
Object-Oriented Software Tools for the
Construction of Preconditioners *

EVA MOSSBERG, KURT OTTO, AND MICHAEL THUNE

Department of Scientific Computing, Uppsala University, Box 120, SE-751 04 Uppsala, Sweden;
e-mail: { evam, kurt, michael}@ tdb. uu. se

ABSTRACT

In recent years, there has been considerable progress concerning preconditioned iterative
methods for large and sparse systems of equations arising from the discretization of differ­
ential equations. Such methods are particularly attractive in the context of high-performance
(parallel) computers. However, the implementation of a preconditioner is a nontrivial task.
The focus of the present contribution is on a set of object-oriented software tools that sup­
port the construction of a family of preconditioners based on fast transforms. By combining
objects of different classes, it is possible to conveniently construct any preconditioner within
this family.

The implementation is made in Fortran 90, and uses the language features for abstract
data types. Numerical experiments show that the execution time of programs based on
the new tools is comparable to that of corresponding programs where the preconditioner
is hardcoded. Moreover, it is demonstrated that both the initial preconditioner construction
and subsequent modifications are easily done with our software tools, whereas the same
tasks are very cumbersome for a hardcoded program.

The new tools are integrated into Cog ito, which is a library of object-oriented software tools
for finite difference methods on composite grids.

1 INTRODUCTION This work deals with the extension of the Cogito tools to
implicit methods.

For many significant applications in science and engi­
neering, for instance in fluid dynamics or electromagnet­
ics, the mathematical models consist of time-dependent
partial differential equations (PDEs). Finite difference
methods is one of the important classes of numerical
methods for such problems. In the Composite Grid Soft­
ware Tools (Cogito) project [35, 36], Rantakokko and
Olsson have implemented object-oriented software tools
for explicit finite difference methods on composite grids.

*This research was supported by the Swedish Research Council for
Engineering Sciences.

© 1997 lOS Press
ISSN 1058-9244/97/$8
Scientific Programming, Vol. 6, pp. 285-295 (1997)

When using an implicit method we obtain a system of
linear equations. The coefficient matrix is large, sparse,
and highly structured, but for hyperbolic problems of­
ten nonsymmetric and not diagonally dominant. Otto
and Holmgren [11, 13, 14, 26] have developed frame­
works for the construction of preconditioners based on
fast transforms suitable for solving this type oflinear sys­
tems with iterative methods.

The new software tools are designed to support the
discretization of the problem and the construction of the
preconditioner. This is done with an object-oriented ap­
proach, where data types and operations are encapsulated
in classes to achieve flexible and reusable programs. The
tools are implemented in Fortran 90. The classes also

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192770537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

286 MOSSBERG, OTIO, AND THUNE

contain implementations of operations typically used in
Krylov subspace methods [4].

We begin our discussion with an overview of related
projects in Section 2. In Section 3, we show how Cog­
ito can be extended to handle implicit methods, and in
Section 4 we give a model problem and briefly describe
the principles for the preconditioners we have used. The
new classes are presented in Section 5, followed by case
studies including numerical results in Section 6.

2 RELATED WORK

In the past, several research groups have made efforts
at designing programming tools, environments, and lan­
guages for high-performance scientific computing. In
many of these projects, there was too much emphasis on
finding a suitable, expressive notation, and too little atten­
tion paid to efficiency and applicability to realistic prob­
lems (e.g., [29, 31]). In our project, we aim at avoiding
this pitfall.

Other projects studied efficiency aspects in detail, no­
tably the research that led to the development of High Per­
formance Fortran (HPF) (e.g., [19, 33]). However, HPF
as such does not lead to an improved software structure.
HPF might be a language for the implementation of the
tools we are considering.

The essential idea of our efforts on mathematical
software tools is to apply modern software techniques
(object-oriented analysis and design- OOAD) in order to
develop a set of software tools that are flexible, and lead
to portable programs that are easy to construct and mod­
ify. In recent years, there has been a rapidly growing inter­
est in applying object-oriented ideas to the field of numer­
ical software. Most of these efforts consist in enriching
the programming language (normally C++) with some
abstract data types (ADTs) suitable for scientific com­
puting. Typical examples are arrays, matrices, grids, and
stencils [16, 21, 38]. The overall style of programming
remains procedure-oriented. There is a main program and
procedures implementing the mathematical problem to be
solved and the numerical method.

This is a big leap forwards compared with the tra­
ditional programming style in scientific computing. The
new ADTs hide low-level implementation details, and
thus make the programs easier to modify and to port.
However, with the type of approach discussed above, it is
still difficult to change to a new numerical method, or to
change the mathematical problem to solve with a given
method. In order to achieve this kind of flexibility, it is
necessary with a fully object-oriented approach, such that
the complete algorithm can be composed of different ob­
jects in a "plug-and-play" manner. Our ambitions go in
this direction.

Other efforts similar to ours in spirit are Diffpack [3]
and ELEMD [23]. In contrast to ours, these projects em­
phasize finite element methods. PETSc [1] is another in­
teresting project with a similar approach, focusing, so far,
mainly on linear algebra problems, but having in mind
linear systems arising from the discretization of PDE
problems.

The POOMA framework [28] addresses the same gen­
eral issues as our project, and with a similar approach, but
with differences in details. Especially, our top level of ab­
straction, Cogito/Solver, has no apparent counterpart in
POOMA.

Let us finally mention that we have a cooperation with
the Overture [2] and ObjectMath [5] projects. The C++ li­
brary Overture is similar in scope to our Fortran 90 library
Cogito/Grid (see below). However, we focus more on the
object-oriented analysis, aiming at the "plug-and-play"
concept discussed above. ObjectMath is a software envi­
ronment for object-oriented specification of mathematical
models. A pilot project [15] has shown that ObjectMath
and Cogito may be combined into a user-friendly prob­
lem solving environment. This line of research will be
continued.

The list of related work could be made even longer, in­
cluding also approaches that are not object-oriented. Suf­
fice it here to note that the general issue of raising the
level of abstraction in software for scientific computing is
currently being addressed by a large number of research
groups around the world. Many of these efforts are so suc­
cessful that it is appropriate to say that we are currently
seeing a breakthrough in the area of numerical software.

3 IMPLICIT METHODS IN COGITO

The numerical solution of PDEs includes a large num­
ber of choices. If we solve a given time-dependent PDE
problem with a finite difference method, we must make
decisions on issues such as domain discretization, space
derivative approximations, and time-marching scheme.
To develop new solution methods we may want to ex­
periment with different boundary conditions, or different
types of discretization stencils on different parts of the
domain. With object-oriented techniques, we can imple­
ment PDE solvers as collections of components such as
the ones described above. This approach yields flexible
and extendible software tools, useful both in the develop­
ment of numerical methods and for applications.

3.1 The Cogito Project

Cogito is an object-based class library for time-dependent
PDEs on structured, possibly composite, grids [35]. The
object-oriented approach used in Cogito is suitable when

developing a code easy to reuse and extend [30, 34]. An
object-oriented design, however, is not the same as an
implementation in an object-oriented language. For high­
performance computing, Fortran 77 and Fortran 90, with
the ability to call optimized library routines, has a strong
position. The lower [25] and middle [27]level classes in
Cogito are implemented in Fortran 77 and Fortran 90, and
a top layer in C++. This top layer, Cogito/Solver [39],
has a high level of abstraction, and utilizes the inheritance
features of C++ to handle complex objects such as an en­
tire PDE problem. So far, tools for explicit time-marching
methods are supplied in the software library.

3.2 Implicit Solution Methods

When solving PDE problems with finite differences, the
time step for an explicit method may be prohibitively
small, limited by the stability criterion. An example of
such an application is almost incompressible flow [6, 7,
12] where there are different time scales in the problem.
An alternative way to solve the problem would then be to
use an implicit time-marching method. This results in a
system of linear equations

Bu = g (3.1)

to be solved for each time level. The discretization of
time-harmonic and time-independent PDEs also leads
to systems of equations. The matrix B is very sparse
and highly structured, which indicates that an iterative
method should be used to solve the system. To attain an
acceptable rate of convergence, we do not solve (3.1), but
rather the (left) preconditioned system

(3.2)

The focus of this work is the introduction of Fortran 90
classes that, in cooperation with the Grid and GridFunc­
tion classes in Cogito/Grid [27], can be used as building
blocks in an implicit preconditioned PDE solver.

Note that we do not reinterpret system (3 .1) as a linear
algebra problem. The entire solution process is expressed
in terms of GridFunctions and operations on those. In re­
lated projects, such as PETSc [1], (3.1) would have to be
formulated in matrix-vector notation before the iterative
solver could be applied. Our approach is more convenient
when the system is a discretization of a PDE. (On the
other hand, the PETSc tools are applicable also to sys­
tems not originating from PDEs.)

3.3 Design

The elements of the coefficient matrix B in Equation (3 .1)
depend both on the original mathematical.PDE problem

SOFfWARE TOOLS FOR PRECONDITIONERS 287

System

?
- - - - j - l \

Grid f--. Grid r-1- Operator Function
I

- - - - - - -.-/ ?
l J L

Coefficient Stencil Boundary
Condition

FIGURE 1 OMT diagram [30] with classes to identify and
form the system of equations.

Pre- - Grid
conditioner Function

y
l I

Transform Operator

FIGURE 2 OMT diagram [30] for the preconditioner.

and on the numerical solution method. The (variable) Co­
efficients and the physical Boundary Conditions of the
PDE are discretized and merged into Operator B to­
gether with Stencils, approximating spatial derivatives in
the PDE, and additional numerical boundary conditions
described by alternative stencils. By virtue of data en­
capsulation, the internal storage of the Operator object B
is hidden from the user. In our base implementation, the
Operator class in Figure 1 is a pure aggregate of the other
classes, in contrast to an implementation as a (sparse) ma­
trix. We will discuss this in more detail later on.

The right-hand side as well as the solution vector of
Equation (3.1) are GridFunctions defined on the mesh,
the Grid, for the domain. The Operator and the Grid­
Function on the right-hand side define a System of equa­
tions. The System class in Figure 1 is a higher level class,
intended for future use.

Figure 2 shows the family of preconditioners de­
scribed in Section 4.2, which is based on fast trigonomet­
ric Transforms and a block-banded Operator. This par­
ticular operator has a useful inherent structure that dif­
fers somewhat from B. An object-oriented way of dealing
with this is to say that both types of operators are heirs,
or subclasses, to the Operator class.

288 MOSSBERG, OTIO, AND THUNE

4 DISCRETIZATION AND PRECONDITIONING

Having in mind the Euler and Navier-Stokes equations
describing gas or fluid flows, we now introduce a two­
dimensional model equation and discuss numerical meth­
ods for the discretized problem. The model problem is
linear, but for a real-world problem the same type of sys­
tems of linear equations can appear in the solution proce­
dure.

4.1 Model Problem

Consider the two-dimensional problem

with boundary and initial conditions. Here, the solution
vector u is of size nc. The coefficients Ac = Ae(x, y),
Be = Bc(x, y), and C = C(x, y) are nc x nc matrices and
the source term g = g(x, y, t) is an nc-vector. We solve
this second-order PDE using finite difference approxima­
tions on a logically rectangular grid.

As mentioned in the previous section, an efficient way
to handle this problem may require an implicit method. If
the spatial discretization is done on an mx x my grid, the
sparse system (3 .1) is of size N = ncm x my.

4.2 Preconditioners

Any solver for the resulting systems of equations fits into
the object-oriented design shown in Figure 1. Further­
more, in the context of preconditioned iterative solvers,
any type of preconditioner can be used. However, the
present contribution has a particular focus on a family
of preconditioners, developed by Otto and Holmgren, ex­
pressed in Figure 2. For the problem (4.1) reduced to the
scalar (nc = 1) case in one space dimension, i.e.,

au au a2u
-+A-+B-+Cu=g,
at ax ax2

a preconditioner of this family is a linear combination of
normal matrices Rr:

M = LYrRr (4.2)

with scalar coefficients Yr.
When solving the two-dimensional problem (4.1), the

coefficient matrix B has a two-level band structure. The
bandwidths are determined by the extent of the stencil
approximating the space derivatives. Figure 3 shows the
structure of B for a nine-point stencil when mx = 10

FIGURE 3 Structure of the coefficient matrix B.

B=

FIGURE 4 Outer block structure of B.

and my = 9. Every marker in the picture represents an
nc x nc matrix. The banded structure of B can also be
described with the ncmx x ncmx blocks Bi,.i as in Fig­
ure 4. The boundary conditions may disturb this structure
slightly, introducing single extra nonzero elements, and
for a periodic problem, we have a periodic continuation

of the bands in the matrix.
The preconditioner M for this two-dimensional equa­

tion has the same outer block structure as B, with blocks

Mi,.i (placed in M as Bi,.i in B) as linear combinations of
normal mx x mx basis matrices Rr. and with "coefficient

matrices" ri,j,r Of size nc X nc,

(4.3)

Here, the symbol® denotes the Kronecker product [8]. If

ai; are elements of an m x n matrix A, then

The approximations studied are either optimal, mini­
mizing liB - Mll.r to obtain y, or ri,J,r• or blockwise
superoptimal, minimizing Ill- M7 .Bi,;ll.r, where M 7

. l,J . l,J
is the pseudoinverse of Mu. The Frobenius matrix norm
II · ll.r is given by

m n

IIAII.r= LL1aii1 2
.

i=1}=1

For superoptimal approximations, the expressions in (4.2)
and (4.3) are used for M 7 and Mt;. Different choices of
the basis matrices R, correspond to different fast trigono­
metric transforms. These possibilities and the computa­
tion of the coefficients were first described in [13], and
later generalized in [26].

If an iterative Krylov subspace method is applied to
(3.2), an approximate solution u may be obtained faster
when the preconditioner M is formed not from B, but
from a modified matrix B. This matrix represents the dis­
cretization of (4.1), using the same interior stencil as for
B, but with altered boundary conditions.

In [14] it is shown that the preconditioner solve u =
M- 1 g for these preconditioners can be performed using
the following three-step algorithm:

1. Perform ncmy independent fast transforms
of length mx.

2. Solve mx independent systems of ncmy
equations, which are block banded with (*)
block size nc x nc.

3. Perform ncmy indepedent fast inverse
transforms of length m x.

Note the independence in each of the three steps,
which makes the procedure well suited for efficient paral­
lel implementations [10]. This algorithm is the reason for
the object model in Figure 2. As pointed out before, the
model is specific to this family of preconditioners, but the
classes in Section 5 are useful together with a wide range
of preconditioners.

5 CLASSES

We use the word class to describe our Fortran 90 units.
Classes consist of abstract data types and operations on

SOFfWARE TOOLS FOR PRECONDITIONERS 289

those, encapsulated in modules, protected from the sur­
rounding classes with private declarations. Norton, Szy­
manski, and Decyk [24] did a study on the object-oriented
features of C++ and the Fortran 90 features for abstract
data types, in high-performance computation, and found
them comparable. The performance of their Fortran 90
code, using the same kind of encapsulation techniques as
Cogito, was far better than their C++ version, although
worse than a traditional well-tuned Fortran 77 implemen­
tation for the problem. Another comparison of languages
in computational science is done in [37] with respect to
numerical robustness, data parallelism, data abstraction,
and object-oriented programming, and this places For­
tran 90 ahead of both C++ and Fortran 77.

In Subsections 5.1-5.7 we describe the classes de­
picted in Figures 1 and 2. The interfaces for the classes
are done in the object-oriented manner with construc­
tors, destructor, selectors (information routines, giving
access to values and parameters stored by the class), and
modifiers (subroutines to change the object's datafields).
A more detailed description of each and every one of the
new classes can be found in [22].

5.1 GridFunction

A GridFunction represents the numerical solution of the
PDE or the right-hand side of a system of equations.
Each gridfunction is defined on a (possibly composite)
mesh, an object of the class Grid, and has information of
subdomains defined on the mesh. Typically, such subdo­
mains model the boundaries. The Grid and GridFunction
classes are described in detail in [27] and [36]. We have
added operations to apply an operator to a gridfunction,
produce the inner product of two gridfunctions, and to
do the preconditioning. As an example of the style of the
code, the preconditioning operations are listed below:

ApplylnvPrecond(gf, M, x)

Preconditioner solve gf = M- 1 x. This is done with
the aid of operations FastTransf, FastlnvTransf, and
SolveBandSystem, corresponding to the three-step
algorithm (*).

FastTransf(gf, Q(l:L, 1:1), x)

The gridfunction gf is the result of applying the fast
transforms Q(f, j), in the coordinates f = 1, ... , L
for the components j = 1, ... , 1, to the gridfunc­
tion x.

FastlnvTransf(gf, Q(l:L, 1:1), x)

The gridfunction gf is the result of applying the in­
verses of the fast transforms to the gridfunction x.

SolveBandSystem(gf, N, x)

Solve the banded system N gf = x, where gf and x
are gridfunctions.

290 MOSSBERG, OTTO, AND THUNE

5.2 Coefficient

The class Coefficient represents the discretized coeffi­
cients in Equation (4.1). The input is a function that con­
tains the formula for the coefficients. In the present im­
plementation, for space-dependent coefficients only, the
function is evaluated once on the entire grid, and the val­
ues are stored. To allow for coefficients with space and

time dependency, repeated function calls would be an al­
ternative.

5.3 Stencil

Every term (the identity operation or a derivative of first
or higher order) in Equation (4.1) is approximated by a fi­
nite difference- a stencil. An object of the class Stencil is
a one-dimensional set of offsets, described by the space
direction (x or y) of the stencil, its extension from the
central point, and the weights associated with each offset.
In the present implementation, "empty" offsets within the
range must be assigned zero weights. To apply the com­
plete operator to a gridfunction, we apply the different
stencils on the corresponding subdomains.

5.4 BoundaryCondition

An object of the BoundaryCondition class has informa­
tion on what type of local boundary condition it handles,
in which space direction this condition is applied, and if
the PDE problem has a nonhomogeneous boundary con­
dition of Dirichlet or Neumann type, the boundary data
are stored. The present implementation also supports pe­
riodic boundary conditions.

5.5 Operator

The class Operator represents the total operator B of the
discretized problem (3.1). In this implementation, it is not
at all stored as a matrix, but as a set of objects of other
classes. Most importantly, there are stencils with infor­
mation about which subdomain of the grid each stencil
should be applied to. See also the GridFunction class.

5.6 Transform

So far, the preconditioners described in Subsection 4.2
make use of the Fourier transform, sine transform, cosine
transform, or some modification of one of them. The de­
sign will make it easy to use this new set of Cogito tools
to develop and test new preconditioners within this fam­
ily.

5.7 Preconditioner

This is an implementation of the preconditioners based
on fast transforms described above. However, the inter­
faces provided by the operations, e.g., to do the (non­
trivial) setup of the preconditioner, should be suitable for
many types of preconditioners. This is where the theo­
retical framework, developed in [13], is exploited. The
framework allows different approximation types (optimal
or superoptimal), and different types of fast trigonometric
transforms.

In order to form the preconditioner, we need to access
the values corresponding to the weights of the total space
discretization stencil for every grid line. We have not
stored the total stencil in our Operator objects. When the
operator is applied to a gridfunction, each and every one
of the derivative Stencils is applied separately. Thus, we
have to apply the operator to gridfunctions that are con­
catenations of smaller "unit" gridfunctions to extract the
desired values. In a typical PDE solving program, this not
so straightforward procedure is done only once, whereas
matrix-vector multiplications (applying an operator to a
gridfunction) are repeated over and over again. That is
why we have chosen an implementation that favors the
latter.

6 CASE STUDIES

In this section, we describe a PDE problem and show how
the implementation can be done, and easily modified, us­
ing the described tools. We also show by example how
expressive the new gridfunction operations are.

6.1 Wave Equation

Consider the two-dimensional wave equation with Dirich­
let boundary conditions:

au au au 1 - +-+- = (2- v)f (XI+ X2- Ut) (6.1)
at axl axz

for
0<x1~a1, O<x2~a2, t>O,

where

u(O, x2, t) = j(x2- vt),

u(XJ, 0, t) = f(xi- vt),

u(xi,Xz,O) = f(xl +x2),

f(y) = sin(7y),

and 0 < v « 1 is a velocity parameter introduced to
model a slow time scale.

To model a stretched grid, where the gridpoints lie
more densely near the boundaries, we introduce the co­
ordinate transformations

xe = ae (tanh(se (2~e - 1)) + ~),
2 tanh(se) 2

0 < ~e :S: I, f = I, 2. (6.2)

The positive parameters s1 and s2 control the stretching
of the grid. Larger se gives a mesh that is more stretched
in direction£. In fact, as se -+ 0, the transformation (6.2)
becomes just a scaling by ae.

Using this, Equation (6.1) transforms into a PDE with
variable coefficients

au au au - + O"j(~I)- + 0"2(~2)­
at a~1 ab

=(2-v)J'(x!+X2-vt), (6.3)

where

1 2 tanh(se)
O"£(~e)=a(cosh (se(2~e-1)) .

Sf
(6.4)

We then solve (6.3) on a uniform grid.
The computational domain 0 < ~e ::;; I, f = I, 2, is

discretized with space step he in direction £. In the inte­
rior we approximate the spatial derivatives in (6.3) with
the second-order accurate stencil Do, and at the outflow
boundary~£ = I with first-order accurate D_. Figure 5
shows the stencils approximating au 1 a~. u we define
P as the total space discretization operator, and use the
trapezoidal rule for implicit time discretization of (6.3),
the scheme can be written as

Here un is the solution vector, i.e., the gridfunction at
time level n, and k is the time step. The system of equa­
tions to solve for time level n + 1 becomes

1
2h

Do

(I+ ~kP) un+l = rn.
'-.,-'

B

1
2h

D_

FIGURE 5 Space discretization stencils.

1
h

SOFfWARE TOOLS FOR PRECONDITIONERS 291

6.2 Implementation

In the Fortran 90 implementation, we must begin with a
number of declarations and allocations. The syntax for
this is a bit more complicated than for an analogous li­
brary in C++, but the solver subroutine below can be writ­
ten in a fairly transparent way.

program

! Declarations

external bcFunc
external transFunc

! Create a grid. Coordinates are read from file.
call Create_G(g, 'grid.dat')
call Read_G (g)
gsz = Size_G(g)

! Define subdomains,
! corresponding to boundary areas.
east(1) = gsz(1); east(2) = gsz(1);
east(3) = 1; east(4) = gsz(2)
id = 101
call DefSD_G(g,east,id)
north(1)
id = 102

! Create and initiate two gridfunctions
! on the grid, one with initial values,
! and one with the right-hand side of
! the system of linear equations.
call Create_GF(xO,nc,g)
call Create_GF(rhs,nc,g)

! Dirichlet condition in the x 1-direction.

direc = 1
call Create_BoundCond(bcD, &

direc, 'D' ,gsz,bcFunc)

! Here, transFunc refers to
! Equation (6.4) for f = 1.
call Create_Coeff(sigma1, &

nc,gsz,transFunc)

! Make a stencil by defining its weights.
w(-1) = -0.5; w(O) = 0.0; w(1) = 0.5
w = w/h1
call Create_Stencil(Dzerox,direc,w)

! Initiate the construction of the operator,
! and add the coefficients and stencils to it.
! The optional parameters alpha and beta

292 MOSSBERG, OTIO, AND THUNE

! determine the time discretization.
alpha= 1.0; beta= 0.5
call Create_Operator(B, &

bcD,gsz,nc,alpha,beta)
call Build_Operator(B, &

sigmal,Dzerox,id)

! Here we use the Fourier transform.
call Create_Transform(Q(l:l,l:l), &

'FT')

! Form the preconditioner,
! '0' for optimal approximation,
! or ' S ' for superoptimal.
call Create_Precond(M,B,Q, '0')

! Solve the resulting system!

! Explicit destructor call
call Delete_G(g)

end program

As a robust and easily programmed Krylov subspace
method, we have chosen the restarted generalized mini­
mal residual (GMRES(r)) algorithm [32], where r is the
restarting length. A GMRES(r) solver for the resulting
problem Bx = rhs can easily be composed with the
building blocks we have provided. We could view this
solver as an object of a System Solver class, as indicated
in Figure 6. We have not made use of that design in the
present implementation, where the main work has been
to develop the trickier classes defining the equations aris­
ing from the discretization, and a suitable preconditioner.
Our solver is a traditional subroutine called by the main
program. For studies of a variety of preconditioned meth­
ods for systems of linear equations, such a System Solver
class would be an appropriate tool.

subroutine Solve(B,M,xO,rhs,r, &
maxiter,eps)

! Preconditioned iterative solving
! of the system Bx = rhs with
! precondtioner M.
! xO : initial values
! r : restarting length
! maxi ter : max number of iterations
! eps : convergence tolerance

System Pre-System f-- Solver
r--- conditioner

FIGURE 6 A possible System Solver class.

restart = .true.
do while(restart)

rnorm = Norm_GF(rhs)

do j=l,r

! z =By

call ApplyOperator_GF(z,B,y)

! Solve Mx = z, i.e., calculate
! x = inv(M)z

call ApplyinvPrecond_GF(z,M,z)

h = DotProd_GF(z,y)
call Saxpy_GF(z,h,z,y)

znorm = Norm_GF(z)

end subroutine

6.3 Numerical Results

The execution time for this kind of code is expected to be
somewhat longer than for a traditional Fortran 90 code.
We have a larger number of allocation and deallocation
processes, and the data encapsulation gives more over­
head effects for subroutine calls. Our opinion is that ami­
nor degradation of the performance is acceptable, as long
as we gain flexibility. In the hidden arithmetical parts of
the code, we can use optimized library routines for heavy
computations.

We have compared the GMRES implementation de­
scribed above, for restarting length 10, with a traditional
"hardcoded" Fortran 90 routine on a DEC AlphaServer
8200. In the numerical comparisons, we held the para­
meters v in (6.3) and KJ = k/ h 1 fixed, and let the number
of gridpoints in the ~ 1-direction denoted by m 1 vary. The
number of gridpoints in the ~z-direction followed m 1 as
m2 = ~m 1 , for stability reasons [12]. Thus, by increas­
ing m 1 (and mz) we obtain a more accurate approxima­
tion of the solution to the PDE. As a stopping criterion
for the preconditioned GMRES algorithm, we demanded
that the norm wise relative preconditioned residual should
be less than a tolerance E. Since the difference scheme is
second-order accurate, the tolerance was chosen to satisfy

From Figure 7, we can see that the new version has
about two times or less the execution time of the old one
for different problem sizes. The same behavior was ob­
served for other restarting lengths.

2.5 s
:0 2
;:l
0.

~1.5
Qi ...

: ,_1 ::::i 100 :
.. ···············

v = 0.06"

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
log2 (mi)

• ,.1 ::::; 1000
........ , · · : : : .. .

v == 0.01:

6 6.5 7 7.5 8 8.5 9 9.5 10
log2 (mi)

FIGURE 7 Relative performance for the GMRES(IO) solver
for two different values of KJ and v.

Moreover, it can be noted that the relative performance
of the Cogito-based solver is better for larger problem
sizes. This is expected, as the overhead costs should re­
main constant, whereas the computation time increases
independently of approach. We consider this loss in per­
formance to be a fair price. For sufficiently large prob­
lem sizes, the effect of internal calls will be negligible.
With the new software tools, we have an excellent start­
ing point for experiments with, e.g., stencils or boundary
condition changes. One of our primary goals is to use the
new setup for development of new preconditioners.

6.4 Modification of the Scheme

In the traditional code we had poor support for modifi­
cations of the numerical scheme. The following example
illustrates this, and shows that the new software tools im­
prove the situation dramatically. In order to damp high­
frequency oscillations in our wave propagation problem,
we may modify the operator by adding artificial dissipa­
tive terms

for the interior gridpoints in both directions. This change
is mirrored in the coefficient matrix, possibly adding
bandwidth to it, as well as changing already nonzero ele­
ments. For the traditional code, it would be a tedious and
time-consuming problem to rewrite the assembly of the
matrix. This is particularly noticeable in the context of
adaptivity, where such as modification would be done

SOFfWARE TOOLS FOR PRECONDITIONERS 293

only on a more limited part of the computational domain.
However, making the same modification, using our new
software tools, is an uncomplicated task. We just add a
few lines to our main program:

! Create the additional stencil and coefficient.

w(-1) = -1.0; w(O) = 2.0
w(1) = -1.0; w = w/(h1**2)
call Create_Stencil(DplusDminus, &

direc,w)
call Create_Coeff(epsh,nc,gsz,func)

! The id parameter here denotes
! interior points in the x 1-direction.

call Build_Operator(B, &
epsh,DplusDminus,id)

6.5 Expressiveness

The purpose of this subsection is to demonstrate how
useful and expressive the operations defined in Subsec­
tion 5.1 actually are. To this end, we consider the normal
block preconditioners in [26] referred to as being poly­
transform with several block levels. Such preconditioners
are aimed at discretized systems of PDEs, where the com­
ponents of the solution depend on L coordinates. The ba­
sic idea for a polytransform preconditioner with several
block levels is to apply fast transforms in all coordinates
but one, and to allow different transforms for different co­
ordinates and components. For the remaining coordinate,
block banded systems are solved, and the precondition­
ing is completed by inverse transforms. If the discretized
solution is embedded in a vector, the transform part of
the preconditioner could be expressed as a matrix with a
hierarchy of L block levels. However, that matrix is mud­
dled with permutation matrices [26], which are needed in
order to get the various transforms applied correctly. The
structure of the preconditioning operator becomes much
clearer when the operand is represented as a tensor of or­
der L + 1, i.e., one index for each of the L discretized
coordinates and one component index. Note that the Cog­
ito concept of a gridfunction is closely related to such a
tensor. In fact, gridfunctions in Cogito are actually imple­
mented as arrays of dimension L + 1.

In the preconditioning algorithm below, the number of
components is mo, and me denotes the number of dis­
crete coordinate points for the coordinate labeled l =
1, ... , L. Thus, the total number of coordinate points is

The algorithm for a polytransform preconditioner with L
block levels becomes:

294 MOSSBERG, OTIO, AND THUNE

1. Fore = 1, ... , L - 1 and Jo = 1, ... , mo, perform
n LIme independent fast transforms of length me.

2. Solve nL-i independent systems of mLmo
equations, which are block banded with block size
mo x mo.

3. For£= 1, ... ,L-1and}o= 1, ... ,mo,
perform nL/me independent fast inverse
transforms of length me.

The algorithm (*)is just the special case where L = 2,
mo = nc, m1 = mx, and m2 =my. By representing the
solution and the right-hand side as gridfunctions z, the al­
gorithm above is readily expressed in terms of operations
from Subsection 5.1 as

1. Apply FastTransf(z, Q(L - 1:1, 1 :mo), z).
2. Apply SolveBandSystem(z, N, z).
3. Apply FastlnvTransf(z, Q(l :L - 1, 1 :mo), z).

Furthermore, it is now easy to build new precondition­
ers. By replacing the index range L - 1:1 with L: 1, we
obtain a preconditioner where the operator N is block
diagonal, which would be a clear advantage for the im­
plementation on parallel computers. On the other hand,
such a complete block diagonalization could, depending
on the original operator B, degrade the convergence rate
of the preconditioned Krylov subspace method. In that
case, an alternative is to transform only in the coordi­
nates that are amenable to fast transforms; typically those
coordinates for which the coefficients of the operator B
vary moderately. This is achieved by replacing the index
range L - 1: 1 with an index set that selects the desired
coordinates. However, by transforming in fewer coordi­
nates than L - 1, the operator N will no longer be narrow
banded. For each coordinate labeled e ~ L - 1 that is not
transformed, the bandwidth of N is increased notably.

7 CONCLUDING REMARKS

We have presented ideas for an extension of Cogito to im­
plicit methods, so that we get a flexible system for both
explicit and implicit finite difference methods on struc­
tured grids. This extension does not limit the choice of
discretization stencils. We expect that this freedom will
be valuable for the development of new numerical meth­
ods.

Linked to this environment, we now also have tech­
niques for effectively solving the systems of linear equa­
tions arising from the implicit methods. These solvers
are preconditioned iterative methods, where the precon­
ditioners are constructed from a general framework for
fast transforms. The numerical performance of a GMRES
solver built with the new tools is within a factor two of

that of a traditional code for sufficiently large problems.
We find this cost acceptable for the achieved increase in
flexibility.

We have now taken a first step to incorporate the hand­
ling of implicit methods in Cogito. A second step on
the way to a complete parallel framework is to com­
bine this work with a newly implemented parallel ver­
sion of the Fortran 90 classes Grid and GridFunction.
Being based on these, a large part of our classes will auto­
matically execute in parallel. Further development is also
necessary for the handling of composite grids and three­
dimensional grids in the new part of the code. Future di­
rections of research could entail extensions to accommo­
date nonlocal boundary conditions such as Dirichlet-to­
Neumann maps [17], staggered grids, Schur complement
matrix methods [9, 18, 20], and nonlinear PDEs.

ACKNOWLEDGEMENTS

We thank Peter Olsson, Jarmo Rantakokko, and Krister
Ahlander in the Cogito group for explaining their ideas
and codes. We are also grateful to Dr. Sverker Holmgren
for supplying parts of the codes for the preconditioned
Krylov subspace methods.

REFERENCES

[1] S. Balay, W. D. Gropp, L. Curfman Mcinnes, and B. F.
Smith, "PETSc 2.0 users manual," Argonne Nat!. Lab., Ar­
gonne, IL, Rep. ANL-95/11, 1995.

[2] D. L. Brown and W. D. Henshaw, "Overture: An advanced
object-oriented software system for moving overlapping
grid computations," Los Alamos Nat!. Lab., Los Alamos,
NM, Rep. LA-UR-96-2931, 1996.

[3] A. M. Bruaset and H. P. Langtangen, "Object-oriented
design of preconditioned iterative methods in Diffpack,"
ACM Trans. Math. Software, vol. 23, pp. 50-80, 1997.

[4] R. W. Freund, G. H. Golub, and N. M. Nachtigal, "Iter­

ative solution of linear systems," Acta Numerica, vol. 1,

pp. 57-100, 1992.

[5] P. Fritzson, L. Viklund, J. Herber, and D. Fritzson, "Indus­

trial application of object-oriented mathematical modeling

and computer algebra in mechanical analysis," in Technol­

ogy of Object-Oriented Languages and Systems- TOOLS

7, pp. 167-181, 1992.

[6] J. Guerra and B. Gustafsson, "A semi-implicit method for

hyperbolic problems with different time-scales," SIAM J.

Numer. Anal., vol. 23, pp. 734--749, 1986.

[7] B. Gustafsson and H. Stoor, "Navier-Stokes equations

for almost incompressible flow," SIAM J. Numer. Anal.,

vol. 28, pp. 1523-1547, 1991.

[8] P. R. Halmos, Finite-Dimensional Vector Spaces. New

York: Springer-Verlag, 2nd ed., 1974.

[9] L. Hemmingsson, "A domain decomposition method for
first-order PDEs," SIAM 1. Matrix Anal. Appl., vol. 16,
pp. 1241-1267, 1995.

[10] S. Holmgren, "CG-like iterative methods and semicircu­
lant preconditioners on vector and parallel computers,"
Dept. of Scientific Computing, Uppsala Univ., Uppsala,
Sweden, Rep. 148, 1992.

[11] S. Holmgren and K. Otto, "Iterative solution methods
and preconditioners for block-tridiagonal systems of equa­
tions," SIAM 1. Matrix Anal. Appl., vol. 13, pp. 863-886,
1992.

[12] S. Holmgren and K. Otto, "Semicirculant solvers and
boundary corrections for first-order partial differential
equations," SIAM 1. Sci. Comput., vol. 17, pp. 613-630,
1996.

[13] S. Holmgren and K. Otto, "A framework for polynomial
preconditioners based on fast transforms 1: Theory," BIT,
Vol. 38, 1998 (to appear).

[14] S. Holmgren and K. Otto, "A framework for polynomial
preconditioners based on fast transforms II: POE applica­
tions," BIT, Vol. 38, 1998 (to appear).

[15] P. Hagglund, P. Olsson, M. Thune, and P. Fritzson, "Imple­

mentation of a POE application in ObjectMath and Cog­

ito," Parallel and Scientific Computing Institute, Royal In­

stitute of Technology, Stockholm, Sweden, Rep. 5, 1996.

[16] J. F. Karpovich, M. Judd, W. T. Strayer, and A. S.

Grimshaw, "A parallel object-oriented framework for sten­

cil algorithms," in Proc. 2nd Int. Symp. High Performance

Distributed Computing, 1993, pp. 34-41.

[17] J. B. Keller and D. Givoli, "Exact non-reflecting boundary

conditions," 1. Comput. Phys., vol. 82, pp. 172-192, 1989.

[18] D. E. Keyes and W. D. Gropp, "A comparison of domain

decomposition techniques for elliptic partial differential

equations and their parallel implementation," SIAM 1. Sci.

Statist. Comput., vol. 8, pp. s166-s202, 1987.

[19] C. Koelbel and P. Mehrotra, "Compiling global name­

space programs for distributed execution," I CASE, NASA

Langley Research Center, Hampton, VA, Rep. 90-70,

1990.

[20] E. Larsson, "A domain decomposition method for the

Helmholtz equation in a multilayer domain," Dept. of Sci­

entific Computing, Uppsala Univ., Uppsala, Sweden, Rep.

190, 1996.

[21] M. Lemke and D. J. Quinlan, "P++, a parallel C++ ar­

ray class library for architecture-independent development

of structured grid applications," ACM SIGPLAN Notices,
vol. 28, no. 1, pp. 21-23, 1993.

[22] E. Mossberg, "Object-oriented software tools for the con­
struction of preconditioners," Dept. of Materials Science,
Uppsala Univ., Uppsala, Sweden, Rep. UPTEC 97 020E,
1997.

SOFTWARE TOOLS FOR PRECONDITIONERS 295

[23] G. Nelissen and P. F. Vankeirsbilck, "Electrochemical
modelling and software genericity," in Modern Software
Tools for Scientific Computing, E. Arge, A. M. Bruaset,
and H. P. Langtangen, eds., Boston, MA: Birkhauser,
1997.

[24] C. D. Norton, B. K. Szymanski, and V. K. Decyk, "Object­
oriented parallel computation for plasma simulation,"
Comm. ACM, vol. 38, no. 10, pp. 88-100, 1995.

[25] P. Olsson, "Object-oriented software tools for parallel
computing with distributed memory," Dept. of Scientific
Computing, Uppsala Univ., Uppsala, Sweden, Rep. 193,
1997.

[26] K. Otto, "A unifying framework for preconditioners based
on fast transforms," Dept. of Scientific Computing, Upp­
sala Univ., Uppsala, Sweden, Rep. 187, 1996.

[27] J. Rantakokko, "Object-oriented software tools for
composite-grid methods on parallel computers," Dept. of
Scientific Computing, Uppsala Univ., Uppsala, Sweden,
Rep. 165, 1995.

[28] J. V. W. Reynders et a!., POOMA: A framework
for scientific computing applications on parallel com­
puters. Los Alamos Nat!. Lab., Los Alamos, NM,
http://www.acl.lanl.gov/PoomaFramework/.

[29] M. Rosing, R. B. Schnabel, and R. P. Weaver, "Dino: Sum­
mary and examples," in Proc. 3rd Conf Hypercube Con­
current Computers and Applications, 1988, pp. 472-481.

[30] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, Object-Oriented Modeling and Design. En­
glewood Cliffs, NJ: Prentice-Hall, 1991.

[31] Th. Ruppelt and G. Wirtz, "Automatic transformation of
high-level object-oriented specifications into parallel pro­
grams," Parallel Comput., vol. 10, pp. 15-28, 1989.

[32] Y. Saad and M. H. Schultz, "GMRES: A generalized min­
imal residual algorithm for solving nonsymmetric linear
systems," SIAM 1. Sci. Statist. Comput., vol. 7, pp. 856-
869, 1986.

[33] J. H. Saltz, R. Mirchandaney, and K. Crowley, "Run­
time parallelization and scheduling of loops," !CASE,
NASA Langley Research Center, Hampton, VA, Rep. 90-
34, 1990.

[34] D. A. Taylor, Object-Oriented Technology: A Manager's
Guide. Reading, MA: Addison-Wesley, 1993.

[35] M. Thune, "Object-oriented software tools for parallel
POE solvers," Wuhan Univ. 1. Natur. Sci., vol. 1, pp. 420-
429, 1996.

[36] M. Thune, P. Olsson, and J. Rantakokko, User's Guide,
Cogito Documentation. Dept. of Scientific Computing,
Uppsala Univ., Uppsala, Sweden, 1994-1995.

[37] J. L. Wagener, "Fortran 90 and computational sci­
ence," in Computational Science Education Project,
http://csep 1. phy.ornl.gov/csep.html, 1996.

[38] R. D. Williams, "DIME++: A language for parallel PDE
solvers," Caltech, Pasadena, CA, Rep. CCSF-30, 1993.

[39] K. Ahlander, "An object-oriented approach to construct
POE solvers," Dept. of Scientific Computing, Uppsala
Univ., Uppsala, Sweden, Rep. 180, 1996.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

