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This paper investigates the existence, multiplicity, nonexistence, and uniqueness of positive solutions to a kind of two-point
boundary value problem for nonlinear fractional differential equations with p-Laplacian operator. By using fixed point techniques
combining with partially ordered structure of Banach space, we establish some criteria for existence and uniqueness of positive
solution of fractional differential equations with p-Laplacian operator in terms of different value of parameter. In particular, the
dependence of positive solution on the parameter was obtained. Finally, several illustrative examples are given to support the

obtained new results. The study of illustrative examples shows that the obtained results are applicable.

1. Introduction

In this paper, we consider boundary value problem for a
fractional differential equation with p-Laplacian operator

(¢, (D x () + Ao (®) f (£ x (1) =0, 0<E<T,

x' (0) = x" (0) = 0, (1)

1

x (1) :;7] g(s)x(s)ds,

0

where 2 < & < 3,0 < < lisaconstantand A > Oisa
parameter. p > 1, ¢,(s) is the p-Laplacian operator; that is,

$,(s) = IslP s, ¢, (s) = ¢,(s), 1/p+1/q = 1. D denotes
the Caputo fractional derivative.

Fractional differential equations have been of great inter-
est recently. It is caused both by the intensive development
of the theory of fractional calculus itself and by the appli-
cations of such constructions in various fields of sciences
and engineering such as physics, chemistry, aerodynamics,
electrodynamics of complex medium, electrical circuits, and
biology (see [1-7] and their references). Differential equa-
tions with p-Laplacian arise naturally in non-Newtonian

mechanics, nonlinear elasticity, glaciology, population biol-
ogy, combustion theory, and nonlinear flow laws. Since the
p-Laplacian operator and fractional calculus arise from so
many applied fields, the fractional p-Laplacian differential
equations are worth studying. Recently, there have appeared
a very large number of papers which are devoted to the
existence of solutions of boundary value problems and initial
value problems for the fractional differential equations (see
[8-12]), and the existence of solutions of boundary value
problems for the fractional p-Laplacian differential equations
has just begun in recent years (see [13-22]). On the other
hand, there are few papers that consider the eigenvalue
intervals of fractional boundary value problems (see [23, 24]).
In [23], the author discussed the following system:

Dy, x (@) +Ah(t) f(x (1) =0, 0<t<]1,

2<a<3, 2)
x(0)=x"0)=x"0)=x"(1)=0.

By the use of appropriate conditions with respect to

lim, , (f(t)/t) = f, and lim,_, (f(t)/t) = f., the author
proved that the above problem has at least one or two positive



solutions for some A, where f;, = 0,/,00, f,, =0,l,00, 0 <
I < co. But almost all the results which the author obtained
depend on both f; and f; the case depends on one of f,
and f,; the author only discussed f, = 0,00 and f,, = 0, c0;
the case f; = [ or f, = [ has not been discussed. On the
other hand, there exist several results on the existence of one
solution to fractional p-Laplacian boundary value problems
(BVPs); there are, to the best of our knowledge, relatively few
results on the nonexistence and the uniqueness of positive
solutions to fractional p-Laplacian differential equation with
parameter.

Motivated by the above questions, in this paper, we will
establish several sufficient conditions for the existence of
positive solutions of (1) by using fixed point theorem and
fixed point index theory.

The work is organized in the following fashion. In Sec-
tion 2, we provide some necessary background. In particular,
we will introduce some lemmas and definitions associated
with fixed point index theory. The main results will be stated
and proved in Section 3. Two examples are given in Section 4.

2. Preliminaries

In this section, we introduce definitions and preliminary facts
which are used throughout this paper.

Definition 1 (see [1]). The Riemann-Liouville fractional inte-
gral of order &« > 0 of a function x : (0,+00) — R is given

by

1 -
Ihx(t) = —j t—35)""x(s)ds, 3
0% (£) r@ ,E=9 x(s)ds (3)
provided that the right side is point-wise defined on (0, +00)
and I' is the Gamma function.

Definition 2 (see [1]). The Caputo fractional derivative of
order « > 0 of a continuous function x : (0,+0c0) — R is
given by

t (t - )" %" (5)ds,  (4)

. 1
Do, x(6) = I'n-a) Jo

where n = [«] + 1, provided that the right side is point-wise
defined on (0, +00).

Lemma 3 (see [1]). Let o > 0, and assume that x € C[0,1],
and then the fractional differential equation Djx(t) = 0 has
unique solutions:

u(t)=co+ot+ot’ +--+c, 1"
¢geR, i=0,1,2,...,n-1, n-1<a<n ®
Lemma 4 (see [1]). Let « > 0. Then,
I, D, x (£)
(6)

=x(®)+q+at+oti+ gt

>

wherec, e R,i=0,1,2,...,n-1, n-1<a<n
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Lemma 5 (see [25]). Let P be a cone in a real Banach space
E, and let Q) be a bounded open set of E. Assume that operator
A :PNQ — Piscompletely continuous. If there exists a
Xy > 0 such that

x—Ax#tx,, VYVxe€PnoQ,t=>0, 7)
theni(A,PNQ,P) = 0.

Lemma 6 (see [26]). Let E be a Banach space and P € E a
cone, and Q, and Q, are open set with 0 € Q,,Q, € Q,, and

let T:PN(Q,\Q,) — P becompletely continuous operator
such that either

@) ITull < lull,u € PNoQy, and [|[Tull = |ul,u € PNoQ,
or

(i) |Tull = ul,u € PNoQy, and [|Tul| < ul,u € PNoQ,
holds. Then T has a fixed point in P N (52 \ Q).

3. Main Results

In this section, we present some new results on the existence,
multiplicity, nonexistence, and the uniqueness of positive
solution of problem (1) and dependence of the positive
solution x; (¢) on the parameter A.

Let E = CI0, 1]; then E is a real Banach space with the
norm || - || defined by [ x| = max,,;|x(#)|.

Lemma?7. Let y(t) € C(0,1)N L'(0,1) and y(t) > 0; then the
solution of the problem

(¢, (DLx () + Ay () =0, 0<t<l,

X' (0) =" (0) =0, 8)
1

x(1)=17J g(s)x(s)ds

0

is given by

x(f) = ﬁ “01 (1-5)""¢, </\ Lsy(r) d1> ds

Jora (i)l

n
I'(x) (1 - 17]01 g(s)ds)

1
©)
{0

x (Ll (1-1" ¢, (A LT y(u) dﬂ) dr
- r (s—1)*"

X ¢, (/\ LT 5 () dy) dr) ds} ,

+
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x(t) 20, minx(t) > o |x], (10)

where2 < a < 3,0 <7 < l,l—nfolg(s)ds >0ando =
7 [/ (1= 9)g(s)ds/ (1~ 1 [, sg(s)ds).

Proof. It is easy to see by integration of (8) that
t
¢, (Dg,x () — ¢, (Dg,x (0)) = A L y(s)ds. (1)

By the boundary condition x'(0) = x""(0) = 0, we can easily
get that Dy, x(0) = 0, and we obtain that

t
8 (D) = -]y ds (12)
that is
¢
Dg,x (1) = —¢, </\ L y(s) ds> . (13)

By Lemmas 3 and 4, we get that

t
x(t) = —I“qﬁq (AJ y(s)ds)+c0+c1t+czt2. (14)
0
Using the boundary condition x'(0) = x"(0) = 0, x(1) =
1
n _[0 g(s)x(s)ds, we get ¢, = ¢, = 0 and
1
I'(x) (1 - Iol g(s) ds)

x J: (1- s)“‘lqﬁq (A Lsy(‘r) dT) ds

_ n
I'(x) (1 -1 Jol g(s) ds)

x Ll g <Lt (t- "9, (A L (@) dT) ds> d.

(15)

Thus,

_ 1 ! a—1 s
x(t) T Jo t-9""¢, <Ajoy(r)dr>ds
1

" F(oc)(l —r/_[olg(s)ds)

§ J-Ol (- S)“71¢q (A J: y (1) dT) ds

B Ul
F(oc)(l —n_[(:g(s)ds)

x Ll g () <Lt (t- 99, (A JO 5 (@) d‘[) ds) dt

g0 o o)

. Lt (t- 9%, <A L y () dr) ds}

+ n
I'(x) (1 - 17_[01 g(s)ds)

x “01 g (jo (-0, (2 [y () ar

fer

X ¢, ()t JOT v (u) dy) dr) ds} .

(16)

Direct differentiation of (9) implies

X' (t)

= _F(txl— 5 J-Ot (t - s)“72¢q (A JOS ¥ (1) dT) ds <0.
17)

By differentiation of (17), we get
X” (t)

1

*te D Lt (t- s)""3¢q (A JOS ¥ (1) dT) ds <0.
(18)

Thus the solution of problem (8) is nonincreasing and
concave on [0, 1], and

Il =x(©),  minx () = x(1). (19)

On the other hand, as we assume that y(t) > 0, we see that

n
x(1) =
I'(x) (1 - njol g(s)ds)

x {Ll g (j: (-0, (2] y () ar
o
X ¢ (A LT y(w) du) dT) dS}
(1 —:Jolms)ds)

{ao (1o




x ¢, (7\ J y (1) du) dr

0

[ o [ sas)ar)ad

0

(20)

Therefore, x(¢) > 0 and is concave for t € [0, 1]. So for every
te[0,1],

x({t)=tx(1)+ (1 -1t)x(0). (21)

Therefore,

1 1
ﬂJ x(t)g(t)dthx(l)J tg (t) dt
0 0 (22)

1
+1x (0) Jo (I-t)g(t)dt.
Since x(1) = ¢ IOI x(t)g(t)dt,1 -n J'Ol g(t)dt > 0, we have

7 (1-1)g(t)dt
X

(1) =
* 1—;7f01 tg (t)dt

0); (23)

that is,

7} (1-1) g ) dt

minx () = x (1) >
Ost<l 1-7 _[01 tg (t)dt

x(0) =olx]l. (24)

The Lemma is proved. O

We construct a cone P in E by
P:{xeE:x20,minx(t)20||x||}, (25)
0<t<l1

where 0 is defined in Lemma 7. It is easy to see P is a closed
convex cone of E.
DefineT: P — Eby

(Tx) (t)
= ﬁ {Ll (1- s)“_lgbq (JOS w (1) f (1, x (1)) d‘l’) ds
. Lt (t- 99, <L © (1) f (1,x(1) dr) ds}
+ 1

I'(x) (1 —nfol g(s) ds)
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X “01 g(s)

X <J1 1-0*" ¢, <rw(u)f(#,x(u))du> dr

0 0

fer

<y (|| ) £ o) dn) e ) as}.
(26)
It is clear that the fixed points of the operator ¢,(1)T are
the solutions of the boundary value problems (1).
We make the following hypotheses:
(H1) f:10,1] x [0,00) — [0, 00) is continuous;

(H2) w : (0,1) — [0, 00) is continuous and not identical
zero on any closed subinterval of (0,1) with 0 <

[ w(t)dt < +oo;

(H3)1-7 JOI g(s)ds > 0;

(H4) fg € [0,00], where fg
uniformly for ¢ € [0, 1];

(H5) fq‘;" € [0, 00], where f(;’o = limxﬁoo(f(t,x)/%(x))
uniformly for ¢ € [0, 1];

(H6) f(t,x) > 0foranyt € [0,1] and x > 0.

= limy o (f (£, x)/d,(x))

Lemma 8. Assume that (H1)-(H3) hold. ThenT : P — E is
completely continuous.

Proof. First, we show that T' is continuous. It is easy to see
T(P) c P.For x,(t) € Eand x,(t) — x(t),asn — o0, by
the continuous of f(t, x(t)), we get f(t,x,(t)) — f(t x()),
asn — 00. This implies that

0, (jotw(@f(s, 5, () ds )

. (27)
— ¢ <<|-o w(s) f (s, x(s)) ds) .
So we have
(w0 s6amae)
- ¢ <J:w(5)f($,x(s))ds> — 0, n— oo.
(28)

Denote IT = |(Tx,,)(t) — (Tx)(t)|; then

1 ' a1
11 < m {JO (1 —S)

¢, (L © (@) f (r.x, (D) dT>

ds

4 ([ 00 s wx@ar)
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+J-Ot (t—s)~" ¢, (JOS w (1) f (1, %, (1)) dT>_¢q 5 (Ll 1y
X <J:w(f)f(f,x(r))dr> ds} X |¢, <L’w(”)f(‘u,x(y))dﬂ> dr
rw(i- '7’1101 9(5)ds) #[ -

0 ] ) 5 )

X {Ll g(s) X dT) ds]»

‘ B

X<Jl(1—r)“_l : I ()
0 1 al s
[, (| ) £ o, () ) <), -9 o ([ o ar)]as
. t ~ a1 s
= ([ @) £ () ) fy o (v [oar) o
N =+ ’7 1
a—1
+L(5—T) F(a)(l—nfog(s)ds)
T 1 1
a—1
o ([ o) G () ) -4, <] a0 ([ a-n
(] ) £ (x () s ) i ) s} [y (M [ () )
N N B a1
< 5:3)?1] ¢, (L w(r) f (1, %, (1)) dr) + L (s—1)
_ ¢q<J-:w(T)f(T,x(T))dT> x |¢, <M L w(u) dy) d‘[) ds}
1 n 1
2 n JO g(s)ds < : ¢, <MJ w (1) dT)
1 — 0, -
><F(oc+1)< +1—?lfolg(5)d5 F(oc)(l nfog(s)ds) 0
n — 0. ><J’lg(s)<r(l—r)"‘_ld‘r+jS (s—T)“_ldT>ds
(29) 0 0 0
1 1
Hence, T is continuous. + l"_¢q <M J w (1) d‘l’)
Second, we show that T'is compact. (@) 0
For x(t) € B, = {x € P : ||x|| < r}, by condition (HI), 1 .l t el
f(t,x(t)) < co. Denote M = maXy e <, f (£ X(t)). X {J (1-9)" "ds+ J (t=ys) ds}
Then 0 0
1
Tx () < 20, (M J, @@ dr) e
s 1
1 1 w s F(a+1)(1—nj0g(r)dr>
< m «“0 (1-97"|¢, (L w(‘r)f(r,x(r))d‘r> ds (30)
t al s
+ j (t=9)""|¢g (J w (1) f (1, x(7)) dT) ds ]’ that is, T'maps bounded sets into bounded sets in P.
0 0 Forx(t) € B,, 0 <t; <t, <1,
n
+ 1
F(oc)(l -1, g(s) dS) |Tx () = Tx (t,)]

J:z (£, - s)“_1¢q (JOS w (1) f (1,x (1)) d‘r) ds

! 1
X{Lg(s) =m



RGO

><¢q<J w(7) f (1, x(1)) d‘r)ds

< gt (], @)

[ (-9

0

(- s)a_l) ds

X

f
+J (t,— ) 'ds|.

31

(1)
By mean value theorem, we obtain that
[ (G -9 s
< Jtl (@—1)(1— )2 (t, ~ t,)ds
0 (32)
1
< J (a—1)(1 =957 (t, - t,)ds
0
=t,—t.
Thus
|Tx (t,) - Tx (t,)|
1
<t (M [ 0@ar) [ )+ L -n)
(33)

This shows that |Tx(t,) — Tx(t;)] — 0,ast, —t;, — 0,
so {Tx : x € B,} is equicontinuous. Therefore, the operator
T : P — P iscompletely continuous by the Arzela-Ascoli
theorem. O

Now for convenience we introduce the following nota-

tions. Let
1
J o¢ 1¢q<J (U(T dT)dS—Yp

¢, <J w(7) dT> = V2 (34)

£t
6, ()

Theorem 9. Assume that (H1)-(H5) hold.

m(?)zmin{mtin ,X € [017,ﬂ}.

(i) Ifo < fg < +00, then there exists &, > 0 such that, for

every 0 < r < &,, problem (1) has a positive solution
x,(t) satisfying ||x, || = r associated with

A=21, € A o], (35)

where A, and A, are two positive finite numbers.
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(i) Ifo < f(;x’ < +00, then there exists & > 0 such that, for
every R > &7, problem (1) has a positive solution x(t)
satisfying ||xgll = R for any

A=Ay e [X;‘,A;], (36)

—%
where A, and A are two positive finite numbers.

(iii) If fg = +00, then there exists & > 0 such that, for any
0 < r* < &, problem (1) has a positive solution x,-(t)
satisfying || x,- || = r* for any

A=A, €(0,17], (37)
where 1™ is a positive finite number.

(iv) Iff(;’O = 400, then there exists El > 0 such that,

for every R, > &,, problem (1) has a positive solution
xg_(t) satisfying ||xg Il = R, for any

A=2Ag, €(0,A,], (38)

where A, is a positive finite number.
(v) If there exists & > 0 such that m(7) > &, then problem

(1) has positive solution x;(t) satisfying |x;| = 7 for
any
A=2;€(0,1], (39)

where A is a positive finite number.

Proof. (i) It follows from 0 < f(g < 400 that there exists
1,1, p > 0, such that

Lo, (%) < f (6,5) < L, (),
(Vt €[0,1],0<x < p).

(40)

Let &, = p/o; we show that & is required. When x € P N
0Q),, we have

x(t) 2 olx| =or; (41)

we need x(t) < p; this implies that or < p,asr < &, so
or<ofy=p
Let A, = (l/ll)(F((x)/oyl)P_l. Then we may assume that

x=¢,(Ag) Tx#0, (Vx € PNOQ,); (42)

if not, then there exists x, € PNo<}, such that ¢, (1()Tx, = x,,
and then (35) already holds for A, = A,,.

Define y(t) = 1,Vt € [0, 1]; then w(t) € P,and |y| = L.
We now show that

x =y (Ao) T # ey

In fact, if there exists x; € P N 0Q,,x; > 0 such that x; —
¢,(Ao)Tx; = x;y, then (42) implies that x; > 0. On the other

hand x; = ¢,(1)Tx; + K,y > &,y; we may choose k™ =
max{x | x; > xy}}; then k; <" < +00,x; > k" y. Therefore

(Vx € PN0OQ,,k > 0). (43)

K" =" |ly| < x| =1 (44)
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Consequently, for any t € [0, 1], (26) and (44) imply that

x (t)

1

= ¢, (Ao) @)

o

X ¢, (Ls w (1) f (1, %, (1)) dr) ds

foor

x%(ﬁw@fﬁmﬁﬂﬁﬂdﬁ

ﬂqbq (AO)
I'(x) (1 -1 fol g(s) ds)

(Lo
([

<ty ([ @) £ o () )

Lo

<y (] 0 () £ oxy () ) e ) |

Ty
T’]O'(/)q (AO)
2 1
I' () (1 - ﬂfo g(s) ds)

(Lo
([

<ty ([ @0 £, ) e o

_ L (s- ¢,

< ([ @) £ (o () i) e ) s}
o, (Ao)

T T

AL a9, ([0 @ @)ar)as)

+ 1KY

U¢q (AO)
>
I'(x)

X Ll (1-9""¢, (L w (1) f (1, %, (1)) dr) ds

+ 1KY

U¢q (AO)
>
I'(a)

X Ll (1-9""¢, (11 L w (1) ¢, (x, (1)) dr) ds

+ Ky

U¢q (AO)
>
I'(x)

X 1(1—5)“‘1¢q L, Sw(r)gbp(;c*l//(r))dr ds
J (0] )

0
+ Y
*19—1y9-1
_ oK LY
I'(x)
_ o 1Ay,
I («)

jl (1- s)“_1</>q (sz(r) d‘l’) ds + x,y

0 0

Ky

=x" + Ky,
(45)
which implies that x, (f) > (" + x)y(¢), ¢ € [0,1], which isa

contradiction to the definition of x*. Thus, (42) holds and, by
Lemma 5, the fixed point index

i(¢, (Ao) T,PNOQ,, P) =0. (46)

On the other hand, by the fact that the fixed point index of
constants operator is 1, so

i(9,PNoQ,,P) =1, (47)

where 9 is the zero operator. It follows therefore from (46)
and (47) and the homotopy invariance property that there
exist x, € PN 0Q, and 0 < v, < 1 such that %y¢,(1,)Tx, =
x,, but x, = ¢,(1,)Tx,, which implies that »,¢,(1)Tx, =
(pq()tr)Txr; it follows that we get vo(pq()to) = qu(/\,)); that is,

y AT = 2071, (48)
and then

A =N =N < A (49)

r

From the proof above, for any r < &, there exists a positive
solution x, € P N 0Q), associated with A = A, > 0.



8
Thus
x, (t)
X ¢, <LS w (1) f (1, %, (1)) d‘r> ds
o
X ¢, <Ls w (1) f (1, %, (1)) d‘l’) ds}
19y (A,)

Cr@(ion ) g0ds)

(Lo
([

< [ ) £ Gox, () )

fer

<0y (|| ) 7 o, () s e ) |

(50)

with [|x, || = 7.
Next, we show that A, > A,. In fact,

5, ()
o
x4y | w001 (ex, 0)de ) s
Lor
<y ([ 0@ 1 (rx, @) e ) as]
ndg (M)

I'(x) (1 —nfol g(s) ds)

X “01 g(s)
X (Ll (1-7)*"
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< ([ ) £ o, () )

T

0y (]| @) £ G, (o) ) e ) s

e, (A,)
= 1
I'(x) (1 —njo g(s)ds)

1 1

([ 00 1, ) ) s

¢q ()‘r) ! a—1
" T'(x) Jo (1=5)

X ¢, (LS w (1) f (1, %, (1)) dT) ds

(), g9 ds
r@(1-7], g(s)ds)

1

X Jo (1-s)*"

X ¢, (Ls w (1) f (1, %, (1)) dT) ds
¢, (1) J

+ —

1
a—-1
I @ (1-y9)

0
X ¢, (LS w (1) f (1, %, (1)) dT) ds

_ 9Ol ads
CT@(1-7], g(9)ds)

1

X L (1-s)""
X ¢, (l2 LS w (1) x, (7) dT) ds

1
(1 _ S)oc—l
0

, (A,) J

T'(x)
X, <ler Js w(T) x, (T) dT> ds
0

a0
I'(x) (1 —nf(; g(s)ds)

1

x Jo (1-s)*"

X, <lz J: w (1) x, (T) dr) ds
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< ”xr" ¢q (/\rlz)
I'(x) (1 - 11[01 g(s) ds)
X Jl (1-s)*"

0

x¢q<Ilw(7)dT>ds

0
_ "xr” ¢q (ArZZ) Y2
I'x+1) (1 —njolg(s)ds)

(51)
which implies that
x| ¢4 (A12) v
[l < S ; (52)
I'(ax+ 1)(1 —ﬂjo g(s)ds)
that is,
¢q (/\1'12) Y2
i 2 1; (53)
I'(x + 1)(1 —njo g(s)ds)
it follows that we get
1 p-1
Fa+1)(1-n]| g(s)ds _
U (1-nk ) =1 (54
L Y2

In conclusion, A, € [A, A,].
(ii) It follows from 0 < f;;o < 00 that there exist
17, I, p* > 0such that

lf(/vp (x)< f(t,x) < l;gbp (x),
(Vte[0,1],x=p").

(55)

Let&; = p* /o, the following proof are similar to (i).
(iii) It follows from fq? = +00, there exists I* > 0, p* > 0,
such that

fo=l'¢,(x), (Vte[0,1],0<x<p").  (56)

Let & = p*/o; we show that &, is required. When x € P n
0Q,-, we have x(t) > o|x|| = or"; since x < p*, then we need
or® < p*asr” <&, s00r" < p* holds.

Let A" = (l/l*)(l"(oc)/ayl)l/(q_l); we proceed in the same
way as in the proof of (i): replacing (42) we may assume that
X — (bq(/\*)Tx#O, (Vx € P noQ,), and replacing (43) we
can prove x — ¢, (A" )Tx#xy,(Vx € PN 0Q,.,k 2 0). It
follows from Lemma 5 that i(gbq(/\*)T, PnQ,.,P)=0.Note
that i(6, P N Q,+, P) = 1; we can easily show that there exists
X+ € PN0Q,. and 0 < v,. < Lsuchthatv,.¢,(A")Tx,. = x,..

Hence (37) holds for A, = A*vi:p < A"
The proof of Theorem 9(iv) follows by the method similar
to Theorem 9(iii); we omit it here.

(v) It follows that m(7) > &; for any x € P N 0Q);, we have

o7 < x < 7and f(t,x)/(/)p(x) > f(t,x)/gbp(’f) > m(7) > &
then

f(tx) 28, (x), VxeloFi7], te[01].  (57)

Let A = (1 /&)(T()/0y,)? ! The following proof is similar to
that of (iv). This finished the proof of (v). O

Remark 10. In Theorem 9, all the criteria obtained depend on
one of fg and f°.

Let ¥(x) = qﬁq(/\)Tx; the following theorems give out the
multiply, nonexistence, and the dependence of parameter.

Theorem 11. Assume that (H1)-(H5) hold.

() If f = 0and f° = 0, lim,  f(t,x) = f, €
(0, +oo] uniformly for t € [0,1], then there exists
A* > 0 such that the problem (1) has two solutions for
any A > A"

(ii) Iffg = 0and f;° = 0, then there exists A > 0 such
that, for any A < A, problem (1) has no solution.

Proof. (i) It follows from foo € (0, +o0o] that, for anyZ > 0,
there exists p > 0, such that

ft,x)>C (Vte[0,1],x>p). (58)
Since f(g = 0, there exists &, > 0, p, > 0 such that
f(t’x) Ssl(l)p (%), (Vt € [0,1],OSXSﬁ1), (59)

where ¢, satisfied ¢, (Ae,)y,/T(a + 1)(1 -7 [, g(s)ds) < 1.
ForVx € Pn anl, we have

¥ (x) = (¢, (M) Tx) (1)

“r a9
%@, ()L L © (D) f (1,% (1)) dT) ds
o
% ¢, ()L L © (D) f (1,% (1)) dr) ds]»
. n

L@ (1= g(5)ds)

x “01 g(s)
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* (Jol (-0

XQX&EMMmeWD@Oﬁ

fer

0y (1] 0 f G () s e ) s

< Ul
I‘(oc)(l —n_[()lg(s)ds)

1

Jao

(o

X 8,0 [ () £ Gux () du ) ) ds
1

1
- _ el
+ r@ L (1-y3)

X, </\ LS w (1) e f (1, x (1)) dT) ds

n_[olg(s)ds
< 1
F(oc)(l —11J0 g(s)ds)

X Ll 1-o)*"
<ty (A [ (et (<) o)

1 ! a1
+ m JO (1 —S)

x%aj

0

1

w (1) &9, (x (7)) dT) ds

1
<
I“(oc+l)(1—11_[olg(s)ds)

X ¢, (x\ Ll w (1) &9, (l1xI) d‘[)

_ ¢q (Aey) y,
I'(x + 1)(1 —qfég(s)ds)

llcll < flll -

(60)
This implied

Ixll < Ixl,  VxePnaQ,. (61)

Abstract and Applied Analysis

Let p, > max{p/o, p,;} and A" = (I/E)(/_)Sl"(oc)/ayl)l’_l; then
VxePn ans; we have of|x| < x < p; and

(Yx) (£)

_L ! _ a-1
) “o (1=5)

X ¢, (A LS w(7) f (1, x (1)) dT) ds

foor

X ¢, (A J: w (1) f(7,x (1)) dT) ds}

n
I'(x) (1 -1 '[01 g(s) ds)

X{EgS)
x(ﬁa—ﬂ*1

x4y (1 @) £ (wx @) du )

T

8,0 @) £ () di ) e ) ]

> il
- I'(x) (1 —nfolg(s)ds)

(Lo
([

<y ([ @) £ o () ) e

for

<40 @) £ o ) ) e ) ]

+

1
o a—1
+— | (1-s
r Jo ( )

X, </\ Ls w (1) f (1,x (1)) dr> ds
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X, </1 LS w (1) f (7, x (1)) dT> ds

> Jl (1-9*"

(a) Jo
X ¢, </\ L w (T)Cdr) ds
0¢q (/\Z) ! a—1
g I'(x) Jo 1-9
X ¢, <J0 w (1) d1'> ds
¢y (Mz) 18!
T T T (@) =P3
(62)
which implies
x|l > lIxll,  Vx € PNoQy;. (63)

Next, for f$° = 0, there exist e, > 0, p, > p, > 0such
that

flt.x)<e¢,(x), (Vtel0,1],x2p,), (64)

where ¢, satisfied ¢q(A82)y2/1“(oc +1)(1 -7 JOI g(s)ds) < 1.
Similar to the above proof, we get

Ixll < llxll,  VxePnoQ;. (65)

Applying Lemma 7 to (61), (65), and (63) yields that ¥
has two fixed points x,, x, such that x; € Pn (ﬁﬁa \ Q5 ) and

x, €PN (552 \ Q).
(ii) It follows from f(g = 0 and fg’ = 0 that there exists
€1,€, P> P, > 0, such that

f (t) X) < 8lqbp (x) >
ftx) < e, (x),

(Vte[0,1],0<x<p,),
(66)
(Vt€[0,1],x>p,);

then for x € [p,,p,], by the continuous of f(t, x(t)), there
exists X € [p,, p,] such that

St fe®

S G, $ @ (67)
LetY = max{e, &, f(t, E)/qbp(f)} > 0; then
f(t,x)SIqSP(x), VMo<t<1l,x=0). (68)

Assuming x(t) is a positive solution of problem (1), we will
show that this leads to a contradiction for A < A, where

1

A= (1/Y)T(ex + 1)(1 - r]J'Ol g(s)ds)/y,)P". 1t follows from
(26) that
llx]l = x (0)
_ n
I'(x) (l - _[01 g(s) ds)

X {Ll g(s)
X <Ll 1-7)~"*

X ¢, (A JOT w (u) f (px () du) dr

- JS (s-1)*"!

0
< 8,0 [ @) £ (o () ) e ) s |
+ ﬁ Ll (1-s
x @, <A L © (@) f (1,% (7)) dr) ds

< l
I'(x) (l - 11_[01 g(s)ds)

)afl

1

o
X Jo a1-7"
X 9y | 0 () F () du ) s

1 ! a—1
+ m J;) (1 —S)

X ¢q (/\ st (1) f (r,x (1)) d‘r> ds
_ 1
I'(x) (1 -1 _[01 g(s)ds)

X Ll (1-s)*"

x @, (A 0@ f@xm) dr) ds
< 1
I'(x) (1 - _[01 g(s) ds)

X Ll (1-s)*"
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X ¢, (/\ Ll w (1) X, (x (1)) d‘[) ds

_ ¢q (AX) Y2
I'(ax+ 1)(1 —qfolg(s)ds)

1l -

(69)

This implies that 1 < (/)q()ﬂ_()yz/l"(cx + 1)1 - nf(; g(s)ds) =
ATy, /T(a+ 1D)(1-7 [ g(s)ds) < A YTy /Ta+1)(1 -

n jol g(s)ds) = 1, which is a contradiction. This finishes the
proof of (ii). O

Remark 12. In (i), the condition lim _ _f(t,x) = foo €
(0,+00] uniformly for t € [0,1] can be replaced with
condition (H6). The same methods can be used to prove the
results.

Remark 13. From the above proof, the condition f,, €
(0, +00] is important to keep the problem (1) having at least
two positive solutions, if this condition is not satisfied, then
there exists A > 0 small enough such that the problem (1) has
no positive solutions for all A < A.

Theorem 14. Assume that (H1)-(H6) hold.

(i) [ffg = +00 and fgo = +00, then there exists A, > 0

such that problem (1) has at least two solutions for A €
(0’ A>x<0)

(ii) Ij’f£ = +0o and fi° = +oo, then there exists )_i >0
such that problem (1) has no solution for all A > A.

Proof. (i) It follows from fg = +00 that there exists r; > 0,
such that
ft.x) 2L, ¢,(x), (Vte[0,1],0<x<r), (70)

where L, satisfies 02¢q(/\L*1)y1 /T(x) > 1.
Then for x € PNOQ, , wehaveo|x| < x <r fort € [0,1]
and

(W) (£)

‘ B

—

(«)

o

%@, (A L © (1) f (7, x (1)) dr) ds
o

% ¢, (A L © (@) f (1,% (1)) dr) ds]»

n
I'(x) (1 - 17_[01 g(s) ds)

+

Abstract and Applied Analysis

X UOI g(s)
(-
<y ([ @) £ o () ) e
-

<y (A @) F G (1) s e ) ]

> on
I'(x) (1 - Iol g(s) ds)

X Hol g(s)
x (Ll 1-7)*"

<ty ([ @) £ Gex () ) e

for
%9y (1] 00) £ (o 0) ) ) s

t oo Jl (1-9)""

0

X ¢, (A JOS w (1) f (1, % (1)) d‘l’) ds

> — Jl (1-s)*"

0

<9, (A L © (1) f (1,x(2) dT) ds

o ! a—1
> m Jo (1 —S)

X ¢, (A JOS w (1)L, ¢, (x (7)) d‘r) ds

_ O (AL I
- I'(x)

X Jl (1-s)*"!

0

X ¢, (Ls w (1) dT) ds

_ 02¢q (/\L*l) )2)

I @ ll[l s

(71)
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which implies that

[Wx| > [lx], VxePnoQ, . (72)
Next, from f;° = +00, there exists 7, > 0, such that

FOx) 2L, (), Vxz7, (73)

where L, satisfies

02¢q (AL*Z) Y2 >

(74)
I'(a)
Let r, > max{r;,7,/c}; then for x € PN 0Q, we have
x({t)=o|x|| =or, >7,. (75)
Similar to the above proof, we can get
[Wxll > [x], VxePnoQ,. (76)

Letr) <13 <1, M, = max{f(t,x) | t € [0, 1], lx]| < r3}+1 >

0,and A, = (1/M, )(T(a+1)rs(1-7 jol g(s)ds)/y,)". Then
for x € PN 0Q,,, we have

ftx) < Mra, Vvt € [0,1]. (77)
Hence,

(W) (t)

R TN
‘r<a>“o (1=5)

X ¢, (A J: w (1) f (1, % (7)) d‘l’) ds

t

x 9, </\ Ls (@) f (5% (1) d1> ds}

n
L@ (1= f;g(ds)

([
([

<y ([ @) £ o () ) e

fer

0y (1] @0 5 (3 0) ) e ) s

+

< Ul
F(oc)(l —n_[()lg(s)ds)

1

Jao

1
X L (1-1)"¢,

(V] ) o ) ) et

1 ! a—1
+ m JO (1 —S)

X ¢, ()L J: w (1) f (1, x (1)) d‘l’) ds

< n
I'() (1 —njolg(s)ds)

1

Jao

1
X L (1-1"¢,

X ()t J w (u) Mr3dy> drds
0

1 ! a-1
+ m JO (1 —S)

X ¢, (A J: w (1) M,}dr) ds

_ b (WM, [y 9(5)ds
- I'(x) (1 —njol g(s)ds)

X _[01 (1-7)*"

X ¢ <Ll w (p) d#) dr

¢Q(/\Mfs) ! a—1
T (@) L (1-9)

X9, <Ll (@) d‘[) ds

V2¢q (/\Mrg,)

) F(oc+1)(1—11.f01g(s)ds)

y2¢q (A *OMr3 )

<
F(a+1)(1—nj(:g(s)ds)

=T1;3.
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This implies that

I¥x| < lxll, VxePnoQ,. (79)

Applying Lemma 7 to (72), (76), and (79) yields that ¥ has
two fixed points x;, x, such that x; € PN (ﬁr3 \ Q,) and
x, € PN (5,2 \ Q).

(ii) By the proof of (i) and the continuity of f(¢, x), there
exists X € [r,7,] such that minxe[rl’;z](f(t, x)/gbp(x)) =
Ft,)/,(E).

LetY = min{L,, L, f(t, 5c')/¢p(5c')}; since (H6) holds,
then Y > 0 and

ftx) =Y, (x), Vx>0, te[0,1]. (80)

Assuming x(t) is a positive solution of problem (1), we will

show that this leads to contradiction for all A > A, where A =
(1/Y)(I(«)/y,0)?". It follows form (26) that

lxll = x (0)
_ Ui
F(cx)(l —njég(s)ds)

X “01 g(s)
X (JOI 1-7)*!

<y (1 @) £ o x ) )

- r (s—1)*"

0

0y (1] 00 5 (3 ) ) e ) s

X9, (A JOS © (@) f (5x (1)) d-r) ds
L PR
I'(x) Jo (=9
X ¢, ()» LS w(7) f (7,x (7)) dT) ds

1 ! a—1
@ J,a-9

[\

vV

x ¢, <A L @ (1) Y$, (x (1)) dT) ds

Abstract and Applied Analysis

1 ! a—1
> m L (1 —S)

X ¢, (A L @ (1) Y, (o [Ix| dT)) ds
g ¢ (AY) o lIx] J‘1 (1 - 9!

I'(x) 0

x 9, <L 0 (7) dT) ds

_ ¢q (/\Y) Yo
T T ll]l -
(81)

This implies that 1 > ¢q()ﬂ_()ylo/1‘((x) = ATy 0/T() >
(W)q_lyla/l‘(oc) = 1, which is a contradiction. This com-
pletes the proof of (ii). O

Corollary 15. Assume that (H1)-(H5) holds.

(i) Iflim, ,  f(t,x) = fo, € (0,+co] uniformly fort €
[0,1], and one off(g = 0and fg" = 0 is satisfied, then
there exists A* > 0 such that the problem (1) has at least
one positive solution for any A > A*.

(ii) If one off£ = +o00 and fy° = +0co holds, then there
exists A, > 0 such that problem (1) has at least one
positive solutions for any A € (0, A,).

Proof. (i) The conclusion is a direct consequence of Theo-
rem 11(i).

(ii) The conclusion is a direct consequence of Theo-
rem 14(i). [

Theorem 16. Assume that (H1)-(H5) hold. Then the following
conclusions hold.

(i) Iff£ = 0and fq‘;’o = 00, then the problem (1) has a
positive solution x,(t) for all A > 0.

(ii) Iffg = 00 and f;;o = 0, then the problem (1) has a
positive solution x) (t) for all A > 0.

Proof. We only prove (i); the proof of (ii) is similar, so we omit
it here.
Let A > 0; since f(g = 0, there exists 7 > 0, [ > 0 such that

f(tx) < l(pp (x), (Vte[0,1],x¢€[0,7]), (82)

where [ satisfied
yqu—llq—l
I'(x+ 1)(1 —n_[()lg(s)ds)

<1 (83)

Similar to the proof of Theorem 14, we obtain that

x| < x|, VxePnoqQ,. (84)
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From f;° = oo, there exists R > r > 0, L > 0 such that N r(l ; Jl (1- )%
a
fEx)21¢,(x), (Vel0,1],x>R), (85 ’
where L satisfied X, </\ J w (1) f (1, x (1)) d‘r> ds
219-17g-1 0
ol L n > 1. (86) 1 !
@ Sy
We get that (@) Jo
1¥xl > xll,  Vx € PN2Qg. (87) x%@Fw@f@x@MOm
Applying Lemma 7 to (84), (87) yields that ¥ has a fixed point 0
3 1
x such thatx € PN (Qz \ Q,). O S 1 J‘ (19"
I'(x) Jo

Theorem 17. Assume that (H1)-(H6) hold. Then the following

conclusions hold. * 7
If0 < fg <ooand0 < fi° < oo, then there exists ALA, > X% (A ,[0 © (1) 1§ (7)) dT) ds

0 such that problem (1) has no positive solution for any A > A, 1 ! .,

and0 <A <1, Z—J (1- )"

Proof. 1t follows from 0 < f(g <ocoand 0 < f;° < oo that s ~
X ¢, (A JO w (1) lgbp (o llxI d‘[)) ds

there exist L, > 0, L, > 0, 71 > 0, Tz >0,and7, >7 >0

such that 6 (/\f) I
- —~ o ||X
¢, (x) < f(t,x) <Ly, (x), > qu

(Vte[0,1], 0<x<7), L .
. (88) x J (1-95)"¢ <J. w (1) d‘r) ds
Lo, (x) < f (t,%) < Ly¢, (x), 0 \Jo
(Vte[0,1], x>7,). _ (M) nio "

Let M = max{f(t, %)/,(x),7, < x < 7,0 < t < 1}, 77 = [

min{f(t,x)/¢,(x),7; < x < 7,,0 <t < 1}. By the condition ¢ (le) no

(H6), 711 > 0. Then Vx > 0; we have > qu Il = llx] 5

g, (x) < f (t,x) < Lg, (x), (89)
- - _ o llx]l = x (0)

where L = max{L,L,, M} >0and [ = min{l,,l,,m} > 0.

Let 4, = ODT@/po)*" and A, = = T
WD+ D=7 [} g&d)fy,) . 1 problem () L@ (1-1f;9(ds)
has positive solution x(t) in P, then 1
Il = x (0) SIRC

— 11 ! _ a—1
F(oc)(l—nf(:g(S)dS) X(Jo SR
1 T
[ o (V] ) 5 ) ) e
s a-1
([ [
0

<0y (1 @(e) f (o x () ) ([ ) £ o ) ) e ) ]
1

1
s A
SR @

X¢q<Ajgw(#)f(MﬂxQO)dﬂ>dr>ds} x(Aj:awT>f6nx<r»dr>ds
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< n
F(oc)(l —njég(s)ds)

x J: 1-7)*"
<0y (1 @) f (ox () ) d s

1 ! a—1
+ m JO (1 - S) ¢q

« <A L () f (5, % (1) dr) ds

1
F(oc)(l —qj(;g(s)ds)

1
x JO (1-9%"¢,

y (/\ LS (@) f (5% (1) d1> ds

1
: F(oc)(l—nj}jg(s)ds)

1
x JO (1-9%"¢,

X </\ Ll w (1) f¢p (x (1)) dT) ds

¢ (Ai) Y2
- 1 I
I'x+1) (1 _’7.[0 g(s)ds)
AL
< ¢ (A1), Il = Il

I'ax+1) (1 —nfolg(s)ds)
(90)

which is a contradiction. This finishes the proof of Theo-
rem 17. O

4. Examples

In this section, we give out same examples to illustrate our
main results can be used in practice.

Example 1. Consider the following fractional differential
equation:

(¢p (Dgfrzx (t)))’ + At(l + tz)l/zxpf1 arctan x = 0,

0<t<l,

Abstract and Applied Analysis
x'(0)=x"(0) =0,

x(1) = % J: %x(s) ds,
(1)

where @ = 5/2, p = 3/2, q =3, w(t) =t, f(t,x) = (1 +
t2)2xP  arctan x, 1 = 1/2,and g(t) = 1/2.

By simple computation, I} = 71/2,1; = V21/2,y, = fol(l_
3)3/2453(_[; Tdr)ds = 0.0043,y, = (/53(.[01 tdt) = 0.25,0 =
0.1429, A, = (l/l;‘)(1"(oc)/0y1)pf1 = 2.5149,X; = (1/15)(T(ec+
DA -7 _[01 g(s)ds)/y,)f™" = 1.4222. Then, it is easy to see
all the conditions of Theorem 9(ii) are satisfied; thus VA €

[1.4222,2.5149]]; the problem (91) has at least one positive
solution.

Example 2. Consider the boundary value problem
5/2 ! N2 po—x
(¢p (DOJr x(t))) +At(1 +t ) xe ™ =0,
0<t<l,

x'(0) =" (0) =0, ©2)

x(1) = % Ll %x(s) ds,

Where“ _ 5/2’ p — 3/2’ q = 3, w(t) = t, f(t)x) = (1 +
) 2xPe™, = 1/2,and g(t) = 1/2 :

(1 + tz)l/zxpe_x

fq(sJ = lim AGLI lim p1 =0,
x—0 (/)p (x) x—0 X
vVt € [0,1],
) (93)
12,
oo f(t,x) | (1+t2) xPe 0
= 1im = =y
¢ x_’°°‘/5p (x) X = 0o xP-1
Vvt € [0,1].
Letp, = 1/2, p, = 4; then
f(tx) w2 1 1
<(l+t — < —,
6,00 U 55
Vt € [0,1], x¢€ [01]
2 (94)
S0 <(1 2)1/2i < u,
¢, (x) et 7 et
Vt€[0,1], x€[4,00),
so & = 1/\2e & = 4V2/e*, and Vx €

(1/2,4], max, ,.,,(f(t, x)/¢P(x)) = V2el. We
have Y = max{1/2e,4V2/e*, V2e '} = 2e?, y, = 0.25,
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and A = (1/Y)(T(a+1)(1-7 jol g(s)ds)/y,)P ™" = 35"/ *e /4.

By Theorem 11(ii), forany A < A = 3 V5r'/%e/4, the problem
has no positive solution.

5. Conclusions

Recently, differential equations with p-Laplacian operator
were widely discussed by several authors. In this paper,
by using fixed point techniques combining with partially
ordered structure of Banach space, we obtained the existence,
multiply, and the dependence of parameter. These new
results we presented can be used in numerical computation
and analyze mathematical models of physical phenomena,
mechanics, nonlinear dynamics, and many other related
fields.
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