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The object of the present investigation is to solve Fekete-Szegö problem and determine the sharp upper bound to the secondHankel
determinant for a new class ̃R(𝑎, 𝑐, 𝜌) of analytic functions in the unit disk. We also obtain a sufficient condition for an analytic
function to be in this class.

1. Introduction and Preliminaries

LetA be the class of functions 𝑓 of the form:

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎

𝑛
𝑧

𝑛 (1)

which are analytic in the open unit diskU = {𝑧 ∈ C : |𝑧| < 1}.
A function 𝑓 ∈ A is said to be starlike function of order

𝜌 and convex function of order 𝜌, respectively, if and only if
Re{𝑧𝑓(𝑧)/𝑓(𝑧)} > 𝜌 and Re{1 + (𝑧𝑓(𝑧)/𝑓(𝑧))} > 𝜌, for
0 ≤ 𝜌 < 1 and for all 𝑧 ∈ U. By usual notations, we denote
these classes of functions by S⋆(𝜌) and K(𝜌) (0 ≤ 𝜌 < 1),
respectively. We write S⋆(0) = S⋆ and K(0) = K, the
familiar subclasses of starlike functions and convex functions
inU.

Furthermore, a function 𝑓 ∈ A is said to in the class
R(𝜌), if it satisfies the inequality:

Re {𝑓 (𝑧)} > 𝜌 (0 ≤ 𝜌 < 1; 𝑧 ∈ U) . (2)

Note that R(𝜌) is a subclass of close-to-convex functions of
order 𝜌 (0 ≤ 𝜌 < 1) inU.

LetP denote the class of analytic functions of the form:

𝜙 (𝑧) = 1 + 𝑝

1
𝑧 + 𝑝

2
𝑧

2

+ ⋅ ⋅ ⋅ (𝑧 ∈ U) (3)

satisfying the condition Re{𝜙(𝑧)} > 0 inU.

Let the functions 𝑓 and 𝑔 be analytic in U. We say that 𝑓
is subordinate to 𝑔, written as 𝑓 ≺ 𝑔 or 𝑓(𝑧) ≺ 𝑔(𝑧) (𝑧 ∈ U),
if there exists a Schwarz function 𝜔, which (by definition)
is analytic in U with 𝜔(0) = 0, |𝜔(𝑧)| < 1 and 𝑓(𝑧) =

𝑔(𝜔(𝑧)), 𝑧 ∈ U. Furthermore, if the function 𝑔 is univalent in
U, then we have the following equivalence relation (cf., e.g.,
[1]):

𝑓 (𝑧) ≺ 𝑔 (𝑧) ⇐⇒ 𝑓 (0) = 𝑔 (0) , 𝑓 (U) ⊂ 𝑔 (U) . (4)

For the functions 𝑓, 𝑔 analytic in U and given by the
power series

𝑓 (𝑧) =

∞

∑

𝑛=0

𝑎

𝑛
𝑧

𝑛

, 𝑔 (𝑧) =

∞

∑

𝑛=0

𝑏

𝑛
𝑧

𝑛

, (5)

their Hadamard product (or convolution), denoted by 𝑓 ⋆ 𝑔
is defined as

(𝑓 ⋆ 𝑔) (𝑧) =

∞

∑

𝑛=0

𝑎

𝑛
𝑏

𝑛
𝑧

𝑛

= (𝑔 ⋆ 𝑓) (𝑧) (𝑧 ∈ U) . (6)

Note that 𝑓 ⋆ 𝑔 is analytic inU.
The Gauss hypergeometric function

2
𝐹

1
is defined by the

infinite series

2
𝐹

1
(𝑎, 𝑏; 𝑐; 𝑧) =

∞

∑

𝑛=0

(𝑎)

𝑛
(𝑏)

𝑛

(𝑐)

𝑛

𝑧

𝑛

𝑛!

(𝑎, 𝑏, 𝑐 ∈ C, 𝑐 ∉ Z
−

0
= {0, −1, −2, . . .} ; 𝑧 ∈ U) ,

(7)
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where (𝜅)

𝑛
denotes the Pochhammer symbol (or shifted

factorial) given, in terms of the Gamma function Γ, by

(𝜅)

𝑛
=

Γ (𝜅 + 𝑛)

Γ (𝜅)

= {

𝜅 (𝜅 + 1) ⋅ ⋅ ⋅ (𝜅 + 𝑛 − 1) , 𝑛 ∈ N

1, 𝑛 = 0.

(8)

We note that the series, given by (7), converges absolutely for
𝑧 ∈ U and hence the function

2
𝐹

1
represents an analytic

function in the unit discU [2].
We further observe that the Gauss hypergeometric func-

tion
2
𝐹

1
plays an important role in the study of vari-

ous properties and characteristics of subclasses of univa-
lent/multivalent functions in geometric function theory (cf.,
e.g. [3–5]). In our present investigation, we consider the
incomplete beta function 𝜓, defined by

𝜓 (𝑎, 𝑐; 𝑧) = 𝑧

2
𝐹

1
(𝑎, 1; 𝑐; 𝑧) =

∞

∑

𝑛=0

(𝑎)

𝑛

(𝑐)

𝑛

𝑧

𝑛+1

(𝑎, 𝑐 ∈ C, 𝑐 ∉ Z
−

0
; 𝑧 ∈ U) .

(9)

By making use of the Hadamard product and the func-
tion 𝜓, Carlson and Shaffer [6] defined the linear operator
L(𝑎, 𝑐) : A → A by

L (𝑎, 𝑐) 𝑓 (𝑧) = 𝜓 (𝑎, 𝑐; 𝑧) ⋆ 𝑓 (𝑧) (𝑓 ∈ A; 𝑧 ∈ U) . (10)

If 𝑓 ∈ A is given by (1), then it follows from (10) that

L (𝑎, 𝑐) 𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=1

(𝑎)

𝑛

(𝑐)

𝑛

𝑎

𝑛+1
𝑧

𝑛+1

(𝑧 ∈ U) , (11)

𝑧(L (𝑎, 𝑐) 𝑓)



(𝑧)

= 𝑎L (𝑎 + 1, 𝑐) 𝑓 (𝑧) − (𝑎 − 1)L (𝑎, 𝑐) 𝑓 (𝑧) (𝑧 ∈ U) .

(12)

The operator L(𝑎, 𝑐) extends several operators introduced
and studied by earlier researchers in geometric function
theory. For example, L(𝑚 + 1, 1)𝑓(𝑧) = D𝑚𝑓(𝑧) (𝑓 ∈

A, 𝑚 ∈ Z, 𝑚 > −1; 𝑧 ∈ U), the well-known Ruscheweyh
derivative operator [7] of 𝑓 and L(2, 2 − 𝜆)𝑓(𝑧) =

Ω

𝜆

𝑧
𝑓(𝑧) (𝑓 ∈ A, 0 ≤ 𝜆 < 1; 𝑧 ∈ U), the familiar Owa-

Srivastava fractional differential operator [8] of 𝑓.
With the aid of the linear operatorL(𝑎, 𝑐), we introduce

a subclass ofA as follows.

Definition 1. A function 𝑓 ∈ A is said to be in the class
̃R(𝑎, 𝑐, 𝜌), if it satisfies the following subordination relation:

L (𝑎, 𝑐) 𝑓 (𝑧)

𝑧

≺ {

1 + (1 − 2𝜌) 𝑧

1 − 𝑧

}

1/2

(0 ≤ 𝜌 < 1; 𝑧 ∈ U) ,

(13)

where the power in the right hand side of (13) indicates the
principal branch. Note that if 𝑓 ∈ ̃R(𝑎, 𝑐, 𝜌), then by (13)

L (𝑎, 𝑐) 𝑓 (𝑧)

𝑧

= {𝜌 + (1 − 𝜌) 𝜙 (𝑧)}

1/2

(𝜙 ∈ P; 𝑧 ∈ U) .

(14)

We denote by ̃R(2, 1, 𝜌) =

̃R(𝜌), the class of functions
𝑓 ∈ A satisfying the subordination condition:

𝑓



(𝑧) ≺ {

1 + (1 − 2𝜌) 𝑧

1 − 𝑧

}

1/2

(0 ≤ 𝜌 < 1; 𝑧 ∈ U) . (15)

In fact, by suitably specializing the parameters 𝑎, 𝑐, and 𝜌 in
the class ̃R(𝑎, 𝑐, 𝜌), we can obtain several subclasses ofA.

Remark 2. To bring out the geometrical significance of the
class ̃R(𝑎, 𝑐, 𝜌), we set

ℎ

𝜌
(𝑧) = {

1 + (1 − 2𝜌)𝑧

1 − 𝑧

}

1/2

(0 ≤ 𝜌 < 1; 𝑧 ∈ U) (16)

and note that

𝜔 = ℎ

𝜌
(𝑒

𝑖𝜃

) =

1 + (1 − 2𝜌) 𝑒

𝑖𝜃

1 − 𝑒

𝑖𝜃
(0 ≤ 𝜃 ≤ 2𝜋)

(17)

which gives 𝑒𝑖𝜃(𝜔2−2𝜌+1) = 𝜔2−1 or |𝜔2−1| = |𝜔2+1−2𝜌|.
Letting 𝜔 = 𝑢 + 𝑖V, we deduce that

1 − (𝑢

2

− V2)
2

+ 4𝑢

2V2 = (𝑢2 − V2 + 1 − 2𝜌)
2

+ 4𝑢

2V2, (18)

which on simplification reduces to 𝑢2 − V2 = 𝜌. Thus, ℎ
𝜌
(U)

is the interior of the right half branch of the hyperbola 𝑢2 −
V2 = 𝜌. Hence, if 𝑓 ∈

̃R(𝑎, 𝑐, 𝜌), then the set of values
L(𝑎, 𝑐)𝑓(𝑧)/𝑧 for 𝑧 ∈ U lie in ℎ

𝜌
(U), where ℎ

𝜌
is given by

(16).

Fekete and Szegö [9] defined the Hankel determinant of
a function 𝑓, given by (1) as

𝐻

2
(1) =

















𝑎

1
𝑎

2

𝑎

2
𝑎

3

















= 𝑎

3
− 𝑎

2

2
(𝑎

1
= 1) . (19)

In our present investigation, we also consider the second
Hankel determinant of 𝑓, given by

𝐻

2
(2) =

















𝑎

2
𝑎

3

𝑎

3
𝑎

4

















= 𝑎

2
𝑎

4
− 𝑎

2

3
. (20)

It is known [10] that if 𝑓 given by (1) is analytic and univalent
in U, then the sharp inequality 𝐻

2
(1) = |𝑎

3
− 𝑎

2

2
| ≤ 1

holds. For a family F of functions in A of the form (1), the
more general problem of finding the sharp upper bounds for
the functionals (𝑎

3
− 𝜇𝑎

2

2
) (𝜇 ∈ R/C) is popularly known

as Fekete-Szegö problem for the class F. The Fekete-Szegö
problem for the known classes of univalent functions, starlike
functions, convex functions, and close-to-convex functions
has been completely settled [9, 11–18]. Recently, Janteng et al.
[19, 20] have obtained the sharp upper bounds to the second
Hankel determinant 𝐻

2
(2) for the family R of functions in

A whose derivatives have positive real part in U. For initial
work on the classR, onemay refer to the paper byMacGregor
[21].

Our objective in the present paper is to solve the Fekete-
Szegö problem and also to determine the sharp upper bound
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to the second Hankel determinant for the class ̃R(𝑎, 𝑐, 𝜌) by
following the techniques devised by Libera and Złotkiewicz
[22, 23]. The criteria for functions inA to be in this class are
also obtained.

To establish our main results, we will need the following
results about the functions belonging to the classP.

Lemma 3. Let the function 𝜙, given by (3), be a member of the
classP. Then









𝑝

𝑘









≤ 2 (𝑘 ≥ 1) , (21)










𝑝

2
− ]𝑝2
1











≤ 2max {1, |2] − 1|} (] ∈ C) , (22)

𝑝

2
=

1

2

{𝑝

2

1
+ (4 − 𝑝

2

1
) 𝑥} , (23)

𝑝

3
=

1

4

{𝑝

3

1
+ 2 (4 − 𝑝

2

1
) 𝑝

1
𝑥 − (4 − 𝑝

2

1
) 𝑝

1
𝑥

2

+2 (4 − 𝑝

2

1
) (1 − |𝑥|

2

) 𝑧}

(24)

for some complex numbers 𝑥, 𝑧 satisfying |𝑥| ≤ 1 and |𝑧| ≤ 1.
The estimates in (21) and (22) are sharp.

We note that the estimate (21) is contained in [10]; the
estimate (22) is obtained by Ma and Minda [24]; the results
in (23) and (24) are due to Libera and Złotkiewicz [23] (see
also [22]).

2. Main Results

Unless otherwise mentioned, we assume throughout the
sequel that

𝑎 > 0, 𝑐 > 0, 0 ≤ 𝜌 < 1. (25)

Now, we determine the sharp upper bound for the
functional |𝑎

3
− 𝜇𝑎

2

2
| (𝜇 ∈ C) for functions of the form (1)

belonging to the class ̃R(𝑎, 𝑐, 𝜌).

Theorem 4. Let 𝑎 > 0 and 𝑐 > 0. If the function 𝑓, given by
(1), belongs to the class ̃R(𝑎, 𝑐, 𝜌), then for any 𝜇 ∈ C











𝑎

3
− 𝜇𝑎

2

2











≤

(𝑐)

2
(1 − 𝜌)

(𝑎)

2

×max{1,








2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇 − 𝑎 (𝑐 + 1) (1 + 𝜌)









2𝑎 (𝑐 + 1)

} .

(26)

The estimate in (26) is sharp.

Proof. Since 𝑓 ∈ ̃R(𝑎, 𝑐, 𝜌), by (14) we have

L (𝑎, 𝑐) 𝑓 (𝑧)

𝑧

= {𝜌 + (1 − 𝜌) 𝜙 (𝑧)}

1/2

(𝑧 ∈ U) , (27)

where 𝜙 ∈ P is given by (3). It is easily seen that

{𝜌 + (1 − 𝜌)𝜙(𝑧)}

1/2

= 1 +

1

2

(1 − 𝜌) 𝑝

1
𝑧 +

1 − 𝜌

2

{𝑝

2
−

(1 − 𝜌)

4

𝑝

2

1
}𝑧

2

+

1 − 𝜌

2

{𝑝

3
−

(1 − 𝜌)

2

𝑝

1
𝑝

2
+

(1 − 𝜌)

2

8

𝑝

3

1
}𝑧

3

+ ⋅ ⋅ ⋅

(𝑧 ∈ U) .

(28)

Writing the series expansion of L(𝑎, 𝑐)𝑓(𝑧) given by (11),
{𝜌 + (1 − 𝜌)𝜙(𝑧)}

1/2, in (27) and equating the coefficients of
𝑧, 𝑧

2

, 𝑧

3 in the resulting equation, we obtain

𝑎

2
=

(1 − 𝜌) 𝑐

2𝑎

𝑝

1
,

(29)

𝑎

3
=

(1 − 𝜌) (𝑐)

2

2(𝑎)

2

{𝑝

2
−

(1 − 𝜌)

4

𝑝

2

1
} , (30)

𝑎

4
=

(1 − 𝜌) (𝑐)

3

2(𝑎)

3

{𝑝

3
−

(1 − 𝜌)

2

𝑝

1
𝑝

2
+

(1 − 𝜌)

2

8

𝑝

3

1
} . (31)

Thus for any 𝜇 ∈ C,










𝑎

3
− 𝜇𝑎

2

2











=

(𝑐)

2
(1 − 𝜌)

2(𝑎)

2



















𝑝

2
−

(1 − 𝜌) {𝑎 (𝑐 + 1) + 2 (𝑎 + 1) 𝑐𝜇}

4𝑎 (𝑐 + 1)

𝑝

2

1



















(32)

and by using (22) in the above expression, we get










𝑎

3
− 𝜇𝑎

2

2











≤

(𝑐)

2
(1 − 𝜌)

(𝑎)

2

×max{1,


















(1 − 𝜌)

2𝑎 (𝑐 + 1)

{𝑎 (𝑐 + 1) + 2 (𝑎 + 1) 𝑐𝜇} − 1



















}

(33)

which, upon simplification, gives the required assertion of
Theorem 4.

Equality in (26) holds for the function 𝑓
0
defined inU by

𝑓

0
(𝑧)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜓 (𝑐, 𝑎; 𝑧) ⋆ 𝑧ℎ

𝜌
(𝑧) ,









2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇 − 𝑎 (𝑐 + 1) (1 + 𝜌)









2𝑎 (𝑐 + 1)

≤ 1,

𝜓 (𝑐, 𝑎; 𝑧) ⋆ 𝑧ℎ

𝜌
(𝑧

2

) ,









2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇 − 𝑎 (𝑐 + 1) (1 + 𝜌)









2𝑎 (𝑐 + 1)

> 1,

(34)

where the function ℎ
𝜌
is given by (16). This completes the

proof of Theorem 4.
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Theorem 5. Let 𝑎 > 0, 𝑐 > 0 and 𝜇 ∈ R. If the function 𝑓,
given by (1), belongs to the class ̃R(𝑎, 𝑐, 𝜌), then










𝑎

3
− 𝜇𝑎

2

2











≤

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{𝑎 (𝑐 + 1) (1 + 𝜌) − 2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇} 𝑐 (1 − 𝜌)

2𝑎(𝑎)

2

,

𝜇 < −

𝑎 (𝑐 + 1)

2 (𝑎 + 1) 𝑐

(𝑐)

2
(1 − 𝜌)

(𝑎)

2

,

−

𝑎 (𝑐 + 1)

2 (𝑎 + 1) 𝑐

≤ 𝜇 ≤

𝑎 (𝑐 + 1) (3 + 𝜌)

2 (𝑎 + 1) 𝑐 (1 − 𝜌)

{2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇 − 𝑎 (𝑐 + 1) (1 + 𝜌)} 𝑐 (1 − 𝜌)

2𝑎(𝑎)

2

,

𝜇 >

𝑎 (𝑐 + 1) (3 + 𝜌)

2 (𝑎 + 1) 𝑐 (1 − 𝜌)

.

(35)

The estimates are sharp.

Proof. First, we assume that 𝜇 < −{𝑎(𝑐 + 1)}/2(𝑎 + 1)𝑐. Then

2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇 − 𝑎 (𝑐 + 1) (1 + 𝜌)

2𝑎 (𝑐 + 1)

< −1
(36)

so that by (26), we obtain










𝑎

3
− 𝜇𝑎

2

2











≤

{𝑎 (𝑐 + 1) (1 + 𝜌) − 2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇} 𝑐 (1 − 𝜌)

2𝑎(𝑎)

2

.

(37)

Next, let

−

𝑎 (𝑐 + 1)

2 (𝑎 + 1) 𝑐

≤ 𝜇 ≤

𝑎 (𝑐 + 1) (3 + 𝜌)

2 (𝑎 + 1) 𝑐 (1 − 𝜌)

. (38)

Then, a routine calculation yields








2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇 − 𝑎 (𝑐 + 1) (1 + 𝜌)









2𝑎 (𝑐 + 1)

≤ 1
(39)

and by using (26) again, we get











𝑎

3
− 𝜇𝑎

2

2











≤

(𝑐)

2
(1 − 𝜌)

(𝑎)

2

. (40)

Finally, if {𝑎(𝑐 + 1)(3 + 𝜌)}/2(𝑎 + 1)𝑐(1 − 𝜌) > 1, then

2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇 − 𝑎 (𝑐 + 1) (1 + 𝜌)

2𝑎 (𝑐 + 1)

> 1.
(41)

Thus, by (26), we have










𝑎

3
− 𝜇𝑎

2

2











≤

{2 (𝑎 + 1) 𝑐 (1 − 𝜌) 𝜇 − 𝑎 (𝑐 + 1) (1 + 𝜌)} 𝑐 (1 − 𝜌)

2𝑎(𝑎)

2

.

(42)

The estimates are sharp for the function 𝑓
0
defined in U

by

𝑓

0
(𝑧)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜓 (𝑐, 𝑎; 𝑧) ⋆ 𝑧ℎ

𝜌
(𝑧) ,

𝜇 < −

𝑎 (𝑐 + 1)

2 (𝑎 + 1) 𝑐

or 𝜇 >

𝑎 (𝑐 + 1) (3 + 𝜌)

2 (𝑎 + 1) 𝑐 (1 − 𝜌)

𝜓 (𝑐, 𝑎; 𝑧) ⋆ 𝑧ℎ

𝜌
(𝑧

2

) ,

−

𝑎 (𝑐 + 1)

2 (𝑎 + 1) 𝑐

≤ 𝜇 ≤

𝑎 (𝑐 + 1) (3 + 𝜌)

2 (𝑎 + 1) 𝑐 (1 − 𝜌)

,

(43)

where the function ℎ

𝜌
is given by (16) and the proof of

Theorem 5 is completed.

Using (21) in (29) and putting 𝜇 = 0 and 𝜇 = 1,
respectively, in Theorem 5, we get the following.

Corollary 6. Let 𝑎 ≥ 𝑐 > 0. If the function 𝑓, given by (1),
belongs to the class ̃R(𝑎, 𝑐, 𝜌), then









𝑎

2









≤

𝑐 (1 − 𝜌)

𝑎

,
(44)









𝑎

3









≤

(𝑐)

2
(1 − 𝜌)

(𝑎)

2

, (45)











𝑎

3
− 𝑎

2

2











≤

(𝑐)

2
(1 − 𝜌)

(𝑎)

2

. (46)

The estimates in (44) and (46) are sharp for the function 𝑓
0

defined by

𝑓

0
(𝑧) = 𝜓 (𝑐, 𝑎; 𝑧) ⋆ 𝑧ℎ

𝜌
(𝑧) (𝑧 ∈ U) , (47)

whereas the estimate in (45) is sharp for the function 𝑓
0
given

by

𝑓

0
(𝑧) = 𝜓 (𝑐, 𝑎; 𝑧) ⋆ 𝑧ℎ

𝜌
(𝑧

2

) (𝑧 ∈ U) , (48)

where the function ℎ
𝜌
is given by (16).

Letting 𝑎 = 2 and 𝑐 = 1 in Theorem 8, we obtain the
following.

Corollary 7. If the function𝑓, given by (1), belongs to the class
̃R(𝜌), then











𝑎

3
− 𝜇𝑎

2

2











≤

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{2 (1 + 𝜌) − 3𝜇 (1 − 𝜌)} (1 − 𝜌)

12

,

𝜇 < −

2

3

(1 − 𝜌)

3

,

−

2

3

≤ 𝜇 ≤

2 (3 + 𝜌)

3 (1 − 𝜌)

{3𝜇 (1 − 𝜌) − 2 (1 + 𝜌)} (1 − 𝜌)

12

,

𝜇 >

2 (3 + 𝜌)

3 (1 − 𝜌)

.

(49)
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The estimates are sharp for the function 𝑓
0
defined inU by

𝑓

0
(𝑧) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

∫

𝑧

0

𝑑𝑡

1 − 𝑡

⋆ 𝑧ℎ

𝜌
(𝑧) ,

𝜇 < −

2

3

or 𝜇 >

2 (3 + 𝜌)

3 (1 − 𝜌)

∫

𝑧

0

𝑑𝑡

1 − 𝑡

⋆ 𝑧ℎ

𝜌
(𝑧

2

) ,

−

2

3

≤ 𝜇 ≤

2 (3 + 𝜌)

3 (1 − 𝜌)

,

(50)

where ℎ
𝜌
is given by (16).

Next, we find the sharp upper bound for the fourth
coefficient of functions in the class ̃R(𝑎, 𝑐, 𝜌).

Theorem 8. Let the function𝑓, given by (1), belong to the class
̃R(𝑎, 𝑐, 𝜌). Then









𝑎

4









≤

(𝑐)

3
(1 − 𝜌)

(𝑎)

3

(51)

and the estimate in (51) is sharp.

Proof. From (31), we have









𝑎

4









=

(𝑐)

3
(1 − 𝜌)

2(𝑎)

3





















𝑝

3
−

1 − 𝜌

2

𝑝

1
𝑝

2
+

(1 − 𝜌)

2

8

𝑝

3

1





















. (52)

Since the functions 𝜙(𝑧) and 𝜙(𝑒𝑖𝜃𝑧) (𝜃 ∈ R) are in the class
P simultaneously, we assume without loss of generality that
𝑝

1
> 0. For convenience of notation, we write 𝑝

1
= 𝑝 (0 ≤

𝑝 ≤ 2). Now, by using (23) and (24) in (52), we deduce that








𝑎

4









=

(𝑐)

3
(1 − 𝜌)

2(𝑎)

3



















1 + 𝜌

2

8

𝑝

3

+

1 + 𝜌

4

(4 − 𝑝

2

) 𝑝𝑥

−

1

4

(4 − 𝑝

2

) 𝑝𝑥

2

+

1

2

(4 − 𝑝

2

) (1 − |𝑥|

2

) 𝑧



















(53)

for some complex numbers 𝑥 (|𝑥| ≤ 1) and 𝑧 (|𝑧| ≤ 1).
Applying the triangle inequality in the above expression

followed by the replacement of |𝑥| with 𝑦 in the resulting
equation, we obtain









𝑎

4









≤

(𝑐)

3
(1 − 𝜌)

2(𝑎)

3

{

1 + 𝜌

2

8

𝑝

3

+

1 + 𝜌

4

(4 − 𝑝

2

) 𝑝𝑦

+

1

4

(4 − 𝑝

2

) (𝑝 − 2) 𝑦

2

+

1

2

(4 − 𝑝

2

) }

= 𝐺 (𝑝, 𝑦) (0 ≤ 𝑝 ≤ 2, 0 ≤ 𝑦 ≤ 1) (say) .
(54)

We next maximize the function 𝐺(𝑝, 𝑦) on the closed
rectangle [0, 2] × [0, 1]. Since

𝜕𝐺

𝜕𝑦

=

1

4

(4 − 𝑝

2

) {𝑝 (1 + 𝜌) − 2 (2 − 𝑝) 𝑦} , (55)

we have 𝜕𝐺/𝜕𝑦 < 0 for 0 < 𝑝 < 2 and 0 < 𝑦 < 1. Thus,
𝐺(𝑝, 𝑦) cannot have a maximum in the interior on the closed
rectangle [0, 2] × [0, 1]. Therefore, for fixed 𝑝 ∈ [0, 2]

max
0≤𝑦≤1

𝐺 (𝑝, 𝑦) = 𝐺 (𝑝, 0) = 𝐹 (𝑝) (say) , (56)

where

𝐹 (𝑝) =

1 + 𝜌

2

8

𝑝

3

+

1

2

(4 − 𝑝

2

) (0 ≤ 𝑝 ≤ 2) .

(57)

A routine calculation yields

𝐹



(𝑝) =

3 (1 + 𝜌

2

)

8

𝑝

2

− 𝑝 = 0

(58)

for 𝑝 = 0 or 𝑝 = 8/{3(1 + 𝜌

2

)}. Since 𝐹(0) = −1 < 0 and
𝐹



(8/{3(1 + 𝜌

2

)}) = 1 > 0, we conclude that the maximum of
𝐹 is attained at 𝑝 = 0. Thus, the upper bound of the function
𝐺 corresponds to 𝑝 = 𝑦 = 0. Putting 𝑝 = 𝑦 = 0 in (54), we
get our desired estimate (51).

Equality in (51) holds for the function 𝑓
0
defined by

𝑓

0
(𝑧) = 𝜓 (𝑐, 𝑎; 𝑧) ⋆ 𝑧ℎ

𝜌
(𝑧

3

) (0 ≤ 𝜌 < 1; 𝑧 ∈ U) , (59)

where ℎ
𝜌
is given by (16).

In the following theorem, we find the sharp upper bound
to the second Hankel determinant for the class ̃R(𝑎, 𝑐, 𝜌).

Theorem 9. Let 𝑎 ≥ 𝑐 > 0 and (𝑎 + 2)(𝑐 + 1) − 3(𝑎 − 𝑐) > 0. If
the function𝑓, given by (1), belongs to the class̃R(𝑎, 𝑐, 𝜌), then











𝑎

2
𝑎

4
− 𝑎

2

3











≤ {

(𝑐)

2
(1 − 𝜌)

(𝑎)

2

}

2

.
(60)

The estimate in (60) is sharp.

Proof. From (29), (30), and (31), we deduce that











𝑎

2
𝑎

4
− 𝑎

2

3











=

𝑐(𝑐)

2
(1 − 𝜌)

2

4𝑎(𝑎)

2

×



















(

𝑐 + 2

𝑎 + 2

)𝑝

1
𝑝

3
− (

𝑐 + 1

𝑎 + 1

)𝑝

2

2
−

(𝑎 − 𝑐) (1 − 𝜌)

2 (𝑎 + 1) (𝑎 + 2)

𝑝

2

1
𝑝

2

+

{(𝑐 + 2) (𝑎 + 1) + (𝑎 − 𝑐)} (1 − 𝜌)

2

16 (𝑎 + 1) (𝑎 + 2)

𝑝

4

1





















.

(61)
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As in Theorem 8, we assume without loss of generality that
𝑝

1
> 0 and for convenience of notation, we write 𝑝

1
= 𝑝 (0 ≤

𝑝 ≤ 2). By using (23) and (24) in (61), we get










𝑎

2
𝑎

4
− 𝑎

2

3











=

𝑐(𝑐)

2
(1 − 𝜌)

2

4𝑎(𝑎)

2

×





















4 (𝑎 − 𝑐) 𝜌 + {(𝑐 + 2) (𝑎 + 1) + (𝑎 − 𝑐)} (1 − 𝜌)

2

16 (𝑎 + 1) (𝑎 + 2)

𝑝

4

+

(𝑎 − 𝑐) (1 + 𝜌)

4 (𝑎 + 1) (𝑎 + 2)

(4 − 𝑝

2

) 𝑝

2

𝑥

−

{4 (𝑎 + 2) (𝑐 + 1) + (𝑎 − 𝑐) 𝑝

2

}

4 (𝑎 + 1) (𝑎 + 2)

(4 − 𝑝

2

) 𝑥

2

+

𝑐 + 2

2 (𝑎 + 2)

(4 − 𝑝

2

) 𝑝 (1 − |𝑥|

2

) 𝑧





















.

(62)

Now, by applying the triangle inequality in (62) and replacing
|𝑥| by 𝑦 in the resulting equation, we get










𝑎

2
𝑎

4
− 𝑎

2

3











≤

𝑐(𝑐)

2
(1 − 𝜌)

2

4𝑎(𝑎)

2

× {

4 (𝑎 − 𝑐) 𝜌 + {(𝑎 + 1) (𝑐 + 2) + (𝑎 − 𝑐)} (1 − 𝜌)

2

16 (𝑎 + 1) (𝑐 + 2)

𝑝

4

+

𝑐 + 2

2 (𝑎 + 2) (4 − 𝑝

2
) 𝑝

+

(𝑎 − 𝑐) (1 + 𝜌)

4 (𝑎 + 1) (𝑎 + 2)

(4 − 𝑝

2

) 𝑝

2

𝑦

+

{(𝑎 − 𝑐) 𝑝

2

− 2 (𝑎 + 1) (𝑐 + 2) 𝑝 + 4 (𝑎 + 2) (𝑐 + 1)}

4 (𝑎 + 1) (𝑎 + 2)

× (4 − 𝑝

2

) 𝑦

2

}

= G (𝑝, 𝑦) (0 ≤ 𝑝 ≤ 2, 0 ≤ 𝑦 ≤ 1) (say) .
(63)

We next maximize the function G(𝑝, 𝑦) on the closed
rectangle [0, 2] × [0, 1]. Since

𝜕G

𝜕𝑦

=

(𝑎 − 𝑐) (1 + 𝜌)

4 (𝑎 + 1) (𝑎 + 2)

(4 − 𝑝

2

) 𝑝

2

+

{2 (𝑎 + 1) (𝑐 + 2) − (2 + 𝑝) (𝑎 − 𝑐)}

2 (𝑎 + 1) (𝑎 + 2)

× (4 − 𝑝

2

) (2 − 𝑝) 𝑦 > 0

(64)

for 0 < 𝑝 < 2 and 0 < 𝑦 < 1, it follows that G(𝑝, 𝑦) cannot
have a maximum in the interior on the closed rectangle
[0, 2] × [0, 1]. Thus, for fixed 𝑝 ∈ [0, 2]

max
0≤𝑦≤1

G (𝑝, 𝑦) = G (𝑝, 1) = F (𝑝) (say) , (65)

where
F (𝑝)

=

𝑐(𝑐)

2
(1 − 𝜌)

2

4𝑎(𝑎)

2

× {

4 (𝑎 − 𝑐) 𝜌 + {(𝑎 + 1) (𝑐 + 2) + (𝑎 − 𝑐)} (1 − 𝜌)

2

16 (𝑎 + 1) (𝑐 + 2)

𝑝

4

+

𝑐 + 2

2 (𝑎 + 2) (4 − 𝑝

2
) 𝑝

+

(𝑎 − 𝑐) (1 + 𝜌)

4 (𝑎 + 1) (𝑎 + 2)

(4 − 𝑝

2

) 𝑝

2

+

{(𝑎 − 𝑐) 𝑝

2

− 2 (𝑎 + 1) (𝑐 + 2) 𝑝 + 4 (𝑎 + 2) (𝑐 + 1)}

4 (𝑎 + 1) (𝑎 + 2)

× (4 − 𝑝

2

)} ,

(66)

0 ≤ 𝜌 < 1. and 0 ≤ 𝑝 ≤ 2. Differentiating F with respect to
𝑝, we deduce that

F


(𝑝)

=

𝑐(𝑐)

2
(1 − 𝜌)

2

4𝑎(𝑎)

2

× [

{(𝑎 + 1) (𝑐 + 2) + (𝑎 − 𝑐)} (1 − 𝜌)

2

− 8 (𝑎 − 𝑐)

4 (𝑎 + 1) (𝑎 + 2)

𝑝

3

−

2 {(𝑎 + 2) (𝑐 + 1) − (𝑎 − 𝑐) (2 + 𝜌)}

(𝑎 + 1) (𝑎 + 2)

𝑝] = 0

(67)

for 𝑝 = 0 or

𝑝

2

=

8 {(𝑎 + 2) (𝑐 + 1) − (𝑎 − 𝑐) (2 + 𝜌)}

{(𝑎 + 1) (𝑐 + 2) + (𝑎 − 𝑐)} (1 − 𝜌)

2

− 8 (𝑎 − 𝑐)

. (68)

Since 𝑝2 > 4 and

F


(0) =

2 {(𝑎 + 2) (𝑐 + 1) − (𝑎 − 𝑐) (2 + 𝜌)}

(𝑎 + 1) (𝑎 + 2)

< 0
(69)

by the hypothesis, we conclude that themaximum value ofF
is attained at 𝑝 = 0 so that the upper bound of the function
G corresponds to 𝑝 = 0 and 𝑦 = 1. Thus, by letting 𝑝 = 0 and
𝑦 = 1 in (63), we get the estimate (60).

The estimate in (60) is sharp for the function 𝑓
0
given by

(48). This completes the proof of Theorem 9.
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Putting 𝑎 = 2 and 𝑐 = 1 in Theorem 9, we get the
following.

Corollary 10. If the function𝑓, given by (1) belongs to the class
̃R(𝜌), then











𝑎

2
𝑎

4
− 𝑎

2

3











≤

(1 − 𝜌)

2

9

(70)

and the estimate is sharp for the function 𝑓
0
defined by

𝑓

0
(𝑧) = ∫

𝑧

0

𝑑𝑡

1 − 𝑡

⋆ 𝑧ℎ

𝜌
(𝑧

2

) (𝑧 ∈ U) , (71)

where the function ℎ
𝜌
is given by (16).

Theorem 11. Let 𝛾 > 0, 𝑎 ≥ 1/(2𝛾), 𝑐 > 0 and 1/2 ≤ 𝜌 < 1. If
𝑓 ∈ A satisfies the following inequality

𝑅𝑒{

L (𝑎 + 1, 𝑐) 𝑓 (𝑧)

L (𝑎, 𝑐) 𝑓 (𝑧)

} >

(2𝑎𝛾 + 1) 𝜌 − 1

2𝑎𝛾𝜌

(𝑧 ∈ U) ,

(72)

then

L (𝑎, 𝑐) 𝑓 (𝑧)

𝑧

≺ {

1 + (1 − 2𝜌)𝑧

1 − 𝑧

}

1/𝛾

(𝑧 ∈ U) . (73)

The result is the best possible.

Proof. We define the function 𝑤 by

L (𝑎, 𝑐) 𝑓 (𝑧)

𝑧

= {

1 + (1 − 2𝜌)𝑤 (𝑧)

1 − 𝑤(𝑧)

}

1/𝛾

(𝑧 ∈ U) . (74)

Choosing the principal branch in the right hand side in (74),
we note that 𝑤 is analytic in U with 𝑤(0) = 0. Furthermore,
logarithmically differentiating (74) and using the identity (12)
in the resulting equation, we find that

L (𝑎 + 1, 𝑐) 𝑓 (𝑧)

L (𝑎, 𝑐) 𝑓 (𝑧)

= 1 +

1 − 2𝜌

𝑎𝛾

𝑧𝑤



(𝑧)

1 + (1 − 2𝜌)𝑤 (𝑧)

+

1

𝑎𝛾

𝑧𝑤



(𝑧)

1 − 𝑤 (𝑧)

(𝑧 ∈ U) .

(75)

We claim that |𝑤(𝑧)| < 1 for all 𝑧 ∈ U. If not, then there
exists a point 𝑧

0
∈ U such that

max {|𝑤 (𝑧)| : |𝑧| ≤ 


𝑧

0









} =









𝑤 (𝑧

0
)









= 1 (𝑤 (𝑧

0
) ̸= 1) ,

(76)

and let 𝑤(𝑧
0
) = 𝑒

𝑖𝜃. Now, by applying Jack’s lemma [25], we
have

𝑧

0
𝑤



(𝑧

0
) = 𝑘𝑤 (𝑧

0
) (𝑘 ≥ 1) . (77)

From (75) and (77), we obtain

Re{
L (𝑎 + 1, 𝑐) 𝑓 (𝑧)

L (𝑎, 𝑐) 𝑓 (𝑧)

}

= 1 +

𝑘

𝑎𝛾

Re( 𝑒

𝑖𝜃

1 − 𝑒

𝑖𝜃

)

+

(1 − 2𝜌) 𝑘

𝑎𝛾

Re{ 𝑒

𝑖𝜃

1 + (1 − 2𝜌) 𝑒

𝑖𝜃

}

= 1 −

𝑐

2𝑎𝛾

+

(1 − 2𝜌) 𝑘

𝑎𝛾

×

1 − 2𝜌 + cos 𝜃
1 + 2 (1 − 2𝜌) cos 𝜃 + (1 − 2𝜌)2

≤ 1 −

𝑐

2𝑎𝛾

+

(2𝜌 − 1) 𝑘

2𝑎𝛾𝜌

≤

(2𝑎𝛾 + 1) 𝜌 − 1

2𝑎𝛾𝜌

,

(78)

which contradicts the hypothesis (72). Thus, we conclude
that |𝑤(𝑧)| < 1 for all 𝑧 ∈ U and (74) yields the required
subordination relation (73).

To see that the result is the best possible, we consider the
function 𝑓

0
∈ A defined by

𝑓

0
(𝑧) = 𝜓 (𝑐, 𝑎; 𝑧) ⋆ 𝑧{

1 + (1 − 2𝜌) 𝑧

1 − 𝑧

}

1/𝛾

(𝛾 > 0, 𝑎 ≥

1

2𝛾

, 𝑐 > 0,

1

2

≤ 𝜌 < 1; 𝑧 ∈ U)

(79)

from which it follows that

L (𝑎, 𝑐) 𝑓

0
(𝑧)

𝑧

= {

1 + (1 − 2𝜌) 𝑧

1 − 𝑧

}

1/𝛾

(𝑧 ∈ U) . (80)

Thus, 𝑓
0
satisfies the subordination relation (73). On differ-

entiating the expression in (80) followed by the use of the
identity (12) in the resulting equation, we deduce that

L (𝑎 + 1, 𝑐) 𝑓

0
(𝑧)

L (𝑎, 𝑐) 𝑓

0
(𝑧)

= 1 + (

1 − 2𝜌

𝑎𝛾

)

𝑧

1 + (1 − 2𝜌) 𝑧

+ (

1

𝑎𝛾

)

𝑧

1 − 𝑧

(𝑧 ∈ U) .

(81)

This implies that

L (𝑎 + 1, 𝑐) 𝑓

0
(𝑧)

L (𝑎, 𝑐) 𝑓

0
(𝑧)

→

(2𝑎𝛾 + 1) 𝜌 − 1

2𝑎𝛾𝜌

as 𝑧 → −1.

(82)

and the proof of Theorem 11 is completed.

In the special case 𝛾 = 2, we get the following sufficient
condition for the class ̃R(𝑎, 𝑐, 𝜌).
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Corollary 12. Let 𝑎 ≥ 1/4, 𝑐 > 0 and 1/2 ≤ 𝜌 < 1. If 𝑓 ∈ A
satisfies the following inequality:

𝑅𝑒{

L (𝑎 + 1, 𝑐) 𝑓 (𝑧)

L (𝑎, 𝑐) 𝑓 (𝑧)

}

>

(4𝑎 + 1) 𝜌 − 1

4𝑎

(

1

2

≤ 𝜌 < 1; 𝑧 ∈ U) ,

(83)

then 𝑓 ∈

̃R(𝑎, 𝑐, 𝜌). The result is the best possible for the
function 𝑓

0
given by (47).

Letting 𝑎 = 2, 𝑐 = 1 and 𝛾 = 2 in Theorem 11, we obtain
the following.

Corollary 13. If 1/2 ≤ 𝜌 < 1 and 𝑓 ∈ A satisfies

𝑅𝑒{1 +

𝑓



(𝑧)

𝑓


(𝑧)

} >

5𝜌 − 1

4𝜌

(

1

2

≤ 𝜌 < 1; 𝑧 ∈ U) , (84)

then 𝑓 ∈

̃R(𝜌). The result is the best possible for the function
𝑓

0
defined by

𝑓

0
(𝑧) = ∫

𝑧

0

𝑑𝑡

1 − 𝑡

⋆ 𝑧ℎ

𝜌
(𝑧) (

1

2

≤ 𝜌 < 1; 𝑧 ∈ U) , (85)

where the function ℎ
𝜌
is given by (16).

Theorem 14. Let 𝑎 > 0, 𝑐 > 0 and 𝛾 > 0. If 𝑓 ∈ A satisfies the
following subordination relation:

L (𝑎, 𝑐) 𝑓 (𝑧)

𝑧

≺ {

1 + (1 − 2𝜌) 𝑧

1 − 𝑧

}

1/𝛾

(

1

2

≤ 𝜌 < 1; 𝑧 ∈ U) ,

(86)

then

𝑅𝑒(

L (𝑎 + 1, 𝑐) 𝑓 (𝑧)

L (𝑎, 𝑐) 𝑓 (𝑧)

) > 𝜌 (|𝑧| < 𝑟

0
(𝑎, 𝛾, 𝜌)) , (87)

where

𝑟

0
(𝑎, 𝛾, 𝜌)

=

{

{

{

{

{

{

{

{

{

(1 + 𝑎𝛾𝜌) −
√
(1 + 𝑎𝛾𝜌)

2

− (𝑎𝛾)

2

(2𝜌 − 1)

𝑎𝛾 (2𝜌 − 1)

,

1

2

< 𝜌 < 1

𝑎𝛾

2 + 𝑎𝛾

, 𝜌 =

1

2

.

(88)

The bound 𝑟
0
(𝑎, 𝛾, 𝜌) in (88) is the best possible.

Proof. From (86), we get

(

L (𝑎, 𝑐) 𝑓 (𝑧)

𝑧

) = {𝜌 + (1 − 𝜌) 𝜙 (𝑧)}

1/𝛾

(𝜙 ∈ P; 𝑧 ∈ U) ,

(89)

where we choose the principal branch in (89). Taking loga-
rithmic differentiation in (89) and using the identity (12) in
the resulting equation, we deduce that

Re{
L (𝑎 + 1, 𝑐) 𝑓 (𝑧)

L (𝑎, 𝑐) 𝑓 (𝑧)

} − 𝜌

≥ (1 − 𝜌) [1 −











𝑧𝜙



(𝑧)











𝑎𝛾 {









𝜌 + (1 − 𝜌) 𝜙 (𝑧)









}

] (𝑧 ∈ U) .

(90)

Using the following well-known estimates [21]











𝑧𝜙



(𝑧)











Re {𝜙 (𝑧)}
≤

2𝑟

1 − 𝑟

2
,









𝜙 (𝑧)









≤

1 + 𝑟

1 − 𝑟

(|𝑧| = 𝑟 < 1)
(91)

in (90), we get

Re{
L (𝑎 + 1, 𝑐) 𝑓 (𝑧)

L (𝑎, 𝑐) 𝑓 (𝑧)

} − 𝜌

≥ (1 − 𝜌) [1 −

2𝑟

𝑎𝛾 {𝜌(1 − 𝑟)

2

+ (1 − 𝜌) (1 − 𝑟

2
)}

]

≥ (1 − 𝜌) [1 −

2𝑟

𝑎𝛾 {(2𝜌 − 1) 𝑟

2
− 2𝜌𝑟 + 1}

]

(92)

which is certainly positive for |𝑧| < 𝑟

0
(𝑎, 𝛾, 𝜌), where

𝑟

0
(𝑎, 𝛾, 𝜌) is given by (88).
To show that the result is the best possible, we consider

the function 𝑓
0
defined by

𝑓

0
(𝑧) = 𝜓 (𝑐, 𝑎; 𝑧) ⋆ 𝑧{𝜌 + (1 − 𝜌)

1 + 𝑧

1 − 𝑧

}

1/𝛾

(

1

2

≤ 𝜌 < 1, 0 < 𝛾; 𝑧 ∈ U) .

(93)

Noting that

{

L (𝑎 + 1, 𝑐) 𝑓

0
(𝑧)

L (𝑎, 𝑐) 𝑓

0
(𝑧)

} − 𝜌

= (1 − 𝜌) [1 +

2𝑧

𝑎𝛾 {𝜌(1 − 𝑧)

2

+ (1 − 𝜌) (1 − 𝑧

2
)}

] = 0

(94)

for 𝑧 = −𝑟

0
(𝑎, 𝛾, 𝜌), we conclude that the bound is the best

possible. This proves Theorem 14.

Taking 𝛾 = 2 in Theorem 14, we get the following.

Corollary 15. If 𝑎 > 0, 𝑐 > 0, 1/2 ≤ 𝜌 < 1 and 𝑓 ∈

̃R(𝑎, 𝑐, 𝜌), then

𝑅𝑒(

L (𝑎 + 1, 𝑐) 𝑓 (𝑧)

L (𝑎, 𝑐) 𝑓 (𝑧)

) > 𝜌 (|𝑧| < 𝜅 (𝑎, 𝜌)) , (95)
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where

𝜅 (𝑎, 𝜌)

=

{

{

{

{

{

{

{

{

{

(1 + 2𝑎𝜌) −
√
4𝑎

2
(1 − 𝜌)

2

+ 4𝑎𝜌 + 1

2𝑎 (2𝜌 − 1)

,

1

2

< 𝜌 < 1

𝑎

1 + 𝑎

, 𝜌 =

1

2

.

(96)

The bound 𝜅(𝑎, 𝜌) is the best possible for the function 𝑓
0
, given

by (47).

Setting 𝑎 = 2, 𝑐 = 1 and 𝛾 = 1 in Theorem 14, we get the
following.

Corollary 16. If 𝑓 ∈ A satisfies

𝑅𝑒 {𝑓



(𝑧)} > 𝜌 (

1

2

≤ 𝜌 < 1; 𝑧 ∈ U) , (97)

then

𝑅𝑒{1 +

𝑧𝑓



(𝑧)

𝑓


(𝑧)

} > 2𝜌 − 1 (|𝑧| < 𝜘 (𝜌)) , (98)

where

𝜘 (𝜌) =

{

{

{

{

{

{

{

{

{

(1 + 2𝜌) − √4𝜌

2
− 4𝜌 + 5

2 (2𝜌 − 1)

,

1

2

< 𝜌 < 1

1

2

, 𝜌 =

1

2

.

(99)

The bound 𝜘(𝜌) is the best possible for the function 𝑓
0
, given in

Corollary 13.
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