
Research Article
OntoTrader: An Ontological Web Trading Agent Approach for
Environmental Information Retrieval

Luis Iribarne, Nicolás Padilla, Rosa Ayala, José A. Asensio, and Javier Criado

Applied Computing Group, Department of Informatics, University of Almeria, 04120 Almeŕıa, Spain

Correspondence should be addressed to Luis Iribarne; luis.iribarne@ual.es

Received 29 August 2013; Accepted 2 December 2013; Published 1 April 2014

Academic Editors: J. Shu and F. Yu

Copyright © 2014 Luis Iribarne et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ModernWeb-based Information Systems (WIS) are becoming increasingly necessary to provide support for userswho are in different
places with different types of information, by facilitating their access to the information, decision making, workgroups, and so
forth. Design of these systems requires the use of standardized methods and techniques that enable a common vocabulary to
be defined to represent the underlying knowledge. Thus, mediation elements such as traders enrich the interoperability of web
components in open distributed systems. These traders must operate with other third-party traders and/or agents in the system,
which must also use a common vocabulary for communication between them. This paper presents the OntoTrader architecture,
an Ontological Web Trading agent based on the OMG ODP trading standard. It also presents the ontology needed by some system
agents to communicate with the trading agent and the behavioral framework for the SOLERESOntoTrader agent, an Environmental
Management Information System (EMIS). This framework implements a “Query-Searching/Recovering-Response” information
retrieval model using a trading service, SPARQL notation, and the JADE platform. The paper also presents reflection, delegation
and, federation mediation models and describes formalization, an experimental testing environment in three scenarios, and a tool
which allows our proposal to be evaluated and validated.

1. Introduction

In a more open world, information systems must be flexible
and readily adaptable, extendable, accessible, and operable by
different people or groups of people who are in different
places and have different types of information, facilitating
access to information by decision-makers, workgroups, and
so forth (convergent systems). This involves the use of rules
and standards for their construction and real-time operation,
interaction, and interconnection. In this kind of systems,
system “agents” (e.g., web components, subsystems, and
humans) working in the same ambient (computing space), or
even other third-party “agents”, interact. System convergence
is possible through three basic parameters: (a) autonomy and
intelligence (software agents), (b) a common vocabulary for
all convergent systems (ontologies), and (c) trading between
subsystems, necessary to enable, coordinate, translate, and
maintain this common vocabulary (traders).Themost recent
Web Information Systems (WIS) have been developed under
open and distributed paradigms using rules and standards for

the construction and operation of real time interaction and
interconnection [1]. WIS are intended for the new era of
information systems in web environments, due not only to
the growing popularity of the web technology, but also to the
roles of web technology in modern information systems.The
major features of web information systems areweb semantics,
XML technologies, web mining and querying, and informa-
tion extraction [2].

Environmental Management Information Systems (EMIS)
[3] are a type of WIS. Experimentation with WIS technolog-
ical advances in fields like medicine, biology, and especially
environment has allowed real convergent systems to develop
over time. EMIS are social and technical systems with a vari-
ety of final users and actors (i.e., politicians, technicians, and
administrators) who cooperate with each other and interact
with the system for decision making, problems solving, and
so forth. AnEMIS uses normally knowledge bases distributed
in space and time.Not only is this information used by human
actors in the system but also coordinates web software (and
autonomous) components requiring a common vocabulary

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 560296, 25 pages
http://dx.doi.org/10.1155/2014/560296

2 The Scientific World Journal

(e.g., ontologies). An example of web-based EMIS is the
SOLERES system, a spatiotemporal environmental manage-
ment system based on neural networks, agents, and software
components [4].

An EMIS is an Information System supporting environ-
mental management. EMIS are a special case of Geographic
Information Systems (GIS), though the granularity of environ-
mental information ismore specific (e.g., satellite and ecolog-
ical information). Furthermore, EMIS use a more advanced,
more specific technology than geographic information sys-
tems; for instance, we use neural networks, multiagents
systems, and cellular automata features.

Two basic roles interact in WIS: the Human and the
Computer. Due to the nature of these systems (open and dis-
tributed), people organized in workgroups for decision mak-
ing may be found in different places and be arranged by
their profile (e.g., administrators, politicians, technicians, and
users). This sort of interaction (Human-to-Human, HH)
requires unified protocol and communication policies for all
parts of the system. People and groups of people also interact
through the system by using user interfaces (UI), which are
generally well suited to their needs [5]. This type of interac-
tion (Human-to-Computer, HC) also needs to establish com-
munication protocols among users, profiles, groups, and user
interface agents. Finally, these user interface agents act as
mediators for people interacting with other system agents.
This interaction (Computer-to-Computer, CC) requires com-
munication protocol, commonly known as choreography (or
orchestration). All three of these types of interaction protocol
(HH, HC, and CC) software have to know the knowledge
semantics that manages each part of the system (i.e., agents).

Mediators (commonly known as “traders”) enrich the
interoperability of web components working in a WIS
approach [6, 7]. These traders have to operate with other
third-party traders and/or agents in the system, which must
also use a common vocabulary to allow communication
between them.The design of these components and the inter-
action protocols (mentioned above) must use standardized
methods and techniques that allow a common vocabulary
representing the underlying knowledge to be defined. Onto-
logies are used as a means to this goal [8].

On the other hand, popularity of the WIS has led to an
increasing volume of information available in information
systems.Users depend on the web to meet their information
needs through search engines, portals, digital libraries, and
other information retrieval systems [9, 10]. However, infor-
mation overload has led to a situation where users are
swampedwith toomuch information and have to sift through
the material in search of relevant content. To address these
problems, a variety of techniques, inherent in information
searching, drawing from the fields of information retrieval,
information filtering, human-computer interaction, and the
study of information search behavior have been adopted in
theWIS. Information retrieval refers to techniques that assist
users in meeting their information needs [11].

ThemainWISinformation retrievalmechanism is the tra-
ditionalQuery-Searching/Recovering-Response (QS/RR).This
mechanism is based on the traditional client/server model.
On one hand, the term “Query” refers to the whole process of

creating and formulating the client’s question.The term “Sea-
rching” refers to the process of locating the repositories where
the information is found, and the term “Recovering” refers
to the process of locating, identifying, and selecting the data
from the data sources (repositories, data storage, or databases,
regardless of the model). Finally, the term “Response” refers
to the whole process of formulation, preparation, and cre-
ation of the response by the server to the client. The “Query-
Searching” pair is a process that goes from the client to the
server. The “Recovering-Response” pair goes from the server
to the client.

UDDI (Universal Description Discovery and Integration)
specification and WSDL (Web-Services Definition Language)
for SOA (SOA, http://www.oasis-open.org/) (ServiceOriented
Architecture) are based on theseclient/server implementa-
tions for web systems. Nevertheless, these techniques allow
agents to respect a subscribe/publish/response model and a
QS/RR information retrieval approach for locating WSDL
documents (i.e., XML specifications of web-services) and
connecting web services inWIS, but not for different types of
information (non-WDSL information). Traders are another
solution for open and distributed systems [12] that extend
the OMA (OMA, http://www.omg.org/) (Object Manage-
ment Architecture) ORB (Object-Request Broker) mechanism.
Although traders are traditionally used as middleware for
object interoperability, they can easily be adapted for interop-
erability of information and functionality. In respect to this,
the use of functional ontologies in our work is a good
solution for adapting traders to information retrieval inWIS.
User information retrieval is an emerging area and a promis-
ing avenue for the design and implementation of a new gen-
eration of information retrieval systems, especially for new
web-based EMIS due to the particularity and complexity of
the information and users (politicians, technicians, and
administrators) [13].

In a sense, the SOLERES system (a spatiotemporal envi-
ronmental management system based on neural networks,
agents, and software components), our EMISmodel, follows a
WIS approach [14–17]. In this paper, we propose theOntolog-
ical Web Trader (OntoTrader) as a mechanism for solving the
complexity of information retrieval in the EMIS by means of
a trading model for WIS guided and managed by ontologies.
This kind of web service is a user-information search service
based on a web QS/RR model. Therefore, OntoTrader is a
new information retrieval mechanism that implements a QS/
RR model and uses the SPARQL query language and the
OWL ontology description language to operate. This service
is based on a user request action that identifies the agents
involved and their communication protocols. In our system,
the ontologies are used in two different contexts: (a) they rep-
resent the application domain information itself and (b) the
services that some agents request from others during their
interaction. Although a trader agent has five interfaces (i.e.,
Lookup, Register, Link, Proxy, and Admin), this paper dis-
cusses only the behavioral and data ontology design features
of the Lookup trader interface, which is used for searching
and recovering user information in a QS/RR model. All
research work presented here is part of a complete design
strategy for Ontology-Driven Software Engineering (ODSE)
that we are developing in SOLERES.

The Scientific World Journal 3

The remainder of the paper is organized as follows.
Section 2 reviews some EMIS approaches and compares how
ontologies, agents, and trading features are used. Section 3
presents the SOLERES system as a running case study.
Section 4 defines OntoTrader, a WIS information retrieval
mechanism. In this part, we describe the Lookup interface
ontology and the metadata template that the trader man-
ages (i.e., an OWL metadata repository of environmental
information) in OWL and formalize them in UML. Section 5
presentsOntoTrader formalization. Sections 6 and 7 describe
some implementation and experimental scenario details and
some evaluation and validation discussions, respectively. We
end with some conclusions and prospects for future work in
Section 8.

2. EMIS Technology

The progress of the new technologies in web-based informa-
tion systems is obvious. In a more open world, information
systems must be flexible and readily adapted, extendable,
accessible and operable by different people or groups of peo-
ple (convergent systems). The convergence of these systems
may appear over time with the business needs of the system.
For instance, a decision-making system in medicine, origi-
nally made up of two subsystems, may increase over time by
connecting to other systems in networks which require/
provide contents/services to the system service as a whole.
The convergence of these systems is possible due to three
basic parameters: (a) autonomy and intelligence, (b) a com-
mon vocabulary for all convergent systems, and (c)mediation
between subsystems, necessary to enable, coordinate, trans-
late, and maintain this common vocabulary. In the first para-
meter, software agent and multiagent system properties
encapsulate traditional concepts of web components (or web
services) with repositories of knowledge-based rules that
work autonomously (endowing it with a certain degree of
intelligence). These rules can be made and applied to agent
groups that work in the same communication and behavior
patterns (choreography). Ontologies are a good mechanism
for establishing this common vocabulary necessary in con-
vergent systems.

Semantic web is a good example of this. It standardizes the
criteria, languages, mechanisms, methodologies, and plat-
forms in universal web data semantics. Finally, trading ser-
vices are a good device for communication-coordination
(interoperability) between WIS subsystems as, for example,
UDDI andWSDL in SOA. EMIS is an example of WIS devel-
oped during recent years. Experimentation with technologi-
cal advances inWIS in fields likemedicine, biology, and espe-
cially environment has allowed real convergent systems to
gradually emerge. In the following sections, we analyze some
relevant EMIS found in the literature and see how agents,
ontologies, and trading services are applied, ending with a
case study, the SOLERES system architecture, as an example
of an environmental information system developed by the
Applied Computing Group (ACG) at the University of Alme-
ria, Spain [4].

2.1. Agent and Multiagent Systems in EMIS. Software agents
are applied in different contexts in information systems.They
are applied in four basic ways (their hybrids) in Web-based
Environmental Information Systems (our main line of
research).

(a) In information management, agents can be used for
searching for information (such as a database); they
can filter results, recall them, organize, or even auto-
matically distribute them.

(b) In control and supervision processes (monitoring), an
agent canmonitor a particular element or activity and
respond to any event that may occur, for example,
in transport system modeling and control or in
industrial processes.

(c) In cooperative work, group applications (Computer
Supported Cooperative Work, CSCW), where, due to
their nature, agents can support the information flow
necessary for the activity and interaction of group
members.

(d) As personal assistants, an agent can only easily repre-
sent a user if he/she knows his/her preferences before-
hand and can act according to those preferences. For
example, in electronic commerce applications, the
commercial transactions require access to many
resources in real time, and this task can be performed
by one or more agents on behalf of the user.

We used these four contexts to design and implement
the QS/RR model for a web-based trading agent (Onto-
Trader), Section 4. For an MAS design, not only the proper-
ties mentioned above must be borne in mind, but also the
choice of a clear, precise methodology and a development
platform. There are currently over a hundred software pro-
ducts for agent-based application design, which are mainly
used in academic and commercial environments. Some
examples are AdventNet Agent Toolkit, Agent Builder,
AgentTcl, AgentTalk, AgentTool, AgentWare, Cable, Emor-
phia, FIPA-OS, Grasshopper, Impact, JADE, MAGE, MASS,
Microsoft Agent, SiWalk, Soar, and so forth. We used
JADE (JADE, http://jade.tilab.com/) (Java Agent Develop-
ment Framework) to implement the SOLERES multiagent
systembecause it simplifies the implementation ofmultiagent
systems through middleware and provides a tool-set as sup-
port for depuration and implementation of open, distributed,
and heterogeneous information systems.

Agent-based environmental systems are grouped into
environmental information management, assistance in
decision-making for environmental problems, and environ-
mental system and process simulation. Due to our special
interest in EMIS designed with agent technology, we exhau-
stively reviewed the most important systems. Table 1 shows a
summary of the EMIS architectures studied. We have
included the following relevant system metrics used in our
web trading agent proposal, including SOLERES, in the table
for comparison: (a) use of trading mechanisms, (b) use of
modeling and designing ontologies, and (c) use of some type
of user or interface agent.We also studied the technology and
themain application domainmetrics.TheEMIS architectures

4 The Scientific World Journal

Table 1: A comparative view of some environmental management system architectures.

System Trading Ontologies User agent Technology Application domain
InfoSleuth No Yes Yes XML/RDF, KQML, and OKBC Water resources
EDEN-IW No Yes Yes JADE, DAML-OIL Water resources
NZDIS No No Yes CORBA/OQL, MOF Environmental data
FSEP No No No JACK Meteorology
MAGIC No No Yes FIPA-ACL, CORBA Water treatments
DIAMON No No Yes Java/C++, FIPA-ACL Water treatments
BUSTER Yes Yes No OIL, FIPA-OS Geographical information
SOLERES Yes Yes Yes JADE, OWL, SPARQL, and UML Ecology

studied were InfoSleuth [18], EDEN-IW [19], NZDIS [20],
FSEP [21], MAGIC [22], DIAMOND [23], and BUSTER [24].

2.2. Ontology Applications in EMIS. Ontologies were desi-
gned to be used in applications that need tomanage informa-
tion semantics. In general, ontologies not only describe spa-
tial data, for instance, more easily understood by computers
in encoded semantics, but also integrate other EMIS data (i.e.,
geographical) from different sources and different ways of
reasoning.

There are several languages available formodeling knowl-
edge domains [25], in particular, DAM-OIL [26] and OWL
[27]. Web Ontology Language (OWL), the most recent and
widely used language at present, was designed to be used in
applications that need to test the content of the information
instead of just representing it. Such content can either be new
or related to others. An ontology can therefore use terms that
are included in other ontologies and change them, creating an
open, distributed system.

In the literature, ontologies have been used to represent
environmental knowledge. In [28], the authors present an
environmental decision-support system called OntoWEDSS
for wastewater management. In this system, an ontology is
used to provide a common vocabulary for modeling the
wastewater treatment and an explicit conceptualization that
describes data semantics. Another example may be found in
[29], an air quality monitoring system, which uses an ontol-
ogy to define messages and communications concisely and
unambiguously. In [30], the authors present Ecolingua, an
EngMath family ontology for representing quantitative eco-
logical data. These examples show the use of ontologies to
build models that describe the entities in the given domain
and characterize the relationships and constraints associated
with them.

In [31], the authors present an ontology for representing
geographic data and related functions. To meet the need for
an interoperable GIS, in [27] the authors propose a Geo-
ontology model design to integrate geographic information.
We have also explored an ontological application in the field
of geographic information retrieval [32]. A different use
appears in [6], where an OWL extension has new primitives
for modeling spatial location and spatial relationships with a
geographic ontology.

Extensions of existing ontologies have also appeared in
this knowledge domain. In [33], the authors propose a

: Importer: Trader: Exporter

4: invoke()

3: import()

2: query()

1: export()

Figure 1: Roles of the ODP trader (Adapted from ISO RM-ODP).

geographic ontology based on GeographicMarkup Language
(GML) [34], and theOWL-S profile is extended to geographic
profiles. Another case is an extension of the NASA Semantic
Web for Earth and Environmental Terminology (SWEET)
ontologies that includes part of the hydrogeology domain
[35].

2.3. Trading in Open Distributed Systems. The Reference
Model of OpenDistributed Processing (RM-ODP) is amodel
jointly developed by the International Standard Organisation
(ISO) and the International TelecommunicationUnion (ITU-
T). This model defends the transparent use of services
distributed in platforms and heterogeneous networks and
dynamic location of these services.The trading function is one
of the 24 functions of ISO/ITU-TODPmodel [12].This speci-
ation was adopted by the Object Management Group (OMG)
which called it CosTrading for the CORBA services trading
service.

From the viewpoint of object-oriented programming
(OOP), a trading function (trader) is a software object which
serves as an intermediary between objects that provide cer-
tain capacities (services) and objects that require dynamic use
of these capacities. From the ODP perspective, those objects
providing capacities to other objects are called exporters and
those requiring capacities from the system objects are called
importers (Figure 1).

A trading object uses five interfaces to interact with client
objects (importer and exporter): Register, Lookup, Link,
Proxy, and Admin.The Lookup interface allows clients to ask
the trader about the services stored in the trading service.
With the Register interface, clients can export services offered

The Scientific World Journal 5

in the trader. The Link interface allows the trader to be con-
nected to other traders (i.e., trading federation). This enables
the system administrator to connect his trader with other
well-known traders and propagate requests in a network.The
trader can also send the request to connected traders and
locate new offerswith the same searching conditions imposed
on the target trader. The Admin interface allows administra-
tors to configure the trader (e.g., searching policies, ordering
policies, and numbers of federated traders allowed). The
Proxy interface is used to enable legacy system properties in
federated trader systems.

3. A Case Study: The SOLERES System

This section presents the main SOLERES system architec-
ture, a spatiotemporal information system for environmental
management (an example of EMIS).This system is supported
by the application, integration, and development (extension)
of multidisciplinary studies in satellite imaging, neural net-
works, cooperative systems based onmultiagent architectures
and intelligent agents, and software systems with commercial
components. The general idea of the system is a framework
for integrating the disciplines above for “environmental infor-
mation” as the application domain, specifically ecology and
landscape connectivity.The system has twomain subsystems,
SOLERES-HCI and SOLERES-KRS. Figure 2 shows the gen-
eral system architecture.

SOLERES-HCI is the framework specialized in human-
computer interaction. This level of the information system is
defined by means of the Computer Supported Cooperative
Work (CSCW) paradigm and implemented using innovative
intelligent agent technology and multiagent architectures.
The system is designed to be used for cooperative envi-
ronmental decision-making tasks by different people (sys-
tems users) arranged in different organization models (i.e.,
depending on their hierarchy or profile).Theremay be politi-
cians, technicians, or administrators, among others, who
need to interact with each other and with the system.

A user of the cooperative system has an intelligent agent
(Interface agent in Figure 2), which operates two ways: (a) by
managing user interface presentation and interaction (UI
agent) and (b) bymanaging the environmental queries (EMIS
agent). The UI agent mediates between the user and other
users in the system (using other UI agents). The EMIS agent
refers to a virtual consultant or virtual supervisor who coop-
erates with other agents within a previously established mul-
tiagent architecture. Both agents (i.e., UI and EMIS agents)
follow protocol models for orchestration of the cooperative
system, cooperation among agents. UI agents use HCI chore-
ography (protocol) and EMIS agents use CSCW choreogra-
phy.

On the other hand, SOLERES-KRS is used to manage
environmental information.The IMI agent is like a gateway
between the user interface and the rest of the modules and is
responsible for the management of user demands.

Given the magnitude of the information available in the
information system, and that this information may be pro-
vided by different sources, at different times or even by

different people, the environmental information (i.e., the
knowledge) can be distributed, consulted, and geographically
located in different ambients (i.e., locations, containers,
nodes, or domains) called Environmental Process Units
(EPU). Thus, the system is formed by a cooperative group of
knowledge-based EPUs. These groups operate separately by
using an intelligent agent to find better solutions (queries on
ecological maps).

We accomplished the distributed cooperation of these
EPUs by developing a web trading agent (OntoTrader) based
on the ODP trader specification [12] and extended to agent
behavior. Our trading agent mediates between HCI requests
and EPU services. EPUs manage two local repositories of
environmental information. One of the repositories con-
tains metadata on the information in the domain itself
(i.e., basically information related to ecological classifica-
tions and satellite images), called Environmental Information
Map (EIM) data or EIM documents. This information is
extracted from outside databases (External DB repository
in Figure 2).TheEIMdocuments are specified by an ontology
in OWL [15, 16] (<<OWLrepository>>). These EIM docu-
ments are the first level of information in the KRS subsystem.

The second repository contains metadata called envi-
ronmental information metadata (EID), or EID documents.
These documents contain the most important EIM metadata
that could be used in an information retrieval service and,
furthermore, incorporate other new metadata necessary for
agent management itself. To a certain extent, an EID docu-
ment represents a “template”with the basicmetadata from the
EIM document data. The EID documents have also been
specified by an ontology to accomplish open distributed sys-
tem requirements. EID documents represent the second level
of information in theKRS subsystem. EachEPUkeeps its own
EID document (or sets of documents) locally and also regis-
ters them with the OntoTrader (the web trading agent). This
way, the OntoTrader has an overall repository of all the EID
documents from all EPUs in an ambient and can thereby offer
an information search service, as described further below.

The trading service implemented and the requirements
that it must fulfill to be considered open and distributed are
described below. Afterwards, the structure and ontology used
by the software agent responsible for this service (the trader
agent) are explained.

4. Ontological Web Trading (OntoTrader)

Trading is a well-known concept for searching and locating
services. In a trader-based architecture, a client component
that requires a particular service can query a matchmaking
agent (i.e., the trader) for references to available components
that provide the kind of service required. We based our work
on the traditional functionality of a trader, but with adapting
it to knowledge-based agents instead of objects (or software
components). But first, let us see the requirements a trader
should have.

4.1. Requirements for Open Distributed (Web) Trading.
Although the trading services could be compared to web

6 The Scientific World Journal

SOLERES

SOLERES-HCI
≪MAS≫

HCI system

≪Orchestration≫
Choreography

≪Agent≫ ≪Agent≫

≪Agent≫

≪Agent≫ ≪Agent≫ ≪Agent≫

≪Agent≫

≪Agent≫

Interface UI

EMS

HCI

CSCW
Uses

Has Has

SOLERES-KRS

IMI

Ambient Web trading agent

EPU
≪OWL repository≫

EID

≪OWL repository≫
EIM

1

1

Trader
≪Interface≫

Lookup

≪Interface≫
Register

≪Interface≫
Admin

≪Interface≫
Link

≪Interface≫
Proxy

Communication

Parser

≪OWL repository≫
EID

1
≪OWL repository≫

External DB

1 1

Uses

Uses

HasHas GroupScenario

1..
∗

1..
∗

1..
∗

1..
∗

1..
∗

≪Protocol≫

≪Protocol≫

Figure 2: SOLERES architecture.

search engines, in reality, web searches are more structured.
In a trading service, the matching heuristics need to model
the vocabulary, the distance functions, and the equivalence
classes in a specific domain. For cooperation among web
traders, trading services using different strategies should be
able to federate. For example, a repository-based federation
strategy makes it possible for different trading services to
read and write in the same repository at the same time, each
unaware of the presence of the others in the federation, and
thereby allowing the approach to be scalable. On the other
hand, the traditional “direct” federation strategy requires a
trading service to communicate directly with the trading
services with which it is federated. Although this federation-
based scheme is very safe and effective, communication
overloads increase with the number of federated trading
services.

Current information searching and selection (recovery)
use “hard”matchmaking operations which are too restrictive,

and “soft” matching criteria are often necessary. In trading
services, especially in independently extendable open sys-
tems (e.g., the Internet), it must be decided whether “soft” or
“hard” matching is required. A trading service should thus
allow users to be able to specify heuristic or metric functions
in the search, particularly in cases where matches are “soft.”
For instance, the trading service could return results ordered
by a search criterion or discard some search sequences in the
repositories where they are carried out.

Furthermore, after processing, a trading service should
respond to a user-query request (through a SOLERES-HCI
interface agent)with a result.This result, found after a request-
response action, can refer either to a list of results that meet
the restrictions imposed on the query or to a “failure” notice
if the search could not find a solution. If a “failure” notice is
returned, the trading service should also be able to demand
that the query request must necessarily be satisfied; other-
wise, the query request is stored, and the response is delayed.

The Scientific World Journal 7

User

Internet

Discovering
recovering

Searching
filtering

Information agent

Query Response

Organization

(a) QS/RR model view

Web trading agent

trader
≪Interface≫

≪Interface≫

≪Interface≫

≪Interface≫

≪Interface≫

Lookup

Register

Admin

Link

Proxy

Communication

Parser

≪OWL repository≫
EID

1

Interface

CSCW user

≪Agent≫

≪Agent≫≪Agent≫

≪Agent≫

(b) Web trading agent view

Figure 3: The web trading agent (b) uses the QS/RR model (a).

This request-response behaviour is called store and forward
query. Finally, a trading service should also allow query
requests to be delegated to other (known) traders if they
cannot be satisfied by the current trading service.

Now that the demanded requirements of the trading ser-
vice have been identified, the service support structure can be
described.

4.2. Web Trading Agent. As outlined in Section 1, this section
describes the internal structure of our trading agent and some
details about its design and implementation. It should be
emphasized that the trader agent, like all SOLERES system
agents, was modeled, designed, and implemented based on
run-time management of the ontologies used. The trader
therefore manages two kinds of ontologies, data and func-
tionality (or process). The first are related to the ecological
information repositories which the trader can access. The
second refers to trader functionality, that is, things which it
can do and demand from others. In this case, behaviour and
interaction protocols must be also defined. These definitions
set the operating and interaction rules for agents, governing
how the functions that the trader provides and demands to
work (behaviour) are used and the order they are called up in
(protocols or choreography). With this in mind, certain dev-
elopment details must be explained. Since the work per-
spective presented here is more focused on the searching
process and how the trader was designed based on the
ontologies, the explanation concentrates only on the Lookup

interface (definition of the rest was similar to the following
explanation).

Ontologies are written in the OWL notation and formal-
ized as a metamodel using UML class diagrams. We also use
graphs to show details of relationships between properties.
Throughout the explanation, these notations are used to refer
to data or functionality ontology, though all three notations
represent the same thing.

As mentioned above, the trading service takes part in the
search for environmental information based on the QS/RR
model. As shown in Figures 3(a) and 3(b), there are two basic
sections in the model: (a) the user or user groups who are
represented by an agent interface (Figure 3(a)) and (b)
the trading service which locates the metainformation
(Figure 3(b)). Regarding which it should be recalled that
the SOLERES system stores (as a whole) the environmental
information distributed in different OWL repositories on
two levels. Some contain environmental metadata (EIM
repositories) and other metadata from the first one (EID
repositories). The trader manages an EID repository.

The systemmakes use of ontologies. Specifically, it distin-
guishes data ontologies, which represent the information in
the domain on two levels, and service/process ontologies,
which represent the actions that can be performed in the
system, the information necessary to perform them, and the
results of those actions. In SOLERES, the EIM and EID data
ontologies, as well as the Lookup, Register, Admin, and Link
service/process ontologies, are described, and they in turn are
related to the mediation system interfaces.

8 The Scientific World Journal

Classification

Geography Technician TimeLayer

Variable Band

1 1

1

{Or}

Satellite image

∗∗∗∗∗

1..
∗

1..
∗

1..
∗

1..
∗

1..
∗

∗

Figure 4: Ontology of the EID metadata that traders use.

Classification

Time

Technician

Classification is made by technician Technician makes classification

Classification ends timeTime is started by classification Time is ended by classification Classification starts time

Figure 5: Classification is temporal information carried out by technicians.

Figure 4 shows a data ontology from an EID repository.
For a better understanding, we also show two figures with the
ontological relationships of the elements which describe the
EID ontology (Figures 5 and 6). Let us recall that the applica-
tion domain to be modeled is ecological information (a type
of environmental information) on cartographic maps and
satellite images. Advanced algorithms based on neuronal net-
works to find correlations between satellite and cartographic
information were developed by the SOLERES work team.
For the calculation of this correlation, prior treatment of
the satellite images and maps is necessary (an image clas-
sification, Classification). A cartographic map stores its
information in layers (Layer), each of which is identified by
a set of variables (Variable). For instance, we are using car-
tographic maps classified in 4 layers (climatology, lithology,
geomorphology, and soils) with over a hundred variables
(e.g., scrubland surface, pasture land surface, and average
rainfall).

Satellite images work almost the same way. The informa-
tion is also stored in layers, but here they are called bands.
An example of satellite images are the LANDSAT images,
which have 7 bands (but no variables are stored in this case).
Finally, both the cartographic and satellite classifications
have geographic information associated (Classification),
which ismade at a given time (Time) by a technician or group
of technicians (Technician). As a complement and formal-
ization for graphs and metamodel, Table 2 shows the com-
plete assertions of the eight ontology entities (the assertions
may easily be interpreted from Figures 4, 5, and 6).

The functionality of our web trading agent [14, 36] is
divided into three clearly differentiated components

(see Figure 3): (a) a component that manages the agent-
communication mechanism (Communication); (b) a parser
that codes and decodes the trading ontology-based messages
exchanged (Parser); and (c) trading itself (Trader). The
third component is inspired by the traditional OMG trading
object service specification concepts [12] (see Section 2.3).
This specification indicates how offers and demands are to be
implemented among objects in a distributed environment
and proposes grouping all the different functionalities that a
tradermay include.Although the standard specifies five trader
interfaces (i.e., Lookup, Register, Admin, Link, and Proxy), its
specification does not demand a trader to implement these
five interfaces to work. In fact, we have only developed
ontologies for the Lookup, Register, Admin, and Link
interfaces, but none has been implemented for the last one
yet. The Lookup interface offers the search-information in
a repository under certain query criteria. The Register
interface enables objects in this repository to be inserted,
modified, and deleted. The Admin interface can modify the
main parameters of the trader configuration, and finally,
the Link interface makes trading agent federation possible.

As previously explained, this paper focuses on identifying
and explaining how ontologies appear and intervene in the
web trading agent service. Of the interfaces implemented, we
only explain here how the Lookup interface works, because it
takes part in the search, which is the primary subject of
this paper. Several system agents, depending on their func-
tionality, request these tasks (provided by the interfaces) from
the trading agents. For example, a resource agent (belonging
to a givenEPU) could request the trading agent of the ambient
where both are located to register a new EID document by

The Scientific World Journal 9

Satellite_image

Band

Classification

Geography Layer

Variable

Satellite image is used by classification Classification uses satellite image

Band is shown by satellite image Satellite image shows band

Classification shows geography
Geography is shown by classification

Classification shows layer
Layer is shown by classification

Layer has variable Variable is had by layer

Figure 6: Ontological relationships of a classification.

Table 2: Formal EID ontology assertions.

Number Entity Assertions

Number 1 Band (band id exactly 1) and (band is shown by satellite image min 0) and (band name
exactly 1)

Number 2 Classification

(classification id exactly 1) and ((classification shows layer min 1) or
(classification uses satellite image min 1)) and (classification ends time exactly 1)
and (classification is made by technician min 1) and (classification name exactly 1)
and (classification shows geography exactly 1) and (classification starts time
exactly 1)

Number 3 Geography
(geography id exactly 1) and (geography is shown by classification min 0) and
(geography locality exactly 1) and (geography name exactly 1) and
(geography town exactly 1)

#4 Layer
(layer id exactly 1) and (layer has variable min 1) and
(layer is shown by classification exactly 1) and (layer name exactly 1) and
(layer observations max 1)

Number 5 Satellite image (satellite image id exactly 1) and (satellite image is used by classification min 0)
and (satellite image shows band min 1)

Number 6 Technician
(technician id exactly 1) and (technician first name exactly 1) and
(technician last name exactly 1) and (technician makes classification min 0) and
(technician organization max 1)

Number 7 Time (time id exactly 1) and (time day exactly 1) and (time month exactly 1) and
(time year exactly 1) and (time is started by classification min 0)

Number 8 Variable (variable id exactly 1) and (variable name exactly 1) and (variable is had by layer
exactly 1)

using the Register interface. Under these circumstances,
how is this request between agents expressed? In SOLERES,
this is done by specifying the service requests as ontologies.
The ontologies used to describe services are known as “pro-
cess ontologies,” and they are for three types of entities: con-
cepts, actions, and predicates.

In our system, an ontology has been created for each of the
four interfaces (services) implemented by the trading agent.
The set of all ontologies used for these trading agent services is
called the trading ontology. Creation of specific ontologies for
specific services allows the agents to use only the ontology
that they need at any given time. Figure 7 shows an example of
a service (i.e., interface) ontology expressed inUMLnotation.

In this case, the part of the ontology that defines the Lookup
service is specified. This ontology is written in terms of con-
cepts (domain entities), actions carried out in the domain
(actions that affect concepts), and predicates (expressions
related to concepts). The only action in the Lookup service
ontology is query, whichmakes the search for EIDdocuments
according to specified prerequisites. The concepts identified
in the ontology are

(i) QueryForm gives the information in the EID docu-
ment necessary to make the query.

(ii) PolicySeq represents the set of policies that specify
how the search is to bemade.These policiesmay affect

10 The Scientific World Journal

PolicySeq -id: unsigned long
-uri: string

OfferSeq

Query

EmptyOfferSeqPolicyTypeMismatch

-Value
Policy

-Value: unsigned long -Value: unsigned long

-id: unsigned long
-uri: string
-Type: string
-Source: string
-Target: string

QueryForm
-id: unsigned long
-uri: string

OfferSeqmatch

UnknownQueryForm NotEmptyOfferSeq

-Returned_message: string
Message

QueryErrorInvalidPolicyValue DuplicatePolicyName

-Value: boolean

1

1

1

1

1

0..1

1

1

1

1

1

0..1

1

1

1

1

1

1

1

1

1

1

def search cardPolicy max search cardPolicy exact type matchPolicy

1..
∗

∗

Figure 7: UML Lookup ontology metamodel.

the functionality of the trader during the execution
time.

(iii) OfferSeq refers to the set of EID documents that meet
the query requirements. It therefore represents the
result of the service requested.

(iv) OfferSeqMach refers to the matchmaking process
result. Results can be hard or soft solutions. The first
one represents an exact solution (i.e., what the user
exactly wants) and the second one refers to a partial
solution.

4.3. OntoTrader: Trading Models. Let us now see how the
ontological web trading agent operates in the query process
following the QS/RRmodel, since the querymade by the user
(or group of users) remains in the user interface until the
results are retrieved.

This model is a trading-based version of the three-level
client/server model. It is comprised basically of a series of
objects or processes <I,T,D>, each of which intervenes on a
different level, depending on the treatment of the query. The
implementation of these objects then corresponds to agents.
Level 1 (L

1
) is like the client side. Queries are generated and

dealt with by an interface object (I). Level 3 (L
3
) is the

server side. System data (D) reside on this level. In our case,

these are the EIM repositories with the environmental infor-
mation. Level 2 (L

2
) is the middleware that enables the

source information to be located. This is the level where the
trader objects (T) operate. In our case, associated with the
trader (T), the EID repositories with the source environmen-
tal information metadata (EIM) also reside there. All three
objects use the Lookup ontology (defined in Figure 7) to com-
municate. As the premise for their functioning, an interface
object must be associated with a trader object. However, a
trader object can also be associated with one or more outside
data sources or resources, in our case, with the environmental
source data (which reside in the EPU units, as discussed
above). This “trader-information source” association arises
from the production of environmental information, where
each EPU has an associated trader in which a subset (meta-
data) of environmental information generated in the EPU is
registered. On the other hand, each trader can be associated
with one or more traders in federations.

In this three-level architecture, three different scenarios
or trading models are possible: Trading Reflection, Trading
Delegation, and Trading Federation. Figure 8 shows the three
levels (L

1
, L
2
, and L

3
), where the three basic objects (I, T, and

D) reside, and the three trading models are permissible in
OntoTrader, as described below.

The Scientific World Journal 11

I

D

T T

I

D

T T

I

D

T T

Scenario number 1
(trading reflection model)

Scenario number 2
(trading delegation model)

Scenario number 3
(trading federation model)

L1

L2

L3

Figure 8: The three trading models of OntoTrader.

(i) The Trading Reflection model is a model for direct
trading on the trader. The query may be solved
directly by the trader. The query is generated on the
interface and the information can be reached by the
metadata that reside in the repository associated with
the trader. In this case, the model <I,T> pair inter-
venes.

(ii) The Trading Delegation model trades indirectly with
the trader.Thequery is partly resolved by the trader. A
query is generated on the interface level that goes on
to the trading level (T). The trader locates the source
(or sources) of the source data (D) in its repository,
inferring this information from its metadata reposi-
tory. Therefore, the trader delegates the query to the
outside data source (D). In this case, the object series
intervening is <I,T,D>.

(iii) Finally, the Trading Federation model is a case in
which two or more traders are able to federate. As
in the cases above, the query remains preset on the
interface. This query is passed on to the associated
trader. The trader can propagate the query to another
federated trader, who locates the external data source
(D). In this case, the object series intervening
is <I,T,T,D>.

4.4. The Lookup Ontology in OntoTrader. The Lookup onto-
logy is used between system objects. The trader uses the
Query action and the query form concept (see the Lookup
ontology, Figure 7). The Query Form concept expresses the
query in a specific language, whose properties, among oth-
ers, are an id (a query identifier) and a uri (reference
to the file where the query is stored). In addition, there
could be a set of query policies (Policy) through the
Policy Seq concept, and each “policy” is represented
by means of a tuple (name, value). For instance, some
of the tuples implemented are def search card Policy
ormax search card Policy, indicating the number of
records to be located by default and the maximum number of
records to be located in the query, respectively. Possible
exceptions are (Lookup ontology, Figure 7)

(i) UnknownQueryForm indicates that the query cannot
be answered because the file specified in the uri is
not accessible.

(ii) PolicyTypeMismatch indicates that the type of
value specified is not appropriate for the policy.

(iii) InvalidPolicyValue indicates that the policy
value specified is not within the permissible value
range for that policy.

(iv) DuplicatePolicyName indicates that more than
one value for the same policy hve been specified in
the PolicySeq.

(v) QueryError indicates that an error has occurred
during the query.

If there is no exception and the query is successfully exe-
cuted, either the EmptyOfferSeq predicate is used when no
record is returned by the query or the NotEmptyOfferSeq
predicate, when some record is returned. This, in turn, uses
the OfferSeq concept to represent the set of records located
in the query, whose properties are the query “id” and the file
“uri” where the records found are stored.

5. Formalization of Ontological Web Trading

This section presents the formalization of ontological views of
the query and response actions for the proposed web trader
agent. Both actions are described by means of theLookup
ontology (see Figure 7).We focus only on the formalization of
the Lookup ontology because of its relationship with the
QR/RR process.

Definition 1 (web trader). A web trader T is determined by
two setsT= {O,G}, whereO is a set of two types of ontologies
(data and functions)O= {O

𝑑
,O
𝑓
} andG is a set of scheduling

and control agents, where

(a) O
𝑑
is an OWL repository used by the trader,

(b) O
𝑓
is a set of five ontologies: O

𝑓
= {L,E,D,K,X},

where L is the ontology of the Lookup interface, L ̸=

0 (mandatory).E is the ontology of the Register interface,
E ̸= 0 (mandatory).D is the ontology of the Admin interface.
K is the ontology of the Link interface. Xis the ontology
of the Proxy interface.

In the framework of SOLERES system, ontological data
O
𝑑
are related to ecological information repositories written

in OWL. Ontological functions O
𝑓
refer to trader function-

ality. There are at least two ontological functions: (a) the

12 The Scientific World Journal

Lookup ontology (L), which models the query made to the
trader about information (templates) stored in the trading
service, and (b) the Register ontology (E), which models the
export (register) of OWL instances in the trader. The three
remaining ontologies are not mandatory in a web trader. The
Link ontology (D)models the interconnection of traders (i.e.,
trading federation). An Admin ontology (K) models the
trader configuration (e.g., searching policies, ordering poli-
cies, and numbers of federated traders allowed). Finally, a
Proxy ontology (X) models the legacy systems properties in a
federated trader system.

Definition 2 (Lookup ontology). The Lookup interface of a
web trader agent is defined as an ontology L = {C,A,P,

R,R} consisting of

(a) C, a finite set of concepts:C = {F,Y,O, Ô}, where

(i) F is a query form F = {id, uri, type, source,
target};

(ii) Y is a policy sequence, for instance:
{def search cardPolicy, max search cardPolicy,
exact type matchPolicy};

(iii) O is an offer sequence O = {id, uri};
(iv) Ô is an offer sequence matchM = {id, uri}.

(b) A, an action A = {Q} where Q is an input query
action.

(c) P, a finite set of predicatesP = {M}, whereM is a
returned message.

(d) R, a relation of request.

(e) R, a relation of response.

A represents the set of possible actions (in the Lookup
ontology, only a Query, Q), whileF is a concept related to a
Query action, which represents the query made.

Predicates report any errors in the previous action
(UnknownQueryForm, PolicyTypeMismatch, InvalidPolicy-
Value, DuplicatePolicyName, and QueryError) or a successful
action; that is, it has been performed satisfactorily (EmptyOf-
ferSeq and NotEmptyOfferSeq).

Definition 3 (relation of request). Given a query form concept
F, a policy sequence concept Y, and a query action Q, a
relation of request is defined asR ⊆ (F ×Q) ∪ (F ×Q ×Y).

The purpose of the relation of request is to define the
relationships that exist between concepts (setC) and actions
(setA).

Definition 4 (relation of response). Given an input query
actionQ, a returned message predicateM, and an offer sequ-
ence O, a relation of request is defined as R, a relation of
responseR ⊆ (Q ×M) ∪ (Q ×M × O) ∪ (Q ×M × O × Ô).

Finally, there could be relationships between “Actions”
and “Concepts,” between “Predicates” and “Actions,” or even
between the pair “Predicates” and “Concepts.”

Definition 5 (ontology uses). Let us assume a given queryQ, a
messageM, an offer sequenceO, and an offer sequencematch
Ô. The uses of the ontology are defined in these three ways:

(a) (𝑄 × 𝑀) → 𝑀 = 𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑄𝑢𝑒𝑟𝑦𝐹𝑜𝑟𝑚

∨ 𝑃𝑜𝑙𝑖𝑐𝑦𝑇𝑦𝑝𝑒𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ ∨ 𝐼𝑛V𝑎𝑙𝑖𝑑𝑃𝑜𝑙𝑖𝑐𝑦𝑉𝑎𝑙𝑢𝑒
∨ 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑃𝑜𝑙𝑖𝑐𝑦𝑁𝑎𝑚𝑒 ∨ 𝑄𝑢𝑒𝑟𝑦𝐸𝑟𝑟𝑜𝑟

∨ 𝐸𝑚𝑝𝑡𝑦𝑂𝑓𝑓𝑒𝑟𝑆𝑒𝑞

(b) (𝑄 × 𝑀 × 𝑂) → 𝑀 =NotEmptyOfferSeq
(c) (Q ×M × O × Ô) → 𝑀 =NotEmptyOfferSeq.

6. Implementation and
Experimental Scenarios

To evaluate the proposal, a specific environment was devel-
oped for experimentation, which is available at the website:
http://tkrs.ual.es/SKRS/. Several differentOntoTrader trading
service functionality tests can be carried out in this envi-
ronment. Behind it, the objects which comprise the Onto-
Trader system have been implemented by agents using the
JADE platform. Three test cases, one corresponding to each
of the three possible scenarios (reflection, delegation, and
federation), were prepared. Below we explain some details of
OntoTrader implementation, the framework of experimenta-
tion and testing, and the three case studies implemented.

6.1. Implementation. For design reasons, the three basic
OntoTrader model levels <I,T,D> were implemented by
agents. The interface (I) was implemented by two agents: the
Interface Agent and the IMI Agent. The trading level
(T) was implemented by another two agents: Query Agent
and Trading Agent. The data level (D) was implemented
by a Resource Agent.

The Interface Agent is the agent in charge of receiv-
ing the queries from the user over the user interface, transfer-
ring them to the IMI Agent for management and returning
the result to the user.The IMI Agent acts like a hub between
the user interface and the rest of the modules and is respon-
sible for managing user demands. The Query Agents are
in charge of solving the information queries demanded. The
Trading Agents enable search and location of the informa-
tion in the system and a filter based on the query parameters.
Finally, the Resource Agents are responsible formanaging
the information bases.

Figure 9 shows the multiagent architecture for the
Trading-Based Knowledge Representation System design
under these premises. As observed in the figure, the infor-
mation system may be distributed in different nodes, each of
whichmay be comprised of a series of agents according to the
configuration desired. As their basic configuration, each node
must have at least one set of interface agents (made up of one
or more agents), an IMI agent and a set of Query Agents (also
made upof one ormore agents). Anodemay also contain zero
or more trading agents and resource agents, but the system as
awholemust have at least one agent of each type in some of its
nodes. Let us further recall that the trading agents have an
associated repository (EID), which contains environmental

The Scientific World Journal 13

Interface

Query

IMI agent

Interface

Query

Lookup ont.

HCI

KRS

Node A

Lookup ont. Lookup ont.

Admin ont.

Link ont.

Lo
ok

up
on

t.

Admin ont.

Link ont.

Lo
ok

up
on

t.

Lo
ok

up
on

t.
Lo

ok
up

on
t.

Interface

Resource

IMI agent

Interface

Trading

Resource

Lookup ont.

HCI

KRS

Lookup ont. Lookup ont.

Admin ont.
Link ont.

Lo
ok

up
on

t.

Admin ont.
Link ont.

Lo
ok

up
on

t.

Lo
ok

up
on

t.
Lo

ok
up

on
t.

Node B

Trading

Lookup Ont.

agent agent agent agent
1

agent 1

n

agent n

agent 1 agent n

agent 1 agent n agent 1 agent n

agent 1 agent n

agent 1 agent n
Query Query

Resource

Trading

Resource

Trading

1 n· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

EIM 1

EID 1

EIM 1

EID 1

EIM nEIM n

EID nEID n

Figure 9: The general OntoTrader-based architecture.

information metadata. The resource agents also have associ-
ated repositories with the original data sources containing the
environmental information (EIM). The dashed lines in the
drawing represent the types of ontologies that intervene in
agent communication.There are three basic ontologies in our
system: Lookup, Admin, and Link. In this paper, we have only
discussed the Lookup ontology as an example of the process
ontologies. The other two are outside the scope of this study.

6.2. Test Scenarios. Given the agent architecture, a multitude
of scenarios could be suggested for processing a query made
by a user. All the possible scenarios result in a combination of
the threemain scenarios whichwe have identified and used to
evaluate and validate the proposal.

(a) Scenario number 1 (reflection).The user query can be
solved directly by a trading agentwithout the action of
any of the resource agents.

(b) Scenario number 2 (delegation). The user query can-
not be solved directly by a trading agent and requires
the action of one or more resource agents.

(c) Scenario number 3 (federation). The user query can
be solved by a federated trading agent or other trading
agents with/without the action of a resource agent.

Figure 10 shows the three basic architectures defined,
where the number of agents that intervene in each scenario
can be seen. The dashed lines show the order of the calls

between agents.The diagram shows the QS/RRmodel under-
lying the OntoTrader model, which was implemented as a
prototype for testing and validating the web trader agent
implementation. Keep this figure inmind during the descrip-
tion of the three scenarios below.

In general, the sequence of the three models is very simi-
lar, as follows.The sequence beginswhen a userwrites a query
from the user interface. The following section shows how a
query from the user interface is constructed. Connected to
the interface is an interface agent which is in charge of trans-
lating this query into the SPARQL query language. The requ-
ests that are sent between agents are constructed based on
“QUERY-REF” forms in which the query is embedded in
SPARQL. The results returned by the agents are constructed
using “INFORM-REF” forms. We show some of these forms
further below. The interface agent transfers the query to the
IMI agent which is in charge of deciding which query model
to follow (reflection, delegation, and federation) based on the
type of data in the query.The IMI agent tells the Query Agent
which path to take. The tests for the three scenarios (three
paths) are shown below.

6.2.1. Scenario Number 1 (Reflection). Figure 11 shows the
sequence diagram for the reflection trading model. This sce-
nario takes place when there is a querywith the result that can
be directly found from the metadata stored in the trading
agent’s repository. An example of a query in this scenario
could be “Find the name of the soil science classification

14 The Scientific World Journal

Interface

Trader

Query

Resource

Interface

Trading

Query

Interface

Trader

Resource

1 6

2

3

4

5

1

2

3 4

5

6

7

8

Query

1

2

3

4

5

7

7

6

9

10

Node A

HCI HCI HCI

KRSKRSKRS

Node B Node C

Query 1
Query 2

Query 3
Query 3 federation

8

BA agentagentagent

Aagent

Aagent

Bagent

Bagent

Bagent

C

agent C

agent C

agent C

BA IMI agentIMI agentIMI agent C

EID 005

EIM 003

EID 002

EIM 002

EID 001

Figure 10: The three main scenarios (reflection, delegation, and federation).

variables for the year 2008.” As mentioned, we show further
belowhow a query is formed from the user interface (message
number 1 in Figure 10 and sequence number 3 in Figure 11).
The interface agent translates this query into SPARQL
(sequence number 2 in Figure 11) and generates a QUERY-REF
message which it passes on to the IMI agent. The message
form is as shown in Algorithm 1.

A QUERY-REF form always has four basic clauses: the
sender clause (line number 2), where the name of the agent
sending the message is given (in our case in the implemen-
tation, the interface agent is called WIAgent, and it resides
in the SOLERES-KRS workspace), the :receiver clause
(line number 4) where the name of the agent that receives the
message is given (in this case IMIAgent), and the :content
clause which contains the content of the message. Observe
how the query is made in SPARQL in the message content
(lines number 7 to number 20). Finally, the :language
clause is where the type of language used to write themessage
content is given. In this case, it indicates that the content is
written in SPARQL.

When the IMI agent interprets the query, it detects a
query that can be solved directly by the trader (reflection
model).The IMI analyzes the query sentence and the types of
metadata in the trader repository to determine whether the
query can be solved directly by the trader. If so, it resends this
request to a Query Agent. In the case of the example above

(Scenario 1), all the types of data in the query are available in
the trader. The message to the Query Agent is as shown in
Algorithm 2 (message number 2 in Figure 10, sequence num-
ber 5 in Figure 11).

Certain parts of the message have been omitted to reduce
its length in this paper.TheOWLontology is used towrite the
content of this message (RDF notation, lines number 2 to
number 11). The argument in the :content clause is a doc-
ument in RDF. Specifically, the Lookup ontology is used for
this type of request between agents. The message makes use
of the “concept/action” pair in the ontology to formulate the
query. Specifically, the concept QueryForm (lines number 2
to number 11), where the query (generated in SPARQL) and
the action to be performed, Query, are specified (line num-
ber 10), is used. Observe how the concept and action were
defined in the ontology in Figure 7. The previous message
(Algorithm 2), as in the :language clause, gives the type of
ontology used (line number 12). The new :ontology clause
gives the path where the ontology is found.

When theQueryAgent receives thismessage, it infers that
this query can be solved directly by the trading agent and
generates a new QUERY-REF message similar to the one
before, again using the Lookup ontology (sequence number
6), and sends it to the trading agent, which launches the
sparql query to its repository (sequence number 9), obtain-
ing results. These results are returned to the Query Agent,

The Scientific World Journal 15

sd scenario 1

15: buildResultsMessage()

13: buildQueryOntology()

6: buildQueryOntology()

1: makeQuery()

18: showResults()

9: query(sparql)

12: send(message4)

11: buildQueryOntology()

8: extractSPARQL()

7: send(mesaage3)

14: send(message5)

5: send(message2)

16: send(message6)

4: buildQueryOntology()

3: send(message1)

17: showResults()

2: query2SPARQL(query)

User

EID: OWLRepository: TradingAgent: QueryAgent: IMIAgent: InterfaceAgent

10: owl results

Figure 11: Sequence diagram for Scenario number 1 (reflection).

constructing an INFORM-REF form in this case, as shown in
Algorithm 3 (message number 4, sequence number 12).

The ontology series “concept/action/predicate” is used to
construct this message. The concept OfferSeq (lines num-
ber 4 to number 24) in the Lookup ontology shows the results
found after processing the query. The action Query (line
number 26) and the predicate NotEmptyOfferSeq (line
number 25) show that the query returns a result, all of them
in the Lookup ontology. If the query should not return any
result, or if there were an error in the message constructed,
the predicate EmptyOfferSeq or some predicates in the
ontology indicating error would be used instead of the
concept OfferSeq, respectively.

Then, when the Query Agent receives the results from the
trading agent, it transfers them directly to the IMI agent,
constructing a new INFORM-REF form with the headings
sender and :receiver (message number 5, sequence num-
ber 14). The IMI agent performs the same operation in

turn, constructing its return form for the interface agent
(message number 6, sequence number 16), which decodes the
message and shows the results on the user interface, thus
ending the trading reflection sequence in Scenario number
1.

6.2.2. Scenario Number 2 (Delegation). Figure 12 shows the
sequence diagram for thedelegation trading model. In this
scenario, the user query cannot be solved directly by a trading
agent and requires the action of one or more resource agents
to complete it. A possible query that would enter in this
scenario could be “Find the minimum value of variable X used
in information layer Y.” In this case, the result cannot be found
directly in the meta-metadata that the trading agent stores in
its repository and the metadata in the resource agent must be
queried.

Itmay be observed that the interface agent, IMI agent, and
QueryAgent sequence are the same as for reflection (Scenario

16 The Scientific World Journal

sd scenario 2

24: buildResultsMessage()

22: buildQueryOntology()

15: buildQueryOntology()

7: buildQueryOntology()

18: query(sparql)

21: send(message6) 20: buildQueryOntology()

17: extractSPARQL(message5)
16: send(message5)

1: makeQuery()

27: showResults()

10: query(sparql)

13: send(message4) 12: buildQueryOntology()

9: extractSPARQL(message3)

8: send(message3)

23: send(message7)

6: split(query)

14: extractResources(eid_results)

5: send(message2)

25: send(message8)

4: buildQueryOntology()

3: send(message1)

26: showResults()

2: query2SPARQL(query)

EIM: OWLRepository: ResourceAgent

User

EID: OWLRepository: TradingAgent: QueryAgent: IMIAgent: InterfaceAgent

19: eim results

11: eid results

Figure 12: Sequence diagram for Scenario number 2 (delegation).

number 1). In this case, the above query generates the text in
SPARQL shown in Algorithm 4, which is transmitted on
QUERY-REF forms (for the sake of simplicity, only the
SPARQL query is shown) (see Algorithm 4).

In this example, the variable X remains on the user inter-
face as variable “E6” and layer Y is given as “Edaphic sectors.”
When the form gets to Query Agent (sequence number 5 in
Figure 12), it infers that the type of query is by delegation
andmakes a split (sequence number 6) to prepare a double
query. The first is the original query, which continues its
course to the trading agent (sequence number 8). After query-
ing its associated EID repository, the trading agent returns
a message (Algorithm 5) to the Query (sequence number 13,
in the sequence diagram of the Scenario 2 (see Figure 12)).

Thismessage states that the trader has found variable “E6”
in its repository in document “EIM 0000000003” coded as
“VAR 0000000202”. Notice that “EIM 0000000003” is a

metadata (i.e., it resides in the trader’s EID repository) of an
EIM resource found in a resource agent repository.This mes-
sage is received by the Query Agent which generates a new
message using the Lookup Ontology and applying a filter to
the original SPARQL query with the data found in the last
query (previous message). Specifically, the results are filtered
for those documents that contain the variable called “VAR
0000000202.” This message is sent to the resource agent so it
can complete the query by applying this filter. The new mes-
sage (with the filter) is as shown in Algorithm 6.

Finally, the sequence ends by returning the results
between agents until arriving at the interface agent, which is
in charge of displaying the results on the user interface.

6.2.3. Scenario Number 3 (Federation). As mentioned, the
federation-based model arises when the system has been
configured for the trader to propagate the query to a second

The Scientific World Journal 17

10: owl results

16: owl results

sd scenario 3

24: buildResultsMessage()

22: buildQueryOntology()

6: buildQueryOntology()

19: process(message5)

18: send(message5)
17: buildQueryOntology()

15: query(sparql)
14: extractSPARQL()

12: buildQueryOntology()
13: send(message4)

11: process(owl_results)

EID2: OWLRepositoryt2: TradingAgent

1: makeQuery()

27: showResults()

9: query(sparql)

21: send(message6) 20: buildQueryOntology()

8: extractSPARQL()

7: send(message3)

23: send(message7)

5: send(message2)

25: send(message8)

4: buildQueryOntology()

3: send(message1)

26: showResults()

2: query2SPARQL(query)

User
EID1: OWLRepositoryt1: TradingAgent: QueryAgent: IMIAgent: InterfaceAgent

Figure 13: Sequence diagram for Scenario number 3 (federation).

federated trader if the query could not be satisfied by
the first. In this model, several different combinations are
possible. One situation is that the second trader can satisfy
the query directly in what is known as a case of “reflexive
federation,” that is, a federation model on the first trader and
in continuation reflection on the second. Another situation
appears when the second trader redirects the query to a
data resource (resource agent). For this case, a “delegated
federation” appears, that is, federation on the first trader and
then delegation to the resource. There could also be a case of
“multiple federation” where the system has been configured
for queries to be propagated among federated traders if they
cannot be satisfied.

Figure 13 shows the sequence diagram that follows the
federation-based trading model. For the sake of simplifica-
tion, the diagram presents a case of “reflexive federation.”

The functioning for the rest of the possible combinations is
similar.

One possible query in this scenario could be the follow-
ing: “Find the identifier of the classifications of city X in which
there is information on variable V1 and variable V2.” From
the type of query, the data may be found in the metadata
of a trading repository. For this example, we assume that
Variable V1 is a metadatum in the repository of one trader,
and Variable 2 is in the repository of another.

In the example of the query above, the following sentence
is generated in SPARQL. The sequence of the QUERY-REF
calls and their corresponding INFORM-REF among the sys-
tem agents is similar to those explained in the scenarios above
(see Algorithm 7).

6.3. Experimentation Environment. As mentioned, to evalu-
ate the proposal, a specific experimental prototype was

18 The Scientific World Journal

Figure 14: A part of the System Query window in the test environment.

Figure 15: Trace of messages sent between agents after the query.

developed for testing. The three scenarios posed in the
section above can be put into practice at the test web-
site http://tkrs.ual.es/SKRS/. Figure 14 shows a portion of
the window of this test scenario.This website consists of three
basic sections: the “System Query,” which contains a series
of system capabilities with a basic list of preset queries, the
“Complex Query” section, where any type of complex query

can be constructed, and the “Graphic” section, where the
information repositories used can be displayed graphically as
a tree.

The preset queries section, “System Query,” is divided in
half vertically into two zones (Figure 14). On the left, the user
has a list of capabilities that represent basic system queries.
When one of them is selected, a menu drops down with the

The Scientific World Journal 19

Figure 16: A portion of the Complex Query window in the test environment.

TKRS definition

Agents Trading Ontologies

JADE platform ODP specification

Agent implementation Trading implementation Ontology implementation

TKRS implementation

Query interface Pellet

 Inputs Outputs

Agent design

Trading design

Ontology design

Query Query results

Prot ̀eg ̀e

Figure 17: OntoTrader restrictions for TKRS validation.

parameters that must be entered before it can be executed. In
the example in the figure, the user wants to know the names
of the classification variables used in the information layer,
“Climate sectors” in the cities of “Granada and Almeria”.

After executing the query, in the right-hand part of the
window, certain information appears which is organized in
turn in other three sections. On one hand, the result of the
query is shown in XML format (“Result” tab). From this zone,
it can be checked whether the result returned by the system is
well constructed by making use of a standard external (third-
party) tool, which does not belong to the system, called
“Pellet.” Another capability enables the query made to be

displayed in SPARQL. In order to validate the implemen-
tation, we have included a third capability which makes it
possible to trace the messages exchanged by the different sys-
tem agents. The traces of the messages exchanged among
system agents after executing the query above are shown in
the“Trace” tab (see Figure 15). These traces can be folded
up or dropped down to facilitate supervision and check-
ing of the messages generated in the query sequence. The
figure shows the QUERY-REFmessage, which was generated
and transmitted from the interface agent to the IMI agent. It is
also possible to observe the SPARQL sentence generated in
this message.

20 The Scientific World Journal

(01) (QUERY-REF
(02) :sender (agent-identifier:name WIAgent@SOLERES-KRS
(03) :addresses (sequence http://...))
(04) :receiver (set (agent-identifier
(05) :name IMIAgent@SOLERES-KRS))
(06) :content “PREFIX eid: http://acg.ual.es/soleres/tests/EIDOntology.owl#
(07) PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
(08) SELSCT DISTINCT ?EID VariableName

(09) WHERE {

(10) ?EID EID eid:EID eimId ?EID EID eimID.
(11) ?EID EID eid:EID hasClassification ?EID Classification.
(12) ?EID Classification eid:Classification hasLayer ?EID Layer.
(13) ?EID Layer eid:Layer hasVariable ?EID Variable.
(14) ?EID Variable eid:Variable name ?EID VariableName.
(15) ?EID Classification eid:Classification hasTime ?EID Time.
(16) ?EID Time eid:Time year ?eid timeyear.
(17) filter (?eid TimeYear = 2008).
(18) }

(19) ORDER BY ASC(?EID VariableName)
(20) :language SPARQL)

Algorithm 1

(01) (QUERY-REF:sender . . .:receiver . . .

(02) :content “<rdf:RDFxmlns:rdf=\ “http://www.w3.org/1999/02/22-rdf-syntax-ns#\” . . .
(03) <owl:Ontology rdf:about=\“http://acg.ual.es/soleres/tests/LookupOntology.owl\”/>
(04) . . .

(05) <QueryForm rdf:about =\“http://acg.ual.es/soleres/tests/LookupOntology.owl#QueryFormInstance\󸀠󸀠 >
(06) <queryString rdf:datatype=\“http://www.w3.org/2001/XMLSchema#string\” >
(07) % here the SPARQL sentence

(08) </queryString>
(09) </QueryForm>
(10) <Query rdf:about=\“http://acg.ual.es/soleres/tests/LookupOntology.owl#QyeryInstance\”
(11) </rdf:RDF>”
(12) :language “LookupOntology”
(13) :ontology http://acg.ual.es/soleres/tests/LookupOntology.owl)

Algorithm 2

Any type of complex system query can be constructed in
the section “Complex Query.”This section is also divided ver-
tically into two parts (Figure 16). On the left, the test repos-
itory (on which the complex query will be executed) can be
selected. Any EIM or EID repository in the test environment
can be selected, or else the URLwhere the repository is found
can be specified. On the right, the query can be constructed
from the “Query” tab, by selecting the fields and criteria for
the query and specifying their values. When constructing the
query, the attributes to be selected can be incorporated in
either the SELECT or the WHERE part of the query. All the
properties selected are incorporated in the SELECT part of
the query. When the option marked is related to theWHERE
part of the query and one of the attributes in the list on the
left has been selected, the option to select one of the
operators for filtering the condition to be set appears on the
query interface. When the operator has been selected, it is
added to the tree on the right where the query is saved and
then the value to be checked must be entered for the

WHERE clause filter. Additional insertionOf (AND) and/
or unionOf (OR) type conditions may also be added. Once
the query is executed, the result of its execution appears on
the “Result” sheet, as shown in XML.

The section “Graphics” of the website enables graphical
display of the information repositories. A basic repository of
the systemmay be displayed, or it is also possible to introduce
a URL where an external repository is located. On the right-
hand side of the window, an “applet” draws its content
graphically.This “applet” can also make searches for concepts
in the data ontology represented.

7. Evaluation and Validation:
Final Considerations

For the validation of our environmental information system,
the starting point is establishing certain “contracts” or restric-
tions to be evaluated in different areas of our framework.

The Scientific World Journal 21

(01) (INFORM-REF:sender . . .:receiver . . .

(02) :content “<rdf:RDFxmlns:rdf=\“http://www.w3.org/1999/02/22-rdf-syntax-ns#\” . . .
(03) <owl:Ontologyrdf:about=\“http://acg.ual.es/soleres/tests/LookupOntology.owl\”/> . . .

(04) <OfferSeq rdf:about=\“http://acg.ual.es/soleres/tests/LookupOntology.owl#OfferSeqInstance\”>
(05) <resultString rdf:datatype=\“http://www.w3.org/2001/XMLSchema#string\” >
(06) <?xml version = \“1.0 \ ”? >

(07) <sparql xmlns=\“http://www.w3.org/2005/sparql-reslts#\”
(08) <head> <variable name=\“EID VariableName\”/> </head>
(09) <results>

(10) <result>

(11) <binding name=\“EID VariableName\” >
(12) <literal datatype=\“http://www.w3.org/2001/XMLSchema#string\” >C1</literal>
(13) </binding>
(14) </result>
(15) <result>

(16) <binding name=\“EID VariableName\” >
(17) <literal datatype=\ “http://www.w3.org/2001/XMLSchema#string\” >C1L1</literal>
(18) </binding>
(19) </result>
(20) . . .

(21) </results>
(22) </sparql>
(23) </resutString>
(24) </OfferSeq>
(25) <NotEmptyOfferSeq rdf:about=\“http://. . ./LookupOntology.owl#NotEmptyOfferSeqInstance\”/>
(26) <Query rdf:about=\“http://acg.ual.es/soleres/tests/LookupOntology.owl#QueryInstance\”/>
(27) </rdf:RDF>”
(28) :language “LookupOntology”
(29) :ontology http://acg.ual.es/soleres/tests/LookupOntology.owl)

Algorithm 3

(01) PREFIX eid: <http://acg.ual.es/soleres/tests/EIDOntology.owl#>
(02) PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
(03) SELECT DISTINCT ?EID EID eimID ?EID VariableId

(04) WHERE {

(05) ?EID EID eid: EID eimId ?EID EID eimID.
(06) ?EID EID eid: EID hasClassification ?EID Classification.
(07) ?EID Classification eid: Classification hasLayer ?EID Layer.
(08) ?EID Layer eid:Layer name ?EID LayerName.
(09) ?EID Layer eid:Layer hasVariable ?EID Variable.
(10) ?EID Variable eid:Variable id ?EID VariableId.
(11) ?EID Variableeid:Variable name ?EID VariableName.
(12) FILTER (regex(?EID LayerName, \“Edaphic sectors\”)).
(13) FILTER (regex(?EID VariableName, \“E6\”)).
(14) }
(15) ORDER BY ASC(?EID EID eimID)

Algorithm 4

Figure 17 shows a summary of the steps in developing the
TKRS (Trading-based Knowledge Representation System).
The three main features of the TKRS are trading, software
agents, and the ontologies.

Each of these features has a series of restrictions thatmake
it possible for the system implemented to function as desired
(validation). In the case of the trading function, a trader was
designed and implemented following the standard RM-ODP
specification, which enabled us to develop a trading system

with the functions we required properly. The ODP trading
standard was described in Section 2.3.

Several different system objects (including the trader)
were implemented as software agents using the JADE plat-
form, which enabled us to validate their behavior, as well as
their proper functioning. Furthermore, JADE is an imple-
mentation framework that complies with the FIPA (FIPA,
http://www.fipa.org/) (Foundation for Intelligent Physical
Agents) specification. FIPA is an IEEE Computer Society

22 The Scientific World Journal

(01) (INFORM-REF :sender. . .:receiver. . .:content ”. . .
(02) <OfferSeq . . . >

(03) <resultString rdf:datatype=\“http://www.w3.org/2001/XMLSchema#string\󸀠󸀠 >
(04) <?xml version = \“1.0 \ ”? >

(05) <sparql xmlns=\“http://www.w3.org/2005/sparql-results#\󸀠󸀠 >
(06) <head>

(07) <variable name=\“EID EID eimID\”/>
(08) <variable name=\“EID variableId\”/>
(09) </head>
(10) <results>

(11) <result>

(12) <binding name=\“EID EID eimID\”/>
(13) <literal datatype=\“http://www.w3.org/2001/XMLSchema#string\” >EIM 0000000003</literal>
(15) </binding>
(16) <binding name=\“EID variableId\” >
(17) <literal datatype=\“http://www.w3.org/2001/XMLSchema#string\” >VAR 0000000202</literal>
(18) </binding>
(19) </result>
(20) </results>
(21) </sparql>
(22) </resultString>
(23) :language “LookupOntology”
(24) :ontology http://acg.ual.es/soleres/tests/LookupOntology.owl)

Algorithm 5

(01) (QUERY-REF:sender . . .:receiver . . .:content ”. . .
(02) <QueryForm rdf:about=\“http://acg.ual.es/soleres/tests/LookupOntology.owl#QueryFormInstance\” >
(03) <queryString rdf:datatype=\“http://www.w3.org/2001/XMLSchema#string\” >
(04) PREFIX eim: <http://acg.ual.es/soleres/tests/EIMOntology.owl#>
(05) PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
(06) SELECT DISTINCT ?EIM VarMin

(07) WHERE {

(08) ?EIM Var eim:Variable id ?EIM VarId.
(09) ?EIM Var eim:Variable name ?EIM VariableName.
(10) ?EIM Var eim:Variable minimumValue ?EIM VarMin.
(11) FILTER (?EIM VarId = \“VAR 0000000202\”).
(12) }

(13) </queryString>
(14) </QueryForm>
(15) <Qyery rdf:about=\“http://acg.ual.es/soleres/tests/LookupOntology.owl#QueryInstance\”/>
(16)</rdf:RDF>”
(17) :language “LookupOntology”
(18) :ontology http:// . . ./tests/LookupOntology.owl)

Algorithm 6

Standards organization that promotes agent-based technol-
ogy and the interoperability of its standards with other tech-
nologies.

Besides the trading and software agentsmentioned above,
the third key feature in the development of the TKRS is the
ontologies (see Section 4 for further details). Their design is
assumed to be correct for two reasons: (1) the process onto-
logies were developed with the JADE specification for mess-
ages exchanged by agents and under the trader ODP inter-
face specification and (2) the data ontologies were found
from questionnaires filled out by the experts who made the
data classification in the framework of the national project

this research a part of [4]. Based on this design premise, it
was implemented using the Protégé (Protégé, http://
protege.stanford.edu/) tool, a standard ontologies tool, and
with this tool we were able to verify that the implementation
of the ontologies is correct.

When the TKRS system had been implemented, a series
of “contracts” or restrictions were placed on data input and
output (Figure 17). The restrictions on input enabled us to
verify that the queries executed in the system are properly
constructed queries that can be translated correctly into
SPARQL and can be correctly launched in TKRS. These
restrictions were made using a query interface which guided

The Scientific World Journal 23

(01) PREFIX rdf: <http:// . . ./02/22-rdf-syntax-ns#>
(02) SELECT DISTINCT ? EID ClassificationId

(03) WHERE {

(04) ?EID EID eid:EID eimId ?EID EID eimID.
(05) ?EID EID eid:EID hasClassification ?EID Classification.
(06) ?EID Classificationeid:Classification id ?EID ClassificationId.
(07) ?EID Classification eid:Classification hasGeography ?EID Geography.
(08) ?EID Geography eid:Geography towns?EID GeographyTown.
(09) ?EID Classification eid:Classification hasLayer ?EID Layer.
(10) ?EID Layer eid:Layer hasVariable ?EID Variable.
(11) ?EID Variable eid:Variable name ?EID VariableName.
(12) ?EID Variable eid:Variable id ?EID VariableId.
(13) FILTER (regex(?EID GeographyTown, \“Granada and Almeria\”)).
(14) FILTER (regex(?EID VariableName, \“∧ C\”) || regex(?EID VariableName, \“∧ E\”)).
(15) }
(16) ORDER BY ASC(?EID ClassificationId)

Algorithm 7

us in constructing executable system data queries. This
can be checked on the website test environment specially
developed for validating and evaluating the proposal:
http://tkrs.ual.es/SKRS/.

Finally, once the results of the queries have been returned
by the TKRS, another feature of the system is in charge of
checking that the data obtained are correct. This feature is an
external check (Pellet) to which our data ontology and the
SPARQL query made are sent as parameters, obtaining as a
result the data that must be returned to the query. It also
checks the validity of the ontology, warning if there is any type
of error in it. TKRS implementation was checked with these
five system features (marked in Figure 17 with a double box),
and the functioning of the QS/RR data recovery model pro-
posed was validated.

Furthermore, several sample scenarios were developed
where the different types of query that can be executed were
tested. In addition, a tool with which several evaluation and
validation tests, predefined systemqueries, generic queries on
system documents, display of the system document ontolo-
gies, and so forth, can bemade was developed and is available
on the web. The tool has a mechanism for agent message
traceability and can check and validate their functioning and
proper implementation. The link to this tool is included in
the paper, so anyone can make the pertinent validation and
evaluation tests. For the time being, these information ret-
rieval (IR) evaluation techniques only examine whether
information retrieval is done correctly and that the data are
what was asked for.

8. Conclusions and Future Work

Modern information systems are increasingly required to
provide support for users who are in different places and have
different types of data, facilitating access to information,
decision-making, workgroups, and so forth. Distributed
Information Systems (DIS) appear to provide the answer
to these new requirements [37]. Web-based Information

Systems (WIS) [2], for instance, are developed under open,
distributed paradigms.This involves the use of rules and stan-
dards for their construction and real time operation, interac-
tion, and interconnection. In this kind of system, interactions
are between system “agents” (e.g., web components, subsys-
tems, and humans) working in the same ambient (computing
space), or even with other third-party “agents.” In both cases,
the knowledge semantics for managing each part (i.e., soft-
ware agent in our case) of the systemmust be formally defined
[38].

EMIS, a type ofWIS, have been under development in the
last few years [3]. The EMIS are social and technical systems
with a variety of final users and actors (i.e., politicians, tech-
nicians, and administrators) who cooperate with each other
and interact with the system for decision making, problem
solving, and so forth. Today, web-based EMIS greatly facili-
tate information search and retrieval, favoring user cooper-
ation and decision making. Their design requires the use of
standardized methods and techniques that provide a com-
mon vocabulary to represent the knowledge in the systemand
a capability for mediation to allow interaction (communi-
cation, negotiation, coordination, etc.) of its components.
Ontologies are able to provide that shared vocabulary, and
trading systems can improve the interoperability of open,
distributed system components.

The present paper showed how traditional traders, prop-
erly extended to operate inWIS, are a good solution for infor-
mation retrieval. An example of web-based EMIS is the SOL-
ERES system, a spatiotemporal environmental management
system based on neural networks, agents, and software com-
ponents [4]. In this paper, we have reviewed the most impor-
tant EMIS in the literature and have compared them, espe-
cially their agent, trader, and ontology features. We have also
introduced ontological web trading (OntoTrader), an exten-
sion of the traditional OMG trading service to support onto-
logical information retrieval issues on web-based EMIS. The
paper also presents three trading models for “information
retrieval”: trading reflection, trading delegation, and trading
federation.

24 The Scientific World Journal

We have also shown an OntoTrader model implemen-
tation using software agent-based approaches. This kind of
web service is a search service based on a “Query-Searching/
Recovering-Response” web model using the SPARQL query
language and the OntoTrader ontology description language
for information retrieval. This service is based on a user
request action that identifies the agents involved and their
communication protocols. Ontologies are used in two differ-
ent contexts: (a) to represent the application domain infor-
mation itself (data ontology) and (b) the services that some
agents request from others during their interaction (process
ontology). In this paper, we have described the process and
data ontology design features of the Lookup trader interface.
All research work presented in this paper was part of
the complete Ontology-Driven Software Engineering (ODSE)
design strategy we are now developing in SOLERES. Imple-
mentation details and a prototype ofOntoTrader are available
at http://tkrs.ual.es/SKRS/.

Future work will focus on several open lines of research.
On one hand, we are studying the possibility of grouping all
ontology management under a single agent (ontology agent).
This agent would manage a database with all the ontologies
used in the system and would code/decode them.This would
considerably simplify the implementation of other agents and
would providemore efficientmanagement. Our work regard-
ing the implementation of SOLERES-HCI (human-computer
interaction) is also ongoing. This level of the EMIS is
defined by means of the Computer Supported Cooperative
Work (CSCW) paradigm [39] and implemented by using an
innovative technology of intelligent agents and multiagent
architectures. Furthermore, we continue working on this
subsystem, which is described throughout the paper, and we
are studying how to decompose the user tasks into actions
that will have to be performed by the SOLERES-KRS sub-
system for retrieval of the information requested and the
ontology mapping problems involved.

In literature review, there are no approaches with enough
similarities to make an empirical comparison between our
processes and other existing algorithms. However, we intend
to add some experimental comparisons with some isolated
parts of other works, in order to highlight the advantages of
our proposal. Finally, we would like to study, develop, and
incorporate new evaluation and validation techniques, such
as measuring the precision of data returned to queries,
response time in executing the query, and usability.

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgments

This work was funded by the EU ERDF and the SpanishMin-
istry of Economy and Competitiveness (MINECO) under
Project no. TIN2010-15588, the Spanish Ministry of Educa-
tion, Culture and Sport (MECD) under a FPU Grant no.
(AP2010-3259), and the Andalusian Regional Government
(Spain) under Project no. P10-TIC-6114.

References

[1] M. Xiao-feng, X. Bao-wen, L. Qing et al., “A survey of Web
information technology and application,” Wuhan University
Journal of Natural Sciences, vol. 11, no. 1, pp. 1–5, 2006.

[2] D. Taniar and J. Rahayu,Web Information Systems, IGI Global,
2004.

[3] O. El-Gayar and B. Fritz, “Environmental Management Infor-
mation Systems (EMIS) for sustainable development: a concep-
tual overview,” Communications of the Association for Informa-
tion Systems, vol. 17, no. 1, p. 34, 2006.

[4] ACG/CEG, “SOLERES Project: a spatio-temporal environmen-
tal management information system based on neural-networks,
agents and software components,” Tech. Rep., Applied Comput-
ing Group (ACG), University of Almeria, Almeria, Spain, 2010,
http://www.ual.es/acg/soleres.

[5] S. Mukherjee and I. V. Ramakrishnan, “Automated semantic
analysis of schematic data,”World Wide Web, vol. 11, no. 4, pp.
427–464, 2008.

[6] M. Huang, “A New Method to formal description of spatial
ontology,” Information Technology and Environmental System
Sciences, vol. 3, pp. 417–421, 2008.

[7] OMG, “Trading object service specication,” Tech. Rep., 2001,
http://www.omg.org.

[8] M. Leida, P. Ceravolo, E. Damiani, Z. Cui, and A. Gusmini,
“Semantics-aware matching strategy (SAMS) for the Ontology
meDiated Data Integration (ODDI),” International Journal of
Knowledge Engineering and SoftData Paradigms, vol. 2, no. 1, pp.
33–56, 2010.

[9] D. Goh and S. Foo, Social Information Retrieval Systems: Emerg-
ing Technologies and Applications for Searching the Web Effec-
tively, Idea Group Reference, 2007.

[10] J. Gama and M. May, “Ubiquitous knowledge discovery,” Intel-
ligent Data Analysis, vol. 15, no. 1, pp. 1–2, 2011.

[11] A. Carrillo-Ramos, J. Gensel, M. Villanova-Oliver, and H. Mar-
tin, “Adapted information retrieval in web information systems
using PUMAS,” in Agent-Oriented Information Systems III, vol.
3529 of Lecture Notes in Computer Science, p. 243, 2006.

[12] I. Trader, “ISO/IEC DIS, 13235-1: IT-Open Distributed Pro-
cessing-ODP Trading Function-Part 1: Specification,” 1996.

[13] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan, “A sur-
vey of Web information extraction systems,” IEEE Transactions
on Knowledge and Data Engineering, vol. 18, no. 10, pp. 1411–
1428, 2006.

[14] J. A. Asensio, L. Iribarne, N. Padilla, and R. Ayala, “Imple-
menting trading agents for adaptable and evolutive UI-COTS
components architectures,” in Proceedings of the International
Conference on e-Business (ICE-B ’08), pp. 259–262, Porto, Por-
tugal, July 2008.

[15] L. Iribarne, N. Padilla, J. A. Asensio et al., “Open-environmental
ontology modeling,” IEEE Transactions on Systems, Man, and
Cybernetics A, vol. 41, no. 4, pp. 730–745, 2011.

[16] N. Padilla, L. Iribarne, J. Asensio, F. Muñoz, and R. Ayala,
“Modelling an environmental knowledge-representation sys-
tem,” in Proceedings of the 1st World Summit on The Knowledge
Society: Emerging Technologies and Information Systems for the
Knowledge Society, pp. 70–78, 2008.

[17] L. Iribarne, J. Asensio, N. Padilla, andR.Ayala, “SOLERES-HCI:
modelling a human-computer interaction framework for open
EMS,” inThe Open Knowledge Society: A Computer Science and
Information Systems Manifesto, FirstWorld Summit on the

The Scientific World Journal 25

Knowledge Society,Wsks 2008, Athens, Greece, September 24–
26, 2008. Proceedings, pp. 320–327, Springer, 2008.

[18] InfoSleuth, “The infosleuth agent system,” Tech. Rep., 2005,
http:// www.argreenhouse.com/InfoSleuth/.

[19] EDEN-IW, “Environmental data exchange network for inland
water,” Tech. Rep., 2001, http://www.edeniw.org.

[20] NZDIS, “New zealand distributed information systems project,”
Tech. Rep., 2001, http://nzdis.otago.ac.nz.

[21] S. Dance,M.Gorman, L. Padgham, andM.Winikoff, “An evolv-
ing multi agent system for meteorological alerts,” in Proceedings
of the 2nd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS ’03), pp. 966–967, ACM, July
2003.

[22] H. Wörn, T. Längle, and M. Albert, “Multi-agent architecture
for monitoring and diagnosing complex systems,” in Proceed-
ings of the 4th International Workshop on Computer Science
and Information Technologies (CSIT ’02), University of Patras/
Greece, 2002.

[23] M. Albert, T. Längle, and H. Woern, “Development tool for
distributed monitoring and diagnosis systems,” Tech. Rep.,
Defense Technical Information Center, 2002.

[24] T. Vögele, S. Hübner, and G. Schuster, “Buster—an information
broker for the semantic web,” KI-Kunstliche Intelligenz, vol. 3,
no. 3, pp. 31–34, 2003.

[25] J. Albrecht, B. Derman, and L. Ramasubramanian, “Geo-onto-
logy tools: the missing link,” Transactions in GIS, vol. 12, no. 4,
pp. 409–424, 2008.

[26] D. L.McGuinness, R. Fikes, J.Hendler, and L.A. Stein, “DAML+
OIL: an ontology language for the Semantic Web,” IEEE Intelli-
gent Systems, vol. 17, no. 5, pp. 72–80, 2002.

[27] Y. An and B. Zhao, “Geo ontology design and comparison in
geographic information integration,” in Proceedings of the 4th
International Conference on Fuzzy Systems and Knowledge Dis-
covery (FSKD ’07), pp. 608–612, August 2007.

[28] L. Ceccaroni, U. Cortés, andM. Sànchez-Marrè, “OntoWEDSS:
augmenting environmental decision-support systems with
ontologies,” Environmental Modelling and Software, vol. 19, no.
9, pp. 785–797, 2004.

[29] V.Di Lecce, C. Pasquale, andV. Piuri, “Abasic ontology formulti
agent system communication in an environmental monitoring
system,” in Proceedings of the IEEE International Conference on
Computational Intelligence for Measurement Systems and Appli-
cations (CIMSA ’04), pp. 45–50, July 2004.

[30] V. Brilhante, “Anontology for quantities in ecology,” inAdvances
in Artificial Intelligence-SBIA 2004 , vol. 3171 of Lecture Notes in
Computer Science, pp. 144–153, 2004.

[31] Q. Zhan, D. Li, and Z. Shao, “An architecture for ontology-based
geographic information semanticGrid service,” inGeoinformat-
ics 2007: Geospatial Information Technology and Applications,
vol. 6754 of Proceedings of the SPIE, Nanjing, China, May 2007.

[32] J. Song, Y. Zhu, and J. Wang, “A study of semantic retrieval sys-
tem based on geo-ontology with spatiotemporal characteristic,”
in Proceedings of the of International Symposium on Distributed
Computing and Applications to Business, Engineering and Sci-
ence (DCABES ’07), vol. I-II, pp. 1029–1034, 2007.

[33] J. Shen, A. Krishna, S. Yuan, K. Cai, and Y. Qin, “A pragmatic
GIS-oriented ontology for location based services,” in Pro-
ceedings of the 19th Australian Software Engineering Conference
(ASWEC ’08), pp. 562–569, March 2008.

[34] GML/OCG, “Geography markup language,” Tech. Rep., Open
Geospatial Consortium, 2007, http://www.opengeospatial.org/
standards/gml/.

[35] A. Tripathi and H. A. Babaie, “Developing a modular hydro-
geology ontology by extending the SWEET upper-level ontolo-
gies,” Computers and Geosciences, vol. 34, no. 9, pp. 1022–1033,
2008.

[36] L. Iribarne, J. M. Troya, and A. Vallecillo, “A trading service for
COTS components,” Computer Journal, vol. 47, no. 3, pp. 342–
357, 2004.

[37] D. Mishra and A. Mishra, “A review of non-technical issues
in global software development,” International Journal of Com-
puter Applications in Technology, vol. 40, no. 3, pp. 216–224, 2011.

[38] M. Russ and J. Jones, “Knowledge-based strategies and informa-
tion system technologies: preliminary findings,” International
Journal of Knowledge and Learning, vol. 2, no. 1, pp. 154–179,
2006.

[39] P. C. Pendharkar, “The theory and experiments of designing
cooperative intelligent systems,” Decision Support Systems, vol.
43, no. 3, pp. 1014–1030, 2007.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

