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This work assesses the effects of assimilating atmospheric infrared sounder (AIRS) observations on typhoon prediction using the
three-dimensional variational data assimilation (3DVAR) and forecasting system of the weather research and forecasting (WRF)
model. Two major parameters in the data assimilation scheme, the spatial decorrelation scale and the magnitude of the covariance
matrix of the background error, are varied in forecast experiments for the track of typhoon Sinlaku over the Western Pacific. The
results show that within a wide parameter range, the inclusion of the AIRS observation improves the prediction. Outside this range,
notably when the decorrelation scale of the background error is set to a large value, forcing the assimilation of AIRS data leads to
degradation of the forecast. This illustrates how the impact of satellite data on the forecast depends on the adjustable parameters
for data assimilation. The parameter-sweeping framework is potentially useful for improving operational typhoon prediction.

1. Introduction

The atmospheric infrared sounder (AIRS) is a state-of-the-
art hyperspectral infrared sensor that has provided critical
observational data for weather and climate analysis since
its launch in 2002 (McNally et al. [1], Chahine et al. [2]).
The AIRS spectrum consists of 2378 channels from 3.7 μm–
15.4 μm with a spectral resolution of Δλ/λ = 1/1200. The
cross-track swath width is 1650 km and spatial resolution is
13.5 km at the nadir field of view (Aumann et al. [3], Chahine
et al. [2]). Due to its high resolution and accuracy (errors are
within 1 K for the temperature of a 1 km vertical layer and
20% for the lower tropospheric moisture of a 2 km vertical
layer, http://airs.jpl.nasa.gov/), AIRS can potentially provide
high-quality temperature and humidity data for applications
that would otherwise rely on conventional sounding. Given
its uniformly high spatial resolution, the strategy for assimi-
lating the AIRS retrieval data into a weather forecast system
may differ from that for assimilating conventional soundings.
With the increasing usage of AIRS retrieval products in
data assimilation for regional weather prediction (e.g., [4–
7]), it remains an outstanding problem to determine the

ideal weight given to the AIRS retrieval profiles (and satellite
observation in general) in order to optimize its impact on
the forecast. As a contribution to this topic, this work will
first examine the usefulness of assimilating the AIRS retrieval
data for the prediction of typhoon tracks then explore the
sensitivity of the forecast error on the adjustable parameters
(that determine the weight given to the satellite observation)
in the data assimilation procedure.

We choose to investigate the forecast of typhoon track
because it exemplifies the situation when conventional
sounding does not provide sufficient information for model
initialization (see a survey in Barker et al. [8]). Recently,
attempts have been made to assimilate high-resolution satel-
lite observations of temperature (and the derived velocity)
and moisture fields into a regional model for typhoon or
hurricane predictions (e.g., Zhu et al. [9], Zhang et al.
[10], Chou et al. [11], Goerss [12], Li and Liu [5]). Not
often discussed is how the forecast outcome depends on the
adjustable parameters in the data assimilation procedure. For
example, when assimilating sparsely distributed sounding
data with large “gaps” over the ocean, the introduction of
background error with a large spatial decorrelation scale
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Figure 1: (a) The 850 hPa retrieval temperature from AIRS
observation within the 3 hours time window for data assimilation
for the runs initialized at 1800 UTC, 11 September 2008. Blue filled
circle is the center of typhoon. (b) is same as (a) but for temperature
at 500 hPa. The nested domains for WRF model simulations are
superimposed in panel (b).

helps constrain the procedure such that a harmful small-
scale irregularity introduced by a poor observation will be
smoothed over. If the same constraint is applied to the
assimilation of satellite observations, it may instead act to
erase useful fine-scale information in the satellite data. We
will test this point in this study. For a useful sensitivity
test, we will adopt a parameter-sweeping strategy to perform
multiple forecast runs by varying the decorrelation length
scale and the variance of the background error, thereby
implicitly varying the weight given to the satellite observation
at different scales.

2. Data and Methodology

2.1. Model and 3DVAR System. We will use the weather
research and forecasting (WRF) model Version 3 (Skamarock
et al. [13]) to perform data assimilation and the forecast
of typhoon tracks. The model domains are nested (see
Figure 1(b)). The outer domain covers the Western Pacific
and East Asia with 135 × 120 (west-east × south-north) grid
points and 45 km horizontal resolution. The inner domain
has 210× 210 grid points with 15 km resolution. The vertical
resolution is fixed at 23 levels.

For data assimilation, we use WRF’s 3DVAR system,
which is ideal for executing our sensitivity experiments. The
description of the basic procedure in that system can be
found in Barker et al. [8] and WRF-ARW Version 3 Users
Guide [14]. The theory and implementation for variational
data assimilation in numerical weather prediction are well
established (e.g., Lorenc [15]). Therein, we assume that the
probability density function of the background error and
observation error are Gaussian with no bias and the two are
independent of each other. The optimal atmospheric state, x,
can be found as the one that minimizes the cost function:

J(x) =
(
x − xb

)T
B−1

(
x − xb

)
+
{
y(x)− y0}T

× (E + F)−1{y(x) − y0},
(1)

where x is the analysis state, xb is the background state, B
is the background error covariance matrix, y is the forward
projection of the analysis state onto the observation space,y0

is observation, E is the observation error covariance matrix,
and F is the representativity error covariance matrix.

In our study, y0 contains the temperature and moisture
profiles retrieved from AIRS, based on NASA’s archive (see
Section 2.2). The background error covariance matrix is
taken from the CV3 default (but then perturb it, see below)
of WRF 3DVAR system, which was generated by the NMC
method (Parrish and Derber [16]) based on the difference
between the 24-hr and 48-hr forecast, using a global model
with T170 resolution (WRF-ARW Version 3 User’s Guide
[14, Chapter 6]). Although there exists the CV5 option that
uses a regional model to generate the background covariance
matrix, we choose the simpler CV3 since its default values for
the covariance matrix are uniquely defined and are imme-
diately available to all WRF users (whereas CV5 depends
on the detailed setup of the regional model by individual
users). The global model (NCEP GFS) has an effective
spatial resolution of about 100 km in the subtropics, coarser
than the resolution used in our simulations for typhoons.
By starting with the default setting, our study serves yet
another purpose of testing the sensitivity of the outcome of
WRF’s predictions when we perturb the background error
covariance away from the default. The perturbation will
be done in a series of sensitivity experiments by adjusting
the spatial decorrelation scale and the amplitude of the
background error covariance, as detailed in Section 2.3. The
scope of our investigation is less ambitious than recent
theoretical explorations (e.g., Desroziers and Ivanov [17],
Sadiki and Fischer [18]) on systematic ways to adjust the
B matrix a posteriori. Nevertheless, the practical examples
shown in this paper should provide a useful guidance for
future work that aims to make progress in that direction but
for the complicated task of typhoon prediction.

2.2. Satellite Data. Although the incorporation of satellite
data in typhoon or hurricane prediction has become more
common, the usage of AIRS retrieval data in those predic-
tions is still new. A few recent studies have demonstrated
potential improvements in typhoon/hurricane prediction
when AIRS observations were incorporated into the WRF
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data assimilation system [5–7]. The AIRS observations we
use are the retrieved temperature and moisture profiles
from the NASA archive of the along-track data, available
at http://airs.jpl.nasa.gov/. The detail of the dataset and
the relevant retrieval procedures can be found in Susskind
et al. [19–21], and Olsen et al. [22]. The retrieval of
temperature and moisture profiles were based on a statistical
algorithm that did not involve the use of an atmospheric
GCM, except for the forecasted surface pressure which was
used as the lower boundary condition for calculating the
expected radiance for a given meteorological state. Given
such, in our experiments, it may be reasonable to assume
that the observation error of AIRS data and the background
error are independent in the variational procedure. The
AIRS dataset was constructed with applications of data
assimilation in mind; all products in the AIRS archive come
with error estimates, which we use as a guidance of setting the
observation errors in the variational procedure (see below).

In addition to AIRS observations, the Advanced Micro-
wave Sounding Unit (AMSU) observations were also used in
the retrieval procedure to create the archived AIRS profiles
used in this work. (We will call the dataset “AIRS” for
brevity.) The AIRS data has a higher horizontal resolution
(13.5 km at nadir) compared to AMSU (40 km at nadir). In
the retrieval procedure, 9 fields of view of AIRS are collocated
and embedded in one AMSU field of view (Susskind et al.
[19, 20]) to create a single profile of temperature and
moisture. The combined retrieval products have a horizontal
resolution similar to that of AMSU, at ∼40 km. The archived
profiles have 28 vertical levels (similar to the standard
pressure levels in conventional observations) from 1000 hPa
to 0.1 hPa for temperature, and 15 levels from 1000 hPa to
50 hPa for humidity. The vertical resolution is 100 hPa in
midtroposphere and higher near the surface and tropopause.
The data within the troposphere are used for assimilation.

In our experiment, we do not assimilate all AIRS retrieval
data in the model domain. Instead, we retain only the “Level
2” retrieval data that passed NASA’s quality control. For the
retrieved temperature, they are the profiles with an estimated
error of less than 1◦K. This prescreening helps eliminate the
retrieval profiles that have large errors at near the tropopause
or the surface. Given that the 1◦K error in temperature is
comparable to the default error estimate for conventional
sounding in the WRF 3DVR system (detailed in the file,
/WRFDA/var/obsproc/TEMP.txt in WRF package), we then
use the default sounding error in the WRF 3DVAR system
as their observation error. A communication with NASA
AIRS Team Susskind et al. [21], personal communication)
affirmed that this is a reasonable approach.

The quality control eliminates many satellite profiles
located in the vicinity of the core of the typhoon, as shown in
Figure 1. However, the retained satellite data still cover large
areas over the outflow regions of the typhoon. Given that
the quality-checked satellite data has more influence on the
outflow than the inner core structure, this study will focus
on the impact of satellite observation on the prediction of
typhoon tracks, which is affected by the interaction of the
outflow and the large-scale environment. For the forecast
made without the input of the AIRS data, the NCEP global

forecast is directly interpolated onto the regional WRF grids
without further assimilation of other data. For the runs that
incorporate the AIRS data, we use the NCEP global forecast
as the first guess for the WRF 3DVAR system to assimilate the
AIRS retrieval profiles.

Previous studies have discussed “data thinning” (e.g.,
Liu and Rabier [23], Bauer et al. [24]) in variational data
assimilation as a way to conform to the assumption that
the observation error matrix is diagonal, that is, it contains
no spatial correlation (and no correlation between two
channels for satellite data). While there were examples that
showed the benefit of data thinning (e.g., Liu and Rabier
[23]), there have also been concerns that useful information
can be lost if the thinning is overdone (e.g., Bauer et al.
[24]). For satellite data, recent studies (Bormann and Bauer
[25], Bormann et al. [26]) indicate that the spatial and
interchannel correlation of the error in radiance is weak
for the temperature channels in AMSU and for the long-
wavelength part of AIRS. The correlation is somewhat
stronger for water vapor channels, and for short-wavelength
part of AIRS temperature channels. These recent studies
suggested that the spatial and interchannel correlation in
the AIRS/AMSU data might not be as strong as previously
thought. While we use the retrieval product instead of the
radiance for assimilation, the weak correlation in radiance
might translate at least in part to a weak correlation in the
retrieved temperature profiles, given that the AIRS retrieval
procedure does not involve running an atmospheric model
(which could lead to additional spatial correlation) except for
adopting the predicted surface pressure for defining the lower
boundary condition for calculating the expected radiance
at a location. Moreover, since we use the combined AIRS-
AMSU retrieval product with an effective resolution closer to
AMSU (∼40 km), the spatial correlation may not be as strong
as the case when only AIRS (∼13 km resolution) is used.
With these considerations, we adopt a simpler approach
without data thinning. We communicated with NASA AIRS
Team on the treatment of observation error and received an
affirmation ([21], personal communication) that recent data
assimilation experiments carried out by members of AIRS
Team also assumed that the errors of the retrieved AIRS
temperature profiles are uncorrelated.

2.3. Sensitivity Experiments. While sensitivity experiments
with varied background errors have not been systematically
carried out for the assimilation of satellite data in typhoon
prediction, a few studies have examined the impact of
tuning the background error on the prediction of typhoon
using conventional observations (Gu et al. [27], Guo et
al. [28]). Following the practice in those studies, we will
change the background error in WRF’s data assimilation
procedure by adjusting the parameters LEN SCALING1–
5 (five parameters for the decorrelation length scale of
the background error for the perturbation streamfunction,
velocity potential, temperature, humidity, and surface pres-
sure) and VAR SCALING1–5 (the variance of background
error for the same five variables). Specifically, we will vary
both parameters over the range of 0.1–1.0 (1.0 being the
default value for WRF). How a specific parameter value
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Figure 2: The incremental adjustment in temperature (contours) and velocity (vectors) at 500 hPa as a result of a “single observation”
experiment for WRF 3DVAR with a 1◦K temperature perturbation given at a grid point. The three panels are with (a) LEN SCALING =
1.0, (b) LEN SCALING = 0.5, and (c) LEN SCALING = 0.1. All three cases are with VAR SCALING = 1.0. The scale of velocity vector is
indicated below each panel. The red bar in panel (a) marks the distance of 1000 km.

of LEN SCALING corresponds to a physical length scale
depends on the resolution and the general settings (e.g.,
model domain and latitude) of the model. In midlatitude,
the decorrelation scale is generally of O (1000 km) based
on a “single-observation” test if LEN SCALING is set to
1.0, for example, Rizvi [29]. To verify the physical length
scale corresponding to different values of LEN SCALING in
our experiments, we performed single-observation tests by

running WRF 3DVAR with an imposed 1◦K perturbation
in temperature at a single grid point located southeast of
Taiwan. Figure 2 shows the analysis increment in 500 hPa
temperature and velocity induced by the single obser-
vation for LEN SCALING = 1.0, 0.5, and 0.1, all with
VAR SCALING = 1.0. It is found that the spatial decorrela-
tion scale decreases from over 500 km for LEN SCALING =
1.0 to about 200 km for LEN SCALING = 0.1. We have also
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performed similar experiments by changing VAR SCALING
to 0.5 and 0.1 (not shown). As expected, VAR SCALING
only affected the amplitude (which decreases with a reduced
VAR SCALING), but not the spatial scale, of the response.
In our experiments, we are not overly concerned about
targeting a specific length scale, but rather ensuring that
the sensitivity experiments are performed over a wide
enough range in the parameter space to reveal the depen-
dence of the forecast error on the relevant parameters.
Our ensuing discussion will only refer to the parame-
ter values of LEN SCALING1–5 and VAR SCALING1–5.
Moreover, to simplify the experiment, the length scale
or variance for the five variables will be adjusted to the
same value (e.g., if LEN SCALING1 is set to 0.5, so are
all LEN SCALING2–5). We will refer the two groups of
parameters as “LEN SCALING” and “VAR SCALING.”

3. Forecast of Typhoon Tracks

We choose Typhoon Sinlaku (2008) for the forecast experi-
ments. It first developed over the Western Pacific and moved
to the east of Philippines on 9 September 2008. It landed
in northern Taiwan at 0150 UTC on 14 September 2008
and eventually left the island at 1000 UTC on the same
day. Afterward, it slowly moved northwestward, turning
northward to Japan at 0800 UTC on 15 September 2008. Our
primary simulations will be for the period from 1800 UTC,
11 September 2008 (when the model is initialized), to
1800 UTC, 15 September 2008, which covers the major
events of its landing and the changes in the direction of its
track. (In this case, the initial field is from an 18-hr forecast.)
At the chosen initial time, the center of the typhoon was
located approximately 300 km east of Taiwan. This initial
time is chosen because AIRS observations are available for
the relevant region within the 3-hour window for data
assimilation: see Figure 1 for the relevant AIRS swath which
covers most of the WRF model domain used for the forecast.
The usable (quality-controlled) temperature/moisture pro-
files from AIRS (colored regions in Figure 1) fill sufficiently
large areas of the typhoon outflow region such that we expect
an impact of the satellite data on the forecast.

3.1. Primary Forecast Experiments. In the primary set of ex-
periments, we choose three values of the parameter
LEN SCALING (the decorrelation length scale for the back-
ground error) as 1.0, 0.5, and 0.1 (1.0 is the default value
in the WRF 3DVAR system). For each chosen value of
LEN SCALING, the second parameter VAR SCALING is
varied from 0.1 to 1.0 step 0.1. This consists of 3 sets
of 10 forecast runs with 30 different combinations of
(LEN SCALING, VAR SCALING). Figure 3 summarizes the
predicted typhoon tracks and the corresponding forecast
error (measured by the difference between the predicted and
observed tracks) as a function of forecast time. The control
run, that is, the forecast without the assimilation of AIRS
data, is shown as the black curve and the observed best track
is shown as the blue curve in each panel of Figure 3. The track
of typhoon Sinlaku predicted by the control run is biased

toward the east such that the typhoon in the model never
lands in Taiwan as it should.

When the AIRS observation is assimilated in the forecast,
we find that for a fixed value of LEN SCALING, the pre-
dicted typhoon track systematically shifts westward with an
increasing VAR SCALING. Recall that when VAR SCALING
is larger, the impact of the satellite observation is gen-
erally stronger. While we would have desired a west-
ward shift of the predicted track to improve the forecast,
when LEN SCALING = 1.0 (Figures 3(a) and 3(b)) and
VAR SCALING is large, the predicted tracks shifted too far
west so as to produce an error that is even larger in its
magnitude than the control run. On the other hand, with
the smallest value of VAR SCALING (= 0.1), the forecast
becomes better than the control run.

When LEN SCALING is reduced to 0.5 (Figures 3(c)
and 3(d)), assimilating the AIRS observation also leads to
a westward shift of the predicted tracks. The shift becomes
more pronounced (but not as exaggerated as the case with
LEN SCALING = 1.0) with an increasing VAR SCALING,
which was varied from 0.1 to 1.0 in Figures 3(c) and 3(d).
The cases with small values (0.1 and 0.2) of VAR SCALING
produced a smaller error than the control run. Although
from Figure 3(c) the predicted tracks under most values
of VAR SCALING appear to be closer to the observed
best track compared to the control run, the error chart in
Figure 3(d) indicates that the cases with VAR SCALING >
0.3 have a larger error than the control run. This comes
mainly from the error in the speed of movement of the
typhoon. When LEN SCALING is further reduced to 0.1
(under which VAR SCALING is varied from 0.1 to 1.0 as
before; Figures 3(e) and 3(f)), the forecast still shows the
tendency of a westward shift of the track with increasing
VAR SCALING. For most values of VAR SCALING from
0.1–1.0, the assimilation of AIRS data led to a reduced
forecast error for the track compared to the control run.

3.2. Discussion and Further Experiments. The results from
these experiments demonstrate the potential of using the
AIRS data to improve typhoon prediction. They also reveal
a wide range of behavior of the forecast when the key
parameters, LEN SCALING and VAR SCALING, for the
background error are tuned in the data assimilation pro-
cedure. This underscores the importance of tuning these
parameters for specific applications.

In Figure 3, the better cases of forecast are those with
a small to moderate (still smaller than the default) value
of LEN SCALING and a moderate value of VAR SCALING.
The dependence on LEN SCALING is more clear. The reason
that a smaller value of LEN SCALING produced a better pre-
diction is likely because it allows the system to retain useful
small-scale features in the AIRS observation, which would
otherwise be suppressed when LEN SCALING is large. Recall
that the default background error covariance in the WRF
3DVAR system was constructed using a global model with
a relatively coarse (∼100 km) horizontal resolution. The
default setting might have been more ideal for assimilating
conventional, coarse-resolution soundings. The AIRS data
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Figure 3: The predicted typhoon tracks for the runs initialized at 1800 UTC, 11 September 2008. The left column shows the tracks and the
right column shows the forecast error defined by the distance between the predicted and observed (best) track. (a) and (b): the 10 cases with
LEN SCALING = 1.0 and VAR SCALING = 0.1–1.0 step 0.1. The color scale for the 10 cases with increasing VAR SCALING is shown at the
upper left corner of panel (f). The black curve is the control run with no AIRS data and the blue curve is the observed best track. (c) and (d):
similar to (a) and (b) but for the 10 runs with LEN SCALING = 0.5 and VAR SCALING = 0.1–1.0 step 0.1. (e) and (f): same as (a) and (b)
but for the 10 runs with LEN SCALING = 0.1 and VAR SCALING = 0.1–1.0 step 0.1.
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Figure 4: The contour plots for the “forecast error of the control run” minus “forecast error of an individual forecast with AIRS data” under
a given pair of values of LEN SCALING (abscissa) and VAR SCALING (ordinate). The forecast error is for the typhoon track measured by
the distance between the predicted and observed (best track) locations of the center of the typhoon. A positive value in the plot indicates that
the forecast with AIRS data produces a smaller error compared to the control run (that does not incorporate AIRS data). Contour interval is
25 km. Positive values are shaded in gray.

have a substantially higher horizontal resolution than con-
ventional sounding. Since many small-scale structures in
the AIRS data are real instead of bogus, it is beneficial to
retain them, instead of suppressing them by using a larger
value of LEN SCALING as one would do for assimilating
conventional soundings.

When the assimilation of the AIRS data leads to an
improved forecast of typhoon tracks, the improvement
usually becomes clear only after more than one day of
forecast time. This likely reflects the fact that the AIRS data
first affects the outflow regions (see the colored area in
Figure 1 where the AIRS data passed quality control) before
its influence reaches the center of the typhoon. Choosing two
representative forecast times of 48 and 72 hours, Figure 4
shows the relative error in the typhoon track from a more
comprehensive set of parameter-sweeping experiments with
100 pairs of LEN SCALING (abscissa) and VAR SCALING
(ordinate), each parameter varied from 0.1 to 1.0 step 0.1.
The forecasts are initialized at 1800 UTC, 11 September 2008
(same as Figure 3). The contour plots are for the “forecast
error of control run (no AIRS data)” minus “forecast error
of a forecast with AIRS data.” A positive value, shaded in gray
in Figure 4, indicates that a forecast with AIRS data produces
a smaller error than the control run, that is, the satellite
data has a positive impact on the forecast. Figure 4 reaffirms
that smaller values of one or both of the parameters are
more desirable for the forecast of track in our case. To help
visualize the predicted tracks corresponding to the contour
plots, selected tracks from the runs with VAR SCALING =
0.1 and LEN SCALING = 0.5–1.0 are shown in Figure 5.

1 0.9
0.8

0.7
0.6
0.5

Figure 5: The tracks from forecasts initialized at 1800 UTC, 12
September 2008, with VAR SCALING = 0.1 and LEN SCALING =
0.5–1.0 step 0.1. Color scale is shown at the upper left corner, black
curve is the control run without AIRS data, and blue curve is the
observed track.

We have performed another set of forecast runs that are
initialized at a later time of 1800 UTC, 12 September 2008.
(In this case, the initial field is from a 6-hr forecast.) At that
time, the center of typhoon Sinlaku is already close to the
island of Taiwan. Figure 6 shows the predicted tracks for this
case with LEN SCALING fixed at 1.0 and VAR SCALING
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Figure 6: The forecasts initialized at 18 UTC, 12 September 2008,
with LEN SCALING = 1.0 and VAR SCALING = 0.1–1.0 step 0.1.
Color scale is shown at the upper left corner, black curve is the
control run without AIRS data, and blue curve is the observed track.

varied from 0.1–1.0 step 0.1. The qualitative behavior of the
forecast is similar to the case initialized on 11 September
2008 as shown in Figure 3(a). The impact of adding the AIRS
observation is to shift the predicted track westward. Again,
with a large value of VAR SCALING, the track is shifted
too far west, producing a forecast error greater than the
control run. The cases with smaller values of VAR SCALING
produced slightly improved forecast. Similar to the experi-
ments shown in Figure 3, when we decrease LEN SCALING,
the overall modification of the forecast induced by the
satellite data diminishes; since the modification in Figure 6
is already smaller than that in Figure 3(a), the counterparts
of Figures 3(c) and 3(d) for this case produced even smaller
modification of the forecast (not shown).

Overall, the improvement of the prediction for typhoon
tracks is clearer with a reduction of LEN SCALING away
from the default, while the dependence of the forecast
error on VAR SCALING is slightly more mixed. Our results
generally indicate that the default setting of the background
error covariance in the WRF 3DVAR system (using the
CV3 option) is far from optimal for assimilating the high-
resolution AIRS data for typhoon prediction. In addition to
issues with spatial resolution discussed before, the unique
pattern of summertime weather in the subtropics (the flow
field is very intense along typhoon tracks but is scattered
with random tropical convection elsewhere) might also affect
the quality of the constructed background error. Although
we could, in principle, reconstruct the background error by
running extensive routine forecast using WRF at a higher
resolution for the region of our interest, the background
error so constructed will still be imperfect and require
tuning. To this end, the generic framework of parameter-
sweeping experiments explored in this study is potentially
useful for practical applications. Our finding may also have
implications for other applications of WRF in mesoscale
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Figure 7: The modifications in the velocity and temperature fields
in the initial condition due to assimilation of AIRS data. Shown
is the case for the run initialized at 18 UTC, 11 September 2008,
with LEN SCALING = 0.5 and VAR SCALING = 0.2. The vectors
are the difference (defined as the outcome of a run with AIRS data
minus that of the control run without AIRS) in the velocity at
500 hPa. Color contours are the difference in temperature, and black
contours are the sea level pressure of the control run. The blue filled
circle indicates the center of typhoon.

predictions unrelated to typhoon. We caution against blindly
adopting the default background error when assimilating
high-resolution (nonconventional) observations to WRF.

We also note that the modification of the flow field due
to the assimilation of AIRS data is generally complicated.
The modification in the initial temperature and velocity
fields induced by the AIRS data usually permeates the
entire model domain (see an example in Figure 7), even if
the AIRS profiles near the center of the typhoon are not
used (see Figure 1). Thus, the modification in the predicted
typhoon tracks shown in this study was due as much to the
modification of the outflow as it is due to the modification in
the structure of the typhoon in the vicinity of its core.

Our parameter sweeping experiments have focused on
the sensitivity of the forecast with respect to a perturbation
of the background error matrix B. In general (as a reviewer
pointed out), one may also perturb the observation error
matrix E. This will require the exploration of a much larger
parameter space and is beyond the scope of our study (but
can be a useful direction of future work). The purpose of
this work was to explore numerical sensitivity rather than to
pick out an “optimal” setting of the parameters, the latter
may generally depend on the large-scale basic state of the
individual cases of typhoons/hurricanes. Nevertheless, the
range of sensitivity demonstrated in this study is itself useful
as it quantifies the impact of tuning the background error
when assimilating satellite data for the forecast.
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4. Concluding Remarks

Our results show the potential of improving the prediction
of typhoon tracks by assimilating the AIRS observation. At
the same time, we find that appropriate tuning of the back-
ground error in the data assimilation procedure is essential
for the AIRS data to have a positive impact on the forecast.
For the case of typhoon Sinlaku, the simulations made
with small or moderate (still smaller than WRF’s default)
values of LEN SCALING produced improved forecast. The
dependence of the forecast error on VAR SCALING is more
mixed but the “best” value to adopt in our case is generally
smaller than the default value. We must reiterate that the
“optimal” values of these key parameters may vary from case
to case. It will be beneficial to extend our study to a larger
number of typhoons with different large-scale basic states,
when sufficient AIRS (or other types of satellite) observations
become available in the future. The problem may become
even more complicated if we attempt to assimilate multiple
types of satellite observations or a hybrid of satellite and
conventional observations. Nevertheless, our results present
a clear case that tuning the background error is critical if
one wishes to make the best uses of AIRS observation in the
forecast. Without carefully dealing with this aspect, errors
can occur in the data assimilation process even if the satellite
observation itself is of high quality and high density in
space. Our study provides a framework for future systematic
investigations on this issue.
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