P<l
x(p) = 2(2p-1) 2 ! (99)
> Py

The bound n(p) is the best possible for the function f,, given in
Corollary 13.
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