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ABSTRACT 

In recent years, there has been considerable progress concerning preconditioned iterative 
methods for large and sparse systems of equations arising from the discretization of differ­
ential equations. Such methods are particularly attractive in the context of high-performance 
(parallel) computers. However, the implementation of a preconditioner is a nontrivial task. 
The focus of the present contribution is on a set of object-oriented software tools that sup­
port the construction of a family of preconditioners based on fast transforms. By combining 
objects of different classes, it is possible to conveniently construct any preconditioner within 
this family. 

The implementation is made in Fortran 90, and uses the language features for abstract 
data types. Numerical experiments show that the execution time of programs based on 
the new tools is comparable to that of corresponding programs where the preconditioner 
is hardcoded. Moreover, it is demonstrated that both the initial preconditioner construction 
and subsequent modifications are easily done with our software tools, whereas the same 
tasks are very cumbersome for a hardcoded program. 

The new tools are integrated into Cog ito, which is a library of object-oriented software tools 
for finite difference methods on composite grids. 

1 INTRODUCTION This work deals with the extension of the Cogito tools to 
implicit methods. 

For many significant applications in science and engi­
neering, for instance in fluid dynamics or electromagnet­
ics, the mathematical models consist of time-dependent 
partial differential equations (PDEs). Finite difference 
methods is one of the important classes of numerical 
methods for such problems. In the Composite Grid Soft­
ware Tools (Cogito) project [35, 36], Rantakokko and 
Olsson have implemented object-oriented software tools 
for explicit finite difference methods on composite grids. 
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When using an implicit method we obtain a system of 
linear equations. The coefficient matrix is large, sparse, 
and highly structured, but for hyperbolic problems of­
ten nonsymmetric and not diagonally dominant. Otto 
and Holmgren [ 11, 13, 14, 26] have developed frame­
works for the construction of preconditioners based on 
fast transforms suitable for solving this type oflinear sys­
tems with iterative methods. 

The new software tools are designed to support the 
discretization of the problem and the construction of the 
preconditioner. This is done with an object-oriented ap­
proach, where data types and operations are encapsulated 
in classes to achieve flexible and reusable programs. The 
tools are implemented in Fortran 90. The classes also 
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contain implementations of operations typically used in 
Krylov subspace methods [4]. 

We begin our discussion with an overview of related 
projects in Section 2. In Section 3, we show how Cog­
ito can be extended to handle implicit methods, and in 
Section 4 we give a model problem and briefly describe 
the principles for the preconditioners we have used. The 
new classes are presented in Section 5, followed by case 
studies including numerical results in Section 6. 

2 RELATED WORK 

In the past, several research groups have made efforts 
at designing programming tools, environments, and lan­
guages for high-performance scientific computing. In 
many of these projects, there was too much emphasis on 
finding a suitable, expressive notation, and too little atten­
tion paid to efficiency and applicability to realistic prob­
lems (e.g., [29, 31]). In our project, we aim at avoiding 
this pitfall. 

Other projects studied efficiency aspects in detail, no­
tably the research that led to the development of High Per­
formance Fortran (HPF) (e.g., [19, 33]). However, HPF 
as such does not lead to an improved software structure. 
HPF might be a language for the implementation of the 
tools we are considering. 

The essential idea of our efforts on mathematical 
software tools is to apply modern software techniques 
(object-oriented analysis and design- OOAD) in order to 
develop a set of software tools that are flexible, and lead 
to portable programs that are easy to construct and mod­
ify. In recent years, there has been a rapidly growing inter­
est in applying object-oriented ideas to the field of numer­
ical software. Most of these efforts consist in enriching 
the programming language (normally C++) with some 
abstract data types (ADTs) suitable for scientific com­
puting. Typical examples are arrays, matrices, grids, and 
stencils [16, 21, 38]. The overall style of programming 
remains procedure-oriented. There is a main program and 
procedures implementing the mathematical problem to be 
solved and the numerical method. 

This is a big leap forwards compared with the tra­
ditional programming style in scientific computing. The 
new ADTs hide low-level implementation details, and 
thus make the programs easier to modify and to port. 
However, with the type of approach discussed above, it is 
still difficult to change to a new numerical method, or to 
change the mathematical problem to solve with a given 
method. In order to achieve this kind of flexibility, it is 
necessary with a fully object-oriented approach, such that 
the complete algorithm can be composed of different ob­
jects in a "plug-and-play" manner. Our ambitions go in 
this direction. 

Other efforts similar to ours in spirit are Diffpack [3] 
and ELEMD [23]. In contrast to ours, these projects em­
phasize finite element methods. PETSc [1] is another in­
teresting project with a similar approach, focusing, so far, 
mainly on linear algebra problems, but having in mind 
linear systems arising from the discretization of PDE 
problems. 

The POOMA framework [28] addresses the same gen­
eral issues as our project, and with a similar approach, but 
with differences in details. Especially, our top level of ab­
straction, Cogito/Solver, has no apparent counterpart in 
POOMA. 

Let us finally mention that we have a cooperation with 
the Overture [2] and ObjectMath [5] projects. The C++ li­
brary Overture is similar in scope to our Fortran 90 library 
Cogito/Grid (see below). However, we focus more on the 
object-oriented analysis, aiming at the "plug-and-play" 
concept discussed above. ObjectMath is a software envi­
ronment for object-oriented specification of mathematical 
models. A pilot project [15] has shown that ObjectMath 
and Cogito may be combined into a user-friendly prob­
lem solving environment. This line of research will be 
continued. 

The list of related work could be made even longer, in­
cluding also approaches that are not object-oriented. Suf­
fice it here to note that the general issue of raising the 
level of abstraction in software for scientific computing is 
currently being addressed by a large number of research 
groups around the world. Many of these efforts are so suc­
cessful that it is appropriate to say that we are currently 
seeing a breakthrough in the area of numerical software. 

3 IMPLICIT METHODS IN COGITO 

The numerical solution of PDEs includes a large num­
ber of choices. If we solve a given time-dependent PDE 
problem with a finite difference method, we must make 
decisions on issues such as domain discretization, space 
derivative approximations, and time-marching scheme. 
To develop new solution methods we may want to ex­
periment with different boundary conditions, or different 
types of discretization stencils on different parts of the 
domain. With object-oriented techniques, we can imple­
ment PDE solvers as collections of components such as 
the ones described above. This approach yields flexible 
and extendible software tools, useful both in the develop­
ment of numerical methods and for applications. 

3.1 The Cogito Project 

Cogito is an object-based class library for time-dependent 
PDEs on structured, possibly composite, grids [35]. The 
object-oriented approach used in Cogito is suitable when 



developing a code easy to reuse and extend [30, 34]. An 
object-oriented design, however, is not the same as an 
implementation in an object-oriented language. For high­
performance computing, Fortran 77 and Fortran 90, with 
the ability to call optimized library routines, has a strong 
position. The lower [25] and middle [27]level classes in 
Cogito are implemented in Fortran 77 and Fortran 90, and 
a top layer in C++. This top layer, Cogito/Solver [39], 
has a high level of abstraction, and utilizes the inheritance 
features of C++ to handle complex objects such as an en­
tire PDE problem. So far, tools for explicit time-marching 
methods are supplied in the software library. 

3.2 Implicit Solution Methods 

When solving PDE problems with finite differences, the 
time step for an explicit method may be prohibitively 
small, limited by the stability criterion. An example of 
such an application is almost incompressible flow [6, 7, 
12] where there are different time scales in the problem. 
An alternative way to solve the problem would then be to 
use an implicit time-marching method. This results in a 
system of linear equations 

Bu = g (3.1) 

to be solved for each time level. The discretization of 
time-harmonic and time-independent PDEs also leads 
to systems of equations. The matrix B is very sparse 
and highly structured, which indicates that an iterative 
method should be used to solve the system. To attain an 
acceptable rate of convergence, we do not solve (3.1 ), but 
rather the (left) preconditioned system 

(3.2) 

The focus of this work is the introduction of Fortran 90 
classes that, in cooperation with the Grid and GridFunc­
tion classes in Cogito/Grid [27], can be used as building 
blocks in an implicit preconditioned PDE solver. 

Note that we do not reinterpret system (3 .1) as a linear 
algebra problem. The entire solution process is expressed 
in terms of GridFunctions and operations on those. In re­
lated projects, such as PETSc [1], (3.1) would have to be 
formulated in matrix-vector notation before the iterative 
solver could be applied. Our approach is more convenient 
when the system is a discretization of a PDE. (On the 
other hand, the PETSc tools are applicable also to sys­
tems not originating from PDEs.) 

3.3 Design 

The elements of the coefficient matrix B in Equation (3 .1) 
depend both on the original mathematical.PDE problem 
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FIGURE 1 OMT diagram [30] with classes to identify and 
form the system of equations. 
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FIGURE 2 OMT diagram [30] for the preconditioner. 

and on the numerical solution method. The (variable) Co­
efficients and the physical Boundary Conditions of the 
PDE are discretized and merged into Operator B to­
gether with Stencils, approximating spatial derivatives in 
the PDE, and additional numerical boundary conditions 
described by alternative stencils. By virtue of data en­
capsulation, the internal storage of the Operator object B 
is hidden from the user. In our base implementation, the 
Operator class in Figure 1 is a pure aggregate of the other 
classes, in contrast to an implementation as a (sparse) ma­
trix. We will discuss this in more detail later on. 

The right-hand side as well as the solution vector of 
Equation (3.1) are GridFunctions defined on the mesh, 
the Grid, for the domain. The Operator and the Grid­
Function on the right-hand side define a System of equa­
tions. The System class in Figure 1 is a higher level class, 
intended for future use. 

Figure 2 shows the family of preconditioners de­
scribed in Section 4.2, which is based on fast trigonomet­
ric Transforms and a block-banded Operator. This par­
ticular operator has a useful inherent structure that dif­
fers somewhat from B. An object-oriented way of dealing 
with this is to say that both types of operators are heirs, 
or subclasses, to the Operator class. 
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4 DISCRETIZATION AND PRECONDITIONING 

Having in mind the Euler and Navier-Stokes equations 
describing gas or fluid flows, we now introduce a two­
dimensional model equation and discuss numerical meth­
ods for the discretized problem. The model problem is 
linear, but for a real-world problem the same type of sys­
tems of linear equations can appear in the solution proce­
dure. 

4.1 Model Problem 

Consider the two-dimensional problem 

with boundary and initial conditions. Here, the solution 
vector u is of size nc. The coefficients Ac = Ae(x, y), 
Be = Bc(x, y), and C = C(x, y) are nc x nc matrices and 
the source term g = g(x, y, t) is an nc-vector. We solve 
this second-order PDE using finite difference approxima­
tions on a logically rectangular grid. 

As mentioned in the previous section, an efficient way 
to handle this problem may require an implicit method. If 
the spatial discretization is done on an mx x my grid, the 
sparse system (3 .1) is of size N = ncm x my. 

4.2 Preconditioners 

Any solver for the resulting systems of equations fits into 
the object-oriented design shown in Figure 1. Further­
more, in the context of preconditioned iterative solvers, 
any type of preconditioner can be used. However, the 
present contribution has a particular focus on a family 
of preconditioners, developed by Otto and Holmgren, ex­
pressed in Figure 2. For the problem ( 4.1) reduced to the 
scalar (nc = 1) case in one space dimension, i.e., 

au au a2u 
-+A-+B-+Cu=g, 
at ax ax2 

a preconditioner of this family is a linear combination of 
normal matrices Rr: 

M = LYrRr (4.2) 

with scalar coefficients Yr. 
When solving the two-dimensional problem (4.1), the 

coefficient matrix B has a two-level band structure. The 
bandwidths are determined by the extent of the stencil 
approximating the space derivatives. Figure 3 shows the 
structure of B for a nine-point stencil when mx = 10 

FIGURE 3 Structure of the coefficient matrix B. 

B= 

FIGURE 4 Outer block structure of B. 

and my = 9. Every marker in the picture represents an 
nc x nc matrix. The banded structure of B can also be 
described with the ncmx x ncmx blocks Bi,.i as in Fig­
ure 4. The boundary conditions may disturb this structure 
slightly, introducing single extra nonzero elements, and 
for a periodic problem, we have a periodic continuation 

of the bands in the matrix. 
The preconditioner M for this two-dimensional equa­

tion has the same outer block structure as B, with blocks 

Mi,.i (placed in M as Bi,.i in B) as linear combinations of 
normal mx x mx basis matrices Rr. and with "coefficient 

matrices" ri,j,r Of size nc X nc, 

(4.3) 

Here, the symbol® denotes the Kronecker product [8]. If 



ai; are elements of an m x n matrix A, then 

The approximations studied are either optimal, mini­
mizing liB - Mll.r to obtain y, or ri,J,r• or blockwise 
superoptimal, minimizing Ill- M7 .Bi,;ll.r, where M 7

. l,J . l,J 
is the pseudoinverse of Mu. The Frobenius matrix norm 
II · ll.r is given by 

m n 

IIAII.r= LL1aii1 2
. 

i=1}=1 

For superoptimal approximations, the expressions in ( 4.2) 
and ( 4.3) are used for M 7 and Mt;. Different choices of 
the basis matrices R, correspond to different fast trigono­
metric transforms. These possibilities and the computa­
tion of the coefficients were first described in [13], and 
later generalized in [26]. 

If an iterative Krylov subspace method is applied to 
(3.2), an approximate solution u may be obtained faster 
when the preconditioner M is formed not from B, but 
from a modified matrix B. This matrix represents the dis­
cretization of ( 4.1 ), using the same interior stencil as for 
B, but with altered boundary conditions. 

In [ 14] it is shown that the preconditioner solve u = 
M- 1 g for these preconditioners can be performed using 
the following three-step algorithm: 

1. Perform ncmy independent fast transforms 
of length mx. 

2. Solve mx independent systems of ncmy 
equations, which are block banded with ( *) 
block size nc x nc. 

3. Perform ncmy indepedent fast inverse 
transforms of length m x. 

Note the independence in each of the three steps, 
which makes the procedure well suited for efficient paral­
lel implementations [10]. This algorithm is the reason for 
the object model in Figure 2. As pointed out before, the 
model is specific to this family of preconditioners, but the 
classes in Section 5 are useful together with a wide range 
of preconditioners. 

5 CLASSES 

We use the word class to describe our Fortran 90 units. 
Classes consist of abstract data types and operations on 
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those, encapsulated in modules, protected from the sur­
rounding classes with private declarations. Norton, Szy­
manski, and Decyk [24] did a study on the object-oriented 
features of C++ and the Fortran 90 features for abstract 
data types, in high-performance computation, and found 
them comparable. The performance of their Fortran 90 
code, using the same kind of encapsulation techniques as 
Cogito, was far better than their C++ version, although 
worse than a traditional well-tuned Fortran 77 implemen­
tation for the problem. Another comparison of languages 
in computational science is done in [37] with respect to 
numerical robustness, data parallelism, data abstraction, 
and object-oriented programming, and this places For­
tran 90 ahead of both C++ and Fortran 77. 

In Subsections 5.1-5.7 we describe the classes de­
picted in Figures 1 and 2. The interfaces for the classes 
are done in the object-oriented manner with construc­
tors, destructor, selectors (information routines, giving 
access to values and parameters stored by the class), and 
modifiers (subroutines to change the object's datafields). 
A more detailed description of each and every one of the 
new classes can be found in [22]. 

5.1 GridFunction 

A GridFunction represents the numerical solution of the 
PDE or the right-hand side of a system of equations. 
Each gridfunction is defined on a (possibly composite) 
mesh, an object of the class Grid, and has information of 
subdomains defined on the mesh. Typically, such subdo­
mains model the boundaries. The Grid and GridFunction 
classes are described in detail in [27] and [36]. We have 
added operations to apply an operator to a gridfunction, 
produce the inner product of two gridfunctions, and to 
do the preconditioning. As an example of the style of the 
code, the preconditioning operations are listed below: 

ApplylnvPrecond(gf, M, x) 

Preconditioner solve gf = M- 1 x. This is done with 
the aid of operations FastTransf, FastlnvTransf, and 
SolveBandSystem, corresponding to the three-step 
algorithm ( * ). 

FastTransf(gf, Q(l:L, 1:1), x) 

The gridfunction gf is the result of applying the fast 
transforms Q(f, j), in the coordinates f = 1, ... , L 
for the components j = 1, ... , 1, to the gridfunc­
tion x. 

FastlnvTransf(gf, Q(l:L, 1:1), x) 

The gridfunction gf is the result of applying the in­
verses of the fast transforms to the gridfunction x. 

SolveBandSystem(gf, N, x) 

Solve the banded system N gf = x, where gf and x 
are gridfunctions. 
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5.2 Coefficient 

The class Coefficient represents the discretized coeffi­
cients in Equation ( 4.1 ). The input is a function that con­
tains the formula for the coefficients. In the present im­
plementation, for space-dependent coefficients only, the 
function is evaluated once on the entire grid, and the val­
ues are stored. To allow for coefficients with space and 

time dependency, repeated function calls would be an al­
ternative. 

5.3 Stencil 

Every term (the identity operation or a derivative of first 
or higher order) in Equation ( 4.1) is approximated by a fi­
nite difference- a stencil. An object of the class Stencil is 
a one-dimensional set of offsets, described by the space 
direction (x or y) of the stencil, its extension from the 
central point, and the weights associated with each offset. 
In the present implementation, "empty" offsets within the 
range must be assigned zero weights. To apply the com­
plete operator to a gridfunction, we apply the different 
stencils on the corresponding subdomains. 

5.4 BoundaryCondition 

An object of the BoundaryCondition class has informa­
tion on what type of local boundary condition it handles, 
in which space direction this condition is applied, and if 
the PDE problem has a nonhomogeneous boundary con­
dition of Dirichlet or Neumann type, the boundary data 
are stored. The present implementation also supports pe­
riodic boundary conditions. 

5.5 Operator 

The class Operator represents the total operator B of the 
discretized problem (3.1). In this implementation, it is not 
at all stored as a matrix, but as a set of objects of other 
classes. Most importantly, there are stencils with infor­
mation about which subdomain of the grid each stencil 
should be applied to. See also the GridFunction class. 

5.6 Transform 

So far, the preconditioners described in Subsection 4.2 
make use of the Fourier transform, sine transform, cosine 
transform, or some modification of one of them. The de­
sign will make it easy to use this new set of Cogito tools 
to develop and test new preconditioners within this fam­
ily. 

5.7 Preconditioner 

This is an implementation of the preconditioners based 
on fast transforms described above. However, the inter­
faces provided by the operations, e.g., to do the (non­
trivial) setup of the preconditioner, should be suitable for 
many types of preconditioners. This is where the theo­
retical framework, developed in [13], is exploited. The 
framework allows different approximation types (optimal 
or superoptimal), and different types of fast trigonometric 
transforms. 

In order to form the preconditioner, we need to access 
the values corresponding to the weights of the total space 
discretization stencil for every grid line. We have not 
stored the total stencil in our Operator objects. When the 
operator is applied to a gridfunction, each and every one 
of the derivative Stencils is applied separately. Thus, we 
have to apply the operator to gridfunctions that are con­
catenations of smaller "unit" gridfunctions to extract the 
desired values. In a typical PDE solving program, this not 
so straightforward procedure is done only once, whereas 
matrix-vector multiplications (applying an operator to a 
gridfunction) are repeated over and over again. That is 
why we have chosen an implementation that favors the 
latter. 

6 CASE STUDIES 

In this section, we describe a PDE problem and show how 
the implementation can be done, and easily modified, us­
ing the described tools. We also show by example how 
expressive the new gridfunction operations are. 

6.1 Wave Equation 

Consider the two-dimensional wave equation with Dirich­
let boundary conditions: 

au au au 1 - +-+- = (2- v)f (XI+ X2- Ut) (6.1) 
at axl axz 

for 
0<x1~a1, O<x2~a2, t>O, 

where 

u(O, x2, t) = j(x2- vt), 

u(XJ, 0, t) = f(xi- vt), 

u(xi,Xz,O) = f(xl +x2), 

f(y) = sin(7y), 

and 0 < v « 1 is a velocity parameter introduced to 
model a slow time scale. 



To model a stretched grid, where the gridpoints lie 
more densely near the boundaries, we introduce the co­
ordinate transformations 

xe = ae ( tanh(se (2~e - 1)) + ~), 
2 tanh(se) 2 

0 < ~e :S: I, f = I, 2. (6.2) 

The positive parameters s1 and s2 control the stretching 
of the grid. Larger se gives a mesh that is more stretched 
in direction£. In fact, as se -+ 0, the transformation (6.2) 
becomes just a scaling by ae. 

Using this, Equation (6.1) transforms into a PDE with 
variable coefficients 

au au au - + O"j(~I)- + 0"2(~2)­
at a~1 ab 

=(2-v)J'(x!+X2-vt), (6.3) 

where 

1 2 tanh(se) 
O"£(~e)=a( cosh (se(2~e-1)) . 

Sf 
(6.4) 

We then solve (6.3) on a uniform grid. 
The computational domain 0 < ~e ::;; I, f = I, 2, is 

discretized with space step he in direction £. In the inte­
rior we approximate the spatial derivatives in (6.3) with 
the second-order accurate stencil Do, and at the outflow 
boundary~£ = I with first-order accurate D_. Figure 5 
shows the stencils approximating au 1 a~. u we define 
P as the total space discretization operator, and use the 
trapezoidal rule for implicit time discretization of (6.3), 
the scheme can be written as 

Here un is the solution vector, i.e., the gridfunction at 
time level n, and k is the time step. The system of equa­
tions to solve for time level n + 1 becomes 

1 
2h 

Do 

(I+ ~kP) un+l = rn. 
'-.,-' 

B 

1 
2h 

D_ 

FIGURE 5 Space discretization stencils. 

1 
h 
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6.2 Implementation 

In the Fortran 90 implementation, we must begin with a 
number of declarations and allocations. The syntax for 
this is a bit more complicated than for an analogous li­
brary in C++, but the solver subroutine below can be writ­
ten in a fairly transparent way. 

program 

! Declarations 

external bcFunc 
external transFunc 

! Create a grid. Coordinates are read from file. 
call Create_G(g, 'grid.dat') 
call Read_G (g) 
gsz = Size_G(g) 

! Define subdomains, 
! corresponding to boundary areas. 
east(1) = gsz(1); east(2) = gsz(1); 
east(3) = 1; east(4) = gsz(2) 
id = 101 
call DefSD_G(g,east,id) 
north(1) 
id = 102 

! Create and initiate two gridfunctions 
! on the grid, one with initial values, 
! and one with the right-hand side of 
! the system of linear equations. 
call Create_GF(xO,nc,g) 
call Create_GF(rhs,nc,g) 

! Dirichlet condition in the x 1-direction. 

direc = 1 
call Create_BoundCond(bcD, & 

direc, 'D' ,gsz,bcFunc) 

! Here, transFunc refers to 
! Equation (6.4) for f = 1. 
call Create_Coeff(sigma1, & 

nc,gsz,transFunc) 

! Make a stencil by defining its weights. 
w(-1) = -0.5; w(O) = 0.0; w(1) = 0.5 
w = w/h1 
call Create_Stencil(Dzerox,direc,w) 

! Initiate the construction of the operator, 
! and add the coefficients and stencils to it. 
! The optional parameters alpha and beta 
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! determine the time discretization. 
alpha= 1.0; beta= 0.5 
call Create_Operator(B, & 

bcD,gsz,nc,alpha,beta) 
call Build_Operator(B, & 

sigmal,Dzerox,id) 

! Here we use the Fourier transform. 
call Create_Transform(Q(l:l,l:l), & 

'FT') 

! Form the preconditioner, 
! '0' for optimal approximation, 
! or ' S ' for superoptimal. 
call Create_Precond(M,B,Q, '0') 

! Solve the resulting system! 

! Explicit destructor call 
call Delete_G(g) 

end program 

As a robust and easily programmed Krylov subspace 
method, we have chosen the restarted generalized mini­
mal residual (GMRES(r)) algorithm [32], where r is the 
restarting length. A GMRES(r) solver for the resulting 
problem Bx = rhs can easily be composed with the 
building blocks we have provided. We could view this 
solver as an object of a System Solver class, as indicated 
in Figure 6. We have not made use of that design in the 
present implementation, where the main work has been 
to develop the trickier classes defining the equations aris­
ing from the discretization, and a suitable preconditioner. 
Our solver is a traditional subroutine called by the main 
program. For studies of a variety of preconditioned meth­
ods for systems of linear equations, such a System Solver 
class would be an appropriate tool. 

subroutine Solve(B,M,xO,rhs,r, & 
maxiter,eps) 

! Preconditioned iterative solving 
! of the system Bx = rhs with 
! precondtioner M. 
! xO : initial values 
! r : restarting length 
! maxi ter : max number of iterations 
! eps : convergence tolerance 

System Pre-System f-- Solver 
r--- conditioner 

FIGURE 6 A possible System Solver class. 

restart = .true. 
do while(restart) 

rnorm = Norm_GF(rhs) 

do j=l,r 

! z =By 

call ApplyOperator_GF(z,B,y) 

! Solve Mx = z, i.e., calculate 
! x = inv(M)z 

call ApplyinvPrecond_GF(z,M,z) 

h = DotProd_GF(z,y) 
call Saxpy_GF(z,h,z,y) 

znorm = Norm_GF(z) 

end subroutine 

6.3 Numerical Results 

The execution time for this kind of code is expected to be 
somewhat longer than for a traditional Fortran 90 code. 
We have a larger number of allocation and deallocation 
processes, and the data encapsulation gives more over­
head effects for subroutine calls. Our opinion is that ami­
nor degradation of the performance is acceptable, as long 
as we gain flexibility. In the hidden arithmetical parts of 
the code, we can use optimized library routines for heavy 
computations. 

We have compared the GMRES implementation de­
scribed above, for restarting length 10, with a traditional 
"hardcoded" Fortran 90 routine on a DEC AlphaServer 
8200. In the numerical comparisons, we held the para­
meters v in (6.3) and KJ = k/ h 1 fixed, and let the number 
of gridpoints in the ~ 1-direction denoted by m 1 vary. The 
number of gridpoints in the ~z-direction followed m 1 as 
m2 = ~m 1 , for stability reasons [12]. Thus, by increas­
ing m 1 (and mz) we obtain a more accurate approxima­
tion of the solution to the PDE. As a stopping criterion 
for the preconditioned GMRES algorithm, we demanded 
that the norm wise relative preconditioned residual should 
be less than a tolerance E. Since the difference scheme is 
second-order accurate, the tolerance was chosen to satisfy 

From Figure 7, we can see that the new version has 
about two times or less the execution time of the old one 
for different problem sizes. The same behavior was ob­
served for other restarting lengths. 
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FIGURE 7 Relative performance for the GMRES(IO) solver 
for two different values of KJ and v. 

Moreover, it can be noted that the relative performance 
of the Cogito-based solver is better for larger problem 
sizes. This is expected, as the overhead costs should re­
main constant, whereas the computation time increases 
independently of approach. We consider this loss in per­
formance to be a fair price. For sufficiently large prob­
lem sizes, the effect of internal calls will be negligible. 
With the new software tools, we have an excellent start­
ing point for experiments with, e.g., stencils or boundary 
condition changes. One of our primary goals is to use the 
new setup for development of new preconditioners. 

6.4 Modification of the Scheme 

In the traditional code we had poor support for modifi­
cations of the numerical scheme. The following example 
illustrates this, and shows that the new software tools im­
prove the situation dramatically. In order to damp high­
frequency oscillations in our wave propagation problem, 
we may modify the operator by adding artificial dissipa­
tive terms 

for the interior gridpoints in both directions. This change 
is mirrored in the coefficient matrix, possibly adding 
bandwidth to it, as well as changing already nonzero ele­
ments. For the traditional code, it would be a tedious and 
time-consuming problem to rewrite the assembly of the 
matrix. This is particularly noticeable in the context of 
adaptivity, where such as modification would be done 
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only on a more limited part of the computational domain. 
However, making the same modification, using our new 
software tools, is an uncomplicated task. We just add a 
few lines to our main program: 

! Create the additional stencil and coefficient. 

w(-1) = -1.0; w(O) = 2.0 
w(1) = -1.0; w = w/(h1**2) 
call Create_Stencil(DplusDminus, & 

direc,w) 
call Create_Coeff(epsh,nc,gsz,func) 

! The id parameter here denotes 
! interior points in the x 1-direction. 

call Build_Operator(B, & 
epsh,DplusDminus,id) 

6.5 Expressiveness 

The purpose of this subsection is to demonstrate how 
useful and expressive the operations defined in Subsec­
tion 5.1 actually are. To this end, we consider the normal 
block preconditioners in [26] referred to as being poly­
transform with several block levels. Such preconditioners 
are aimed at discretized systems of PDEs, where the com­
ponents of the solution depend on L coordinates. The ba­
sic idea for a polytransform preconditioner with several 
block levels is to apply fast transforms in all coordinates 
but one, and to allow different transforms for different co­
ordinates and components. For the remaining coordinate, 
block banded systems are solved, and the precondition­
ing is completed by inverse transforms. If the discretized 
solution is embedded in a vector, the transform part of 
the preconditioner could be expressed as a matrix with a 
hierarchy of L block levels. However, that matrix is mud­
dled with permutation matrices [26], which are needed in 
order to get the various transforms applied correctly. The 
structure of the preconditioning operator becomes much 
clearer when the operand is represented as a tensor of or­
der L + 1, i.e., one index for each of the L discretized 
coordinates and one component index. Note that the Cog­
ito concept of a gridfunction is closely related to such a 
tensor. In fact, gridfunctions in Cogito are actually imple­
mented as arrays of dimension L + 1. 

In the preconditioning algorithm below, the number of 
components is mo, and me denotes the number of dis­
crete coordinate points for the coordinate labeled l = 
1, ... , L. Thus, the total number of coordinate points is 

The algorithm for a polytransform preconditioner with L 
block levels becomes: 
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1. Fore = 1, ... , L - 1 and Jo = 1, ... , mo, perform 
n LIme independent fast transforms of length me. 

2. Solve nL-i independent systems of mLmo 
equations, which are block banded with block size 
mo x mo. 

3. For£= 1, ... ,L-1and}o= 1, ... ,mo, 
perform nL/me independent fast inverse 
transforms of length me. 

The algorithm (*)is just the special case where L = 2, 
mo = nc, m1 = mx, and m2 =my. By representing the 
solution and the right-hand side as gridfunctions z, the al­
gorithm above is readily expressed in terms of operations 
from Subsection 5.1 as 

1. Apply FastTransf(z, Q(L - 1:1, 1 :mo), z). 
2. Apply SolveBandSystem(z, N, z). 
3. Apply FastlnvTransf(z, Q(l :L - 1, 1 :mo), z). 

Furthermore, it is now easy to build new precondition­
ers. By replacing the index range L - 1:1 with L: 1, we 
obtain a preconditioner where the operator N is block 
diagonal, which would be a clear advantage for the im­
plementation on parallel computers. On the other hand, 
such a complete block diagonalization could, depending 
on the original operator B, degrade the convergence rate 
of the preconditioned Krylov subspace method. In that 
case, an alternative is to transform only in the coordi­
nates that are amenable to fast transforms; typically those 
coordinates for which the coefficients of the operator B 
vary moderately. This is achieved by replacing the index 
range L - 1: 1 with an index set that selects the desired 
coordinates. However, by transforming in fewer coordi­
nates than L - 1, the operator N will no longer be narrow 
banded. For each coordinate labeled e ~ L - 1 that is not 
transformed, the bandwidth of N is increased notably. 

7 CONCLUDING REMARKS 

We have presented ideas for an extension of Cogito to im­
plicit methods, so that we get a flexible system for both 
explicit and implicit finite difference methods on struc­
tured grids. This extension does not limit the choice of 
discretization stencils. We expect that this freedom will 
be valuable for the development of new numerical meth­
ods. 

Linked to this environment, we now also have tech­
niques for effectively solving the systems of linear equa­
tions arising from the implicit methods. These solvers 
are preconditioned iterative methods, where the precon­
ditioners are constructed from a general framework for 
fast transforms. The numerical performance of a GMRES 
solver built with the new tools is within a factor two of 

that of a traditional code for sufficiently large problems. 
We find this cost acceptable for the achieved increase in 
flexibility. 

We have now taken a first step to incorporate the hand­
ling of implicit methods in Cogito. A second step on 
the way to a complete parallel framework is to com­
bine this work with a newly implemented parallel ver­
sion of the Fortran 90 classes Grid and GridFunction. 
Being based on these, a large part of our classes will auto­
matically execute in parallel. Further development is also 
necessary for the handling of composite grids and three­
dimensional grids in the new part of the code. Future di­
rections of research could entail extensions to accommo­
date nonlocal boundary conditions such as Dirichlet-to­
Neumann maps [ 17], staggered grids, Schur complement 
matrix methods [9, 18, 20], and nonlinear PDEs. 
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