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The estimation of the parameters of Burr type III distribution based on dual generalized order statistics is considered by using the
maximum likelihood (ML) approach as well as the Bayesian approach. The exact expression of the expected Fisher information
matrix of the parameters in the distribution is obtained. Also, an approximation based on Lindley is used to obtain the Bayes
estimator. To compare the maximum likelihood estimator and the Bayes estimator of the parameters, Monte Carlo simulation
study is performed.

1. Introduction

Burr type III distribution with two parameters was first
introduced in the literature of Burr [1] for modelling lifetime
data or survival data. It is more flexible and includes a
variety of distributions with varying degrees of skewness and
kurtosis. Burr type III distribution with two parameters 𝑐 and
𝑘, which is denoted by BurrIII (𝑐, 𝑘), has also been applied in
areas of statistical modelling such as forestry (Gove et al. [2]),
meteorology (Mielke [3]), and reliability (Mokhlis [4]).

The probability density function and the cumulative dis-
tribution function of BurrIII (𝑐, 𝑘) are given by, respectively,

𝑓 (𝑥) = 𝑐𝑘𝑥
−(𝑐+1)

(1 + 𝑥
−𝑐

)

−(𝑘+1)

, 𝑥 > 0, 𝑐 > 0, 𝑘 > 0,

𝐹 (𝑥) = (1 + 𝑥
−𝑐

)

−𝑘

.

(1)

Note that Burr type XII distribution can be derived from
Burr type III distribution by replacing 𝑋 with 1/𝑋. The
usefulness and properties of Burr distribution are discussed
by Burr and Cislak [5] and Johnson et al. [6]. Abd-Elfattah
and Alharbey [7] considered a Bayesian estimation for Burr
type III distribution based on double censoring.

Order statistics are widely used in statistical modelling
and inference. As a unified approach to a variety of models
of ordered random variables such as ordinary order statistics,

upper record values, and sequential order statistics, the con-
cept of generalized order statistics (GOS) was introduced by
Kamps [8]. Based onGOS, Burkschat et al. [9] introduced the
concept of dual generalized order statistics as a dual model
of GOS and a unification of several models of decreasingly
ordered random variables such as reversed order statistics,
lower record values, and lower Pfeifer records.

Let 𝐹(𝑥) denote an absolutely continuous distribution
function with the corresponding density function 𝑓(𝑥) and
let 𝑋(𝑟, 𝑛, 𝑚̃, 𝑞), 𝑟 = 1, 2, . . . , 𝑛, be the corresponding dual
GOS. Then, the joint probability density function of the first
𝑛 dual GOS is the following:

𝑓
𝑋(1,𝑛,𝑚̃,𝑞),...,𝑋(𝑛,𝑛,𝑚̃,𝑞)

(𝑥
1

, . . . , 𝑥
𝑛

)

= 𝑞(

𝑛−1

∏

𝑗=1

𝛾
𝑗

)[

𝑛−1

∏

𝑖=1

𝐹
𝑚𝑖
(𝑥
𝑖

) 𝑓 (𝑥
𝑖

)] × 𝐹
𝑞−1

(𝑥
𝑛

) 𝑓 (𝑥
𝑛

) ,

(2)

for 𝐹−1(0) < 𝑥
𝑛

≤ ⋅ ⋅ ⋅ ≤ 𝑥
1

< 𝐹
−1

(1), 𝑚̃ = (𝑚
1

,

𝑚
2

, . . . , 𝑚
𝑛−1

) ∈ 𝑅
𝑛−1, with parameters 𝑛 ∈ 𝑁, 𝑛 ≥ 2, 𝑞 > 0,

and 𝑀
𝑟

= ∑
𝑛−1

𝑗=𝑟

𝑚
𝑗

such that 𝛾
𝑟

= 𝑞 + 𝑛 − 𝑟 + 𝑀
𝑟

> 0 for
all 𝑟 ∈ {1, 2, . . . , 𝑛}. For simplicity, we shall assume 𝑚

1

=

𝑚
2

= ⋅ ⋅ ⋅ = 𝑚
𝑛−1

= 𝑚. If 𝑚 = 0 and 𝑞 = 1, then it gives the
joint probability density function of 𝑛 reversed order statistics
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from the independent and identically distributed (iid) ran-
dom sample coming from 𝐹(𝑥). If𝑚 = −1, then 𝑋(𝑟, 𝑛,𝑚, 𝑞)
reduces to the 𝑟th lower 𝑞-record value of the iid random
variables. Various distributional properties and some appli-
cations of the related topics are studied by Burkschat et al.
[9], Ahsanullah [10], Jaheen [11], Mbah and Ahsanullah [12],
Barakat and El-Adll [13], and W. Kim and C. Kim [14].

In this paper, our main objective is to describe MLE,
the exact expression of the expected Fisher information
matrix, and Bayes estimation procedures for the parameters
of Burr type III distribution based on dual GOS, assuming the
conjugate priors. In Section 2, we consider MLE and obtain
an exact expression of the expected Fisher informationmatrix
of the parameters. In Section 3, Lindley’s approximation is
used to obtain Bayes estimates for the parameters. Finally, in
order to compare MLE with Bayes estimators, Monte Carlo
simulation is studied in Section 4.

2. Maximum Likelihood Estimation

For 𝑚
1

= 𝑚
2

= ⋅ ⋅ ⋅ = 𝑚
𝑛−1

= 𝑚, suppose that 𝑋(1, 𝑛,𝑚, 𝑞),
𝑋(2, 𝑛,𝑚, 𝑞), . . ., and𝑋(𝑛, 𝑛,𝑚, 𝑞) (𝑞 ≥ 1,𝑚 is a real number)
are 𝑛 dual generalized order statistics drawn from BurrIII
(𝑐, 𝑘). Using (1) and (2), we can get the following likelihood
function:
𝐿 (𝑐, 𝑘 | 𝑥)

= 𝑞(

𝑛−1

∏

𝑗=1

𝛾
𝑗

)[

𝑛

∏

𝑖=1

𝑐𝑘𝑥
−(𝑐+1)

𝑖

(1 + 𝑥
−𝑐

𝑖

)

−(𝑘+1)

]

× [

𝑛−1

∏

𝑖=1

(1 + 𝑥
−𝑐

𝑖

)

−𝑚𝑘

] (1 + 𝑥
−𝑐

𝑛

)

−𝑘(𝑞−1)

= 𝑞𝑐
𝑛

𝑘
𝑛

(

𝑛−1

∏

𝑗=1

𝛾
𝑗

)[

𝑛−1

∏

𝑖=1

𝑥
𝑐𝑘+𝑐𝑚𝑘−1

𝑖

(1 + 𝑥
𝑐

𝑖

)
𝑘+𝑚𝑘+1

]

𝑥
𝑐𝑘𝑞−1

𝑛

(1 + 𝑥
𝑐

𝑛

)
𝑘𝑞+1

.

(3)

From (3), the log-likelihood function is proportional to

𝑙 = ln 𝐿 (𝑐, 𝑘 | 𝑥)

∝ 𝑛 ln 𝑐 + 𝑛 ln 𝑘

+

𝑛−1

∑

𝑖=1

[(𝑐𝑘 + 𝑐𝑚𝑘 − 1) ln𝑥
𝑖

− (𝑘 + 𝑚𝑘 + 1) ln (1 + 𝑥𝑐
𝑖

)]

+ (𝑐𝑘𝑞 − 1) ln𝑥
𝑛

− (𝑘𝑞 + 1) ln (1 + 𝑥𝑐
𝑛

) .

(4)

To derive the maximum likelihood estimators (MLE’s) ̂𝑘
𝑀

and 𝑐
𝑀

of 𝑘 and 𝑐,

𝜕𝑙

𝜕𝑘

=

𝑛

𝑘

+ (1 + 𝑚)

𝑛−1

∑

𝑖=1

ln𝜔
𝑖

+ 𝑞 ln𝜔
𝑛

, (5)

𝜕𝑙

𝜕𝑐

=

𝑛

𝑐

−

𝑛

∑

𝑖=1

𝑥
𝑐

𝑖

𝜐
𝑖

+ 𝑘[(1 + 𝑚)

𝑛−1

∑

𝑖=1

𝜐
𝑖

+ 𝑞𝜐
𝑛

] , (6)

where𝜔
𝑖

= 𝑥
𝑐

𝑖

/(1+𝑥
𝑐

𝑖

) and 𝜐
𝑖

= ln𝑥
𝑖

/(1+𝑥
𝑐

𝑖

) for 𝑖 = 1, 2, . . . , 𝑛.
From (5), MLE of 𝑘 is expressed by

̂
𝑘
𝑀

= −

𝑛

(1 + 𝑚)∑
𝑛−1

𝑖=1

ln𝜔
𝑖

+ 𝑞 ln𝜔
𝑛

. (7)

Substituting (7) in (6), MLE 𝑐
𝑀

of 𝑐 can be written as

𝑛

𝑐

−

𝑛

∑

𝑖=1

𝑥
𝑐

𝑖

𝜐
𝑖

−

𝑛 [(1 + 𝑚)∑
𝑛−1

𝑖=1

𝜐
𝑖

+ 𝑞𝜐
𝑛

]

(1 + 𝑚)∑
𝑛−1

𝑖=1

ln𝜔
𝑖

+ 𝑞 ln𝜔
𝑛

= 0. (8)

MLE of the parameter 𝑐 is obtained by solving the nonlinear
equation (8). Substituting MLE of the parameter 𝑐 in (7), we
can obtain MLE of the parameter 𝑘.

The asymptotic variance-covariance matrix of MLE for
the parameters 𝑘 and 𝑐 is given by the elements of the Fisher
information matrix:

𝐼
𝑖𝑗

= −𝐸(

𝜕
2

𝑙 (𝑘, 𝑐 | x)
𝜕𝑘𝜕𝑐

) , 𝑖, 𝑗 = 1, 2. (9)

From (4), the asymptotic variance-covariance matrix for
MLE is obtained by the following:

𝑄
∗

= (

𝑄
∗

11

𝑄
∗

12

𝑄
∗

12

𝑄
∗

22

)

−1

(𝑘,𝑐)=(

̂

𝑘,𝑐)

= (

−𝐸(

𝜕
2

𝑙

𝜕𝑘
2

) −𝐸(

𝜕
2

𝑙

𝜕𝑐𝜕𝑘

)

−𝐸(

𝜕
2

𝑙

𝜕𝑐𝜕𝑘

) −𝐸(

𝜕
2

𝑙

𝜕𝑐
2

)

)

−1

(𝑘,𝑐)=(

̂

𝑘,𝑐)

,

(10)

with

𝜕
2

𝑙

𝜕𝑘
2

= −

𝑛

𝑘
2

,

𝜕
2

𝑙

𝜕𝑐𝜕𝑘

= (1 + 𝑚)

𝑛−1

∑

𝑖=1

𝜐
𝑖

+ 𝑞𝜐
𝑛

,

𝜕
2

𝑙

𝜕𝑐
2

= −

𝑛

𝑐
2

− (𝑘 + 𝑚𝑘 + 1)

×

𝑛−1

∑

𝑖=1

𝜐
𝑖

𝜔
𝑖

ln𝑥
𝑖

− (𝑘𝑞 + 1) 𝜐
𝑛

𝜔
𝑛

ln𝑥
𝑛

,

(11)

where 𝜔
𝑖

= 𝑥
𝑐

𝑖

/(1 + 𝑥
𝑐

𝑖

) and 𝜐
𝑖

= ln𝑥
𝑖

/(1 + 𝑥
𝑐

𝑖

).
Note that the Fisher information involves only a function

of 𝑋
𝑖

and so we need the marginal probability density
function of 𝑖th dual GOS based on the distribution function
𝐹(𝑥) and the density function𝑓(𝑥). FromBurkschat et al. [9],
the marginal probability density function of 𝑖th dual GOS is
the following:

𝑓
𝑋(𝑖,𝑛,𝑚,𝑞)

(𝑥
𝑖

) =

𝐶
𝑖−1

Γ (𝑖)

[𝐹 (𝑥
𝑖

)]
𝛾𝑖−1

[𝑔
𝑚

(𝐹 (𝑥
𝑖

))]
𝑖−1

𝑓 (𝑥
𝑖

) ,

(12)
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where

𝐶
𝑖−1

=

𝑖

∏

𝑗=1

𝛾
𝑗

, 𝑖 = 1, 2, . . . , 𝑛,

ℎ
𝑚

(𝑥) =

{

{

{

−

1

𝑚 + 1

𝑥
𝑚+1

, 𝑚 ̸= −1

− ln𝑥, 𝑚 = −1,

𝑔
𝑚

(𝑥) = ℎ
𝑚

(𝑥) − ℎ
𝑚

(1) , 𝑥 ∈ [0, 1) .

(13)

Assume that𝑚 ̸= −1. For each 𝑖 = 1, 2, . . . , 𝑛, we can have the
expectation of 𝜐

𝑖

, which is

𝐸 (𝜐
𝑖

) = 𝐸(

ln𝑋
𝑖

1 + 𝑋
𝑐

𝑖

)

=

𝐶
𝑖−1

(𝑖 − 1)!

∫

∞

0

ln𝑥
𝑖

1 + 𝑥
𝑐

𝑖

𝐹(𝑥
𝑖

)
𝛾𝑖−1

𝑓 (𝑥
𝑖

) 𝑔
𝑖−1

𝑚

(𝐹 (𝑥
𝑖

)) 𝑑𝑥
𝑖

.

(14)

If we use the transformation 𝑧 = 𝐹1/𝑘(𝑥
𝑖

), then the expecta-
tion of 𝜐

𝑖

is given by

𝐸 (𝜐
𝑖

)

=

𝑘𝐶
𝑖−1

𝑐 (𝑖 − 1)!(𝑚 + 1)
𝑖−1

𝑖−1

∑

𝑎=0

(

𝑖 − 1

𝑎
) (−1)

𝑎

× { [𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1)) − 1]

×

∞

∑

𝑏=0

(−1)
𝑏+1

(1 + 𝑏)
2

(

𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1)) − 1

𝑏
)

+

1

[𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1)) + 1]
2

−

1

[𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1))]
2

} .

(15)

To get the expectation of 𝜐
𝑖

𝜔
𝑖

ln𝑋
𝑖

, we need to compute

𝐸 (𝜐
𝑖

𝜔
𝑖

ln𝑋
𝑖

)

= 𝐸(

𝑋
𝑐

𝑖

(ln𝑋
𝑖

)
2

(1 + 𝑋
𝑐

𝑖

)
2

)

=

𝐶
𝑖−1

(𝑖 − 1)!

∫

∞

0

𝑥
𝑐

𝑖

(ln𝑥
𝑖

)
2

(1 + 𝑥
𝑐

𝑖

)
2

𝐹(𝑥
𝑖

)
𝛾𝑖−1

𝑓 (𝑥
𝑖

) 𝑔
𝑖−1

𝑚

(𝐹 (𝑥
𝑖

)) 𝑑𝑥
𝑖

.

(16)

By the same transformation method 𝑧 = 𝐹
1/𝑘

(𝑥
𝑖

), the
expectation of 𝜐

𝑖

𝜔
𝑖

ln𝑋
𝑖

, for𝑚 ̸= −1, is given by

𝐸 (𝜐
𝑖

𝜔
𝑖

ln𝑋
𝑖

)

=

2𝑘𝐶
𝑖−1

𝑐
2

(𝑖 − 1)!(𝑚 + 1)
𝑖−1

𝑖−1

∑

𝑎=0

(

𝑖 − 1

𝑎
) (−1)

𝑎

× {

1

[𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1)) + 1]
3

−

1

[𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1)) + 2]
3

+

∞

∑

𝑛=1

[

1

𝑛[𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1)) + 𝑛 + 2]
2

−

1

𝑛[𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1)) + 𝑛 + 1]
2

]

− 𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1))

×

∞

∑

𝑏=0

(−1)
𝑏

(1 + 𝑏)
3

(

𝑘 (𝛾
𝑖

+ 𝑎 (𝑚 + 1))

𝑏
)} .

(17)

For𝑚 = −1, we can compute the expectation of 𝜐
𝑖

, which is

𝐸 (𝜐
𝑖

) = 𝐸(

ln𝑋
𝑖

1 + 𝑋
𝑐

𝑖

)

=

𝐶
𝑖−1

(𝑖 − 1)!

∫

∞

0

ln𝑥
𝑖

1 + 𝑥
𝑐

𝑖

𝐹(𝑥
𝑖

)
𝛾𝑖−1

𝑓 (𝑥
𝑖

) 𝑔
𝑖−1

−1

(𝐹 (𝑥
𝑖

)) 𝑑𝑥
𝑖

.

(18)

Using the same transformation method 𝑧 = 𝐹1/𝑘(𝑥
𝑖

), the
expectation of 𝜐

𝑖

is the following:

𝐸 (𝜐
𝑖

) =

𝑖(𝑘𝑞)
𝑖

𝑐(𝑘𝑞 + 1)
𝑖+1

−

𝑖

𝑐𝑘𝑞

+

(𝑘𝑞)
𝑖

𝑐

∞

∑

𝑛=1

{

1

𝑛(𝑛 + 𝑘𝑞)
𝑖

−

1

𝑛(𝑛 + 𝑘𝑞 + 1)
𝑖

} .

(19)

To get the expectation of 𝜐
𝑖

𝜔
𝑖

ln𝑋
𝑖

, we should compute

𝐸 (𝜐
𝑖

𝜔
𝑖

ln𝑋
𝑖

)

= 𝐸(

𝑋
𝑐

𝑖

(ln𝑋
𝑖

)
2

(1 + 𝑋
𝑐

𝑖

)
2

)

=

𝐶
𝑖−1

(𝑖 − 1)!

∫

∞

0

𝑥
𝑐

𝑖

(ln𝑥
𝑖

)
2

(1 + 𝑥
𝑐

𝑖

)
2

𝐹(𝑥
𝑖

)
𝛾𝑖−1

𝑓 (𝑥
𝑖

) 𝑔
𝑖−1

−1

(𝐹 (𝑥
𝑖

)) 𝑑𝑥
𝑖

.

(20)
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With the transformation 𝑧 = 𝐹1/𝑘(𝑥
𝑖

) and (∑∞
𝑛=1

(𝑧
𝑛

/𝑛))
2

=

∑
∞

𝑛=2

∑
𝑛−1

𝑗=1

(𝑧
𝑛

/(𝑛 − 𝑗)𝑗), the expectation of 𝜐
𝑖

𝜔
𝑖

ln𝑋
𝑖

, when
𝑚 = −1, is given by

𝐸 (𝜐
𝑖

𝜔
𝑖

ln𝑋
𝑖

)

=

(𝑘𝑞)
𝑖

𝑐
2

{

𝑖 (𝑖 + 1)

(𝑘𝑞 + 1)
𝑖+2

−

𝑖 (𝑖 + 1)

(𝑘𝑞 + 2)
𝑖+2

+

∞

∑

𝑛=2

𝑛−1

∑

𝑗=1

(

1

𝑗 (𝑛 − 𝑗) (𝑛 + 𝑘𝑞 + 1)
𝑖

−

1

𝑗 (𝑛 − 𝑗) (𝑛 + 𝑘𝑞 + 2)
𝑖

)

+2𝑖

∞

∑

𝑛=1

(

1

𝑛(𝑛 + 𝑘𝑞 + 2)
𝑖+1

−

1

𝑛(𝑛 + 𝑘𝑞 + 1)
𝑖+1

)} .

(21)

Now, we can get each entry of the Fisher information matrix
𝑄
∗ as follows:

𝑄
∗

11

= −𝐸(

𝜕
2

𝑙

𝜕𝑘
2

) =

𝑛

𝑘
2

,

𝑄
∗

12

= Q∗
21

= −𝐸(

𝜕
2

𝑙

𝜕𝑐𝜕𝑘

)

= − (1 + 𝑚)

𝑛−1

∑

𝑖=1

𝐸 (𝜐
𝑖

) − 𝑞𝐸 (𝜐
𝑛

) ,

𝑄
∗

22

= −𝐸(

𝜕
2

𝑙

𝜕𝑐
2

)

=

𝑛

𝑐
2

+ (𝑘 + 𝑚𝑘 + 1)

×

𝑛−1

∑

𝑖=1

𝐸 (𝜐
𝑖

𝜔
𝑖

ln𝑋
𝑖

) + (𝑘𝑞 + 1) 𝐸 (𝜐
𝑛

𝜔
𝑛

ln𝑋
𝑛

) .

(22)

Using (15), (17), (19), and (21), all entries 𝑄∗
11

, 𝑄
∗

12

, 𝑄
∗

22

can be
explicitly expressed, depending on𝑚.

3. Bayes Estimation

In this section, we want to estimate the parameters 𝑐 and 𝑘
under squared error loss (SEL) function, which is defined as
𝐿
0

(𝜃,
̂
𝜃) = (𝜃 −

̂
𝜃)
2 for a parameter 𝜃. Assuming that the

parameters 𝑐 and 𝑘 are unknown, a natural choice for the
prior distributions of 𝑘 and 𝑐 would be to assume that the
two quantities are independent gamma distributions as in the
following:

𝜋 (𝑐, 𝑘) = 𝜋
1

(𝑘) 𝜋
2

(𝑐) , (23)

where

𝜋
1

(𝑘) =

𝛽
−𝛼

Γ (𝛼)

𝑘
𝛼−1

𝑒
−𝑘/𝛽

,

𝜋
2

(𝑐) =

𝛿
−𝛾

Γ (𝛾)

𝑐
𝛾−1

𝑒
−𝑐/𝛿

,

(24)

where 𝛼, 𝛽, 𝛾, and 𝛿 are chosen to reflect prior knowledge
about 𝑘 and 𝑐.

By combining (3) and (24), the joint posterior density
function of 𝑐 and 𝑘 can be put as follows:

𝜋 (𝑐, 𝑘 | 𝑥) ∝ 𝑐
𝑛+𝛾−1

𝑘
𝑛+𝛼−1

𝑒
−𝑘/𝛽−𝑐/𝛿

× (

𝑛−1

∏

𝑖=1

𝑥
𝑐𝑘+𝑐𝑚𝑘−1

𝑖

(1 + 𝑥
𝑐

𝑖

)
𝑘+𝑚𝑘+1

)

𝑥
𝑐𝑘𝑞−1

𝑛

(1 + 𝑥
𝑐

𝑛

)
𝑘𝑞+1

.

(25)

Under the SEL function, it is well known that the Bayes
estimator of a function 𝑈 = 𝑈(𝑘, 𝑐) is the posterior mean of
the function, which is

𝑈̂
𝐵

= 𝐸 [𝑈 (𝑘, 𝑐) | 𝑥]

=

∬

∞

0

𝑈 (𝑘, 𝑐) 𝐿 (𝑐, 𝑘 | 𝑥) 𝜋 (𝑐, 𝑘) 𝑑𝑐 𝑑𝑘

∬

∞

0

𝐿 (𝑐, 𝑘 | 𝑥) 𝜋 (𝑐, 𝑘) 𝑑𝑐 𝑑𝑘

.

(26)

In general, the integral ratio in (26) cannot be expressed in
a simple closed form. Hence, we use Lindley’s approximation
[15] to obtain a numerical approximation. In a two-parameter
case, say (𝜆

1

, 𝜆
2

) = (𝑘, 𝑐), based on Lindley’s approximation,
the approximate Bayes estimator of a function𝑈 = 𝑈(𝜆

1

, 𝜆
2

),
under the SEL function, leads to

𝑈̂
𝐵

= 𝑈 (𝜆
1

, 𝜆
2

) +

1

2

(𝐴 + 𝑙
∗

30

𝐵
12

+ 𝑙
∗

03

𝐵
21

+ 𝑙
∗

21

𝐶
12

+ 𝑙
∗

12

𝐶
21

)

+ 𝑝
1

𝐴
12

+ 𝑝
2

𝐴
21

,

(27)

where

𝐴 =

2

∑

𝑖=1

2

∑

𝑗=1

𝑈
𝑖𝑗

𝜏
𝑖𝑗

, 𝑙
∗

𝑖𝑗

=

𝜕
𝑖+𝑗

𝑙

𝜕𝜆
𝑖

1

𝜕𝜆
𝑗

2

;

𝑖, 𝑗 = 0, 1, 2, 3, with 𝑖 + 𝑗 = 3,

𝑝
𝑖

=

𝜕𝑝

𝜕𝜆
𝑖

, 𝑈
𝑖

=

𝜕𝑈

𝜕𝜆
𝑖

, 𝑈
𝑖𝑗

=

𝜕
2

𝑈

𝜕𝜆
𝑖

𝜕𝜆
𝑗

,

𝑝 = ln𝜋 (𝜆
1

, 𝜆
2

) , for 𝑖, 𝑗 = 1, 2,

(28)

and for 𝑖 ̸= 𝑗,

𝐴
𝑖𝑗

= 𝑈
𝑖

𝜏
𝑖𝑖

+ 𝑈
𝑗

𝜏
𝑗𝑖

, 𝐵
𝑖𝑗

= (𝑈
𝑖

𝜏
𝑖𝑖

+ 𝑈
𝑗

𝜏
𝑖𝑗

) 𝜏
𝑖𝑖

,

𝐶
𝑖𝑗

= 3𝑈
𝑖

𝜏
𝑖𝑖

𝜏
𝑖𝑗

+ 𝑈
𝑗

(𝜏
𝑖𝑖

𝜏
𝑗𝑗

+ 2𝜏
2

𝑖𝑗

) .

(29)

Note that 𝜏
𝑖𝑗

is the (𝑖, 𝑗)th element of the inverse of the matrix
(𝑙
𝑖𝑗

), 𝑖, 𝑗 = 1, 2, where 𝑙
𝑖𝑗

= 𝜕
2

𝑙/𝜕𝜆
1

𝜕𝜆
2

. Moreover, (27) is to be
evaluated at the MLE’s of 𝜆

1

and 𝜆
2

.
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Now, we apply Lindley’s approximation (27) to our case,
where (𝜆

1

, 𝜆
2

) = (𝑘, 𝑐) and𝑈(𝜆
1

, 𝜆
2

) = 𝑈(𝑘, 𝑐). The elements
𝜏
𝑖𝑗

can be obtained as

(

−𝑙
11

−𝑙
12

−𝑙
21

−𝑙
22

)

−1

=

1

𝑙
11

𝑙
22

− (𝑙
12

)
2

(

−𝑙
22

𝑙
12

𝑙
21

−𝑙
11

)

= (

𝜏
11

𝜏
12

𝜏
21

𝜏
22

) .

(30)

Let𝐻 = −𝑙
22

, 𝐺 = −𝑙
11

, and 𝐼 = 𝑙
12

= 𝑙
21

. Then,𝑁 = 𝐺𝐻− 𝐼2.
Then, we can rewrite this as

𝜏
11

=

𝐻

𝑁

, 𝜏
12

= 𝜏
21

=

𝐼

𝑁

, 𝜏
22

=

𝐺

𝑁

, (31)

where

𝐺 =

𝑛

𝑘
2

,

𝐻 =

𝑛

𝑐
2

+ (𝑘 + 𝑚𝑘 + 1)

×

𝑛−1

∑

𝑖=1

𝜐
𝑖

𝜔
𝑖

ln𝑥
𝑖

+ (𝑘𝑞 + 1) 𝜐
𝑛

𝜔
𝑛

ln𝑥
𝑛

,

𝐼 = (1 + 𝑚)

𝑛−1

∑

𝑖=1

𝜐
𝑖

+ 𝑞𝜐
𝑛

.

(32)

Also, the values of 𝑙∗
𝑖𝑗

can be obtained as follows for 𝑖, 𝑗 =
0, 1, 2, 3;

𝑙
∗

30

=

𝜕
3

𝑙

𝜕𝑘
3

=

2𝑛

𝑘
3

,

𝑙
∗

03

=

𝜕
3

𝑙

𝜕𝑐
3

=

2𝑛

𝑐
3

−

𝑛

∑

𝑖=1

𝜔
𝑖

𝜐
2

𝑖

(1 − 𝑥
𝑐

𝑖

) ln𝑥
𝑖

− 𝑘 (1 + 𝑚)

𝑛−1

∑

𝑖=1

𝜔
𝑖

𝜐
2

𝑖

(1 − 𝑥
𝑐

𝑖

) ln𝑥
𝑖

− 𝑘𝑞𝜔
𝑛

𝜐
2

𝑛

(1 − 𝑥
𝑐

𝑛

) ln𝑥
𝑛

,

𝑙
∗

21

=

𝜕
3

𝑙

𝜕𝑘
2

𝜕𝑐

= 0,

𝑙
∗

12

=

𝜕
3

𝑙

𝜕𝑘𝜕𝑐
2

= − (𝑚 + 1)

𝑛−1

∑

𝑖=1

𝜔
𝑖

𝜐
𝑖

ln𝑥
𝑖

− 𝑞𝜔
𝑛

𝜐
𝑛

ln𝑥
𝑛

.

(33)

Note 𝑝 = ln𝜋(𝑘, 𝑐) ∝ (𝛼 − 1) ln 𝑘 + (𝛾 − 1) ln 𝑐 − 𝑘/𝛽 − 𝑐/𝛿.
Then, we get

𝑝
1

=

𝜕𝑝

𝜕𝑘

=

𝛼 − 1

𝑘

−

1

𝛽

, 𝑝
2

=

𝜕𝑝

𝜕𝑘

=

𝛾 − 1

𝑐

−

1

𝛿

. (34)

Substituting all the above components to (27), the Bayes
estimate of the function 𝑈(𝑘, 𝑐) given in (27), under the SEL
function, becomes

𝑈̂
𝐵

= 𝐸 [𝑈 (𝑘, 𝑐) | 𝑥] = 𝑈 + 𝜓
0

+ 𝜓
1

𝑈
1

+ 𝜓
2

𝑈
2

, (35)

where

𝜓
0

=

1

2𝑁

(𝑈
11

𝐻 + 𝑈
12

𝐼 + 𝑈
21

𝐼 + 𝑈
22

𝐺) ,

𝜓
1

=

𝑙
∗

30

𝐻
2

2𝑁
2

+

𝑙
∗

03

𝐺𝐼

2𝑁
2

+

𝑙
∗

12

(𝐻𝐺 + 2𝐼
2

)

2𝑁
2

+ 𝑝
1

𝐻

𝑁

+ 𝑝
2

𝐼

𝑁

,

𝜓
2

=

𝑙
∗

30

𝐻𝐼

2𝑁
2

+

𝑙
∗

03

𝐺
2

2𝑁
2

+

3𝑙
∗

12

𝐺𝐼

2𝑁
2

+ 𝑝
1

𝐼

𝑁

+ 𝑝
2

𝐺

𝑁

.

(36)

From (35), we can deduce the values of the Bayes
estimates of the parameters 𝑐 and 𝑘 as follows.

If 𝑈(𝑘, 𝑐) = 𝑘, then 𝜓
0

= 0, 𝑈
1

= 1, and 𝑈
2

= 0. Hence,

̂
𝑘
𝐵

= 𝑘 + 𝜓
1

. (37)

If 𝑈(𝑘, 𝑐) = 𝑐, then 𝜓
0

= 0, 𝑈
1

= 0, and 𝑈
2

= 1. Hence,

𝑐
𝐵

= 𝑐 + 𝜓
2

. (38)

Note that (35), (37), and (38) are to be evaluated at MLE’s
(
̂
𝑘
𝑀

, 𝑐
𝑀

).

4. Simulation Study and Comparisons

In this section, we consider MLE and the approximate
Bayes estimates for two parameters 𝑐 and 𝑘 of Burr type III
distribution. To assess the performance of these estimates, we
conducted a simulation study.

Let𝑋
𝐿(1)

= 𝑥
1

,𝑋
𝐿(2)

= 𝑥
2

, . . ., and𝑋
𝐿(𝑛)

= 𝑥
𝑛

be the lower
record values of size 𝑛 which can be obtained from the dual
GOS scheme as a special case by taking 𝑚 = −1 and 𝑞 = 1.
MLE and Bayes estimates for the parameters of BurrIII (𝑐, 𝑘)
based on lower records are computed and compared through
the Monte Carlo simulation study according to the following
steps.

(1) For 𝑘 = 2 and 𝑐 = 3, samples of lower record values of
size 𝑛 (𝑛 = 4, 6, 8, 10) were generated from Burr type
III distribution. Burr type III lower record values are
generated using the inverse cdf, 𝑋

𝑖

= (𝑢
−1/𝑘

𝑖

− 1)
−1/𝑐,

where 𝑢
𝑖

is the uniformly distributed random variate.
(2) MLE’s, ̂𝑘

𝑀

and 𝑐
𝑀

of the parameters 𝑘 and 𝑐, are
calculated by iteratively solving (7) and (8) with 𝑚 =
−1 and 𝑞 = 1.

(3) For given vlaues of prior parameters (𝛼, 𝛽, 𝛾, 𝛿), the
Bayes estimates of 𝑘 and 𝑐 are computed from (37) and
(38) with𝑚 = −1 and 𝑞 = 1.

(4) The above steps are repeated 1,000 times to evaluate
the root mean squared error (RMSE) of MLE and
Bayes estimates for the different sample sizes 𝑛. Note
that

RMSE = √ 1

1000

1000

∑

𝑖=1

(𝑔 (𝜃
0

) − 𝑔 (
̂
𝜃
𝑖

))

2

, (39)

where 𝑔(𝜃
0

) is the true value and 𝑔(̂𝜃
𝑖

) is the 𝑖th
estimate of 𝑔(𝜃) evaluated at ̂𝜃.
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Table 1: The averaged RMSE for MLE and Bayes Estimates of the parameters 𝑘 and 𝑐 for different 𝑛.

𝑛

RMSE

𝑐
𝑀

̂
𝑘
𝑀

𝑐
𝐵

̂
𝑘
𝐵

𝑐
𝐵

̂
𝑘
𝐵

(𝛼 = 3, 𝛽 = 2 𝛾 = 2, 𝛿 = 3) (𝛼 = 5, 𝛽 = 1 𝛾 = 2, 𝛿 = 5)
4 2.0268 2.6734 1.7365 2.3706 1.9826 1.7875
6 1.6421 2.1182 1.3672 1.9863 1.5851 1.4074
8 1.4473 1.8153 1.1980 1.7572 1.3504 1.3357
10 1.3556 1.5863 1.1267 1.5180 1.3264 1.2318

Table 1 provides the averaged RMSE of MLE and Bayes
estimates based on lower record values for two sets of prior
parameters (𝛼, 𝛽, 𝛾, 𝛿). To show the consistency of the result
across varying data sets with large variability and differing
sample sizes, we simulate data under two sets of parameters,
each prior distribution with large variability. We see that
the Bayes estimates are better than MLE in the sense of
comparing RMSE of the estimates. As the sample size 𝑛
increases, RMSE of the estimates should decrease, which is
the case in our computer simulation.
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