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A typical situation of oil reservoir simulation is considered in a porous medium where the
resident oil is displaced by water injection. An explicit expression of the speed of the oil-
water interface is given in a pseudo-2D case via the resolution of an auxiliary Riemann
problem. The explicit 2D solution is then corroborated with numerical simulations by
solving the transport equation with a generalized scheme of Harten type.

1. Introduction

Let Ω be a rectangular domain in R2 and let ∂Ω be its boundary. In this paper, we will be
interested in the resolution of a system of type

(P)



ε
∂u

∂t
+ div

(
V f (u)

)= 0 in Ω× (0,+∞),

divV = 0 in Ω
(1.1)

with

V =−m(u)∇p, (1.2)

subject to the initial condition

u(0,x)= u0(x), x ∈Ω, (1.3)

and the following boundary condition for the variable u:

u(t,x)= 1 on Γin (1.4)

together with the conditions for p:

p = 1 on Γout, V ·n=−m(u)
∂p

∂n
= g on ∂Ω \Γout (1.5)

and where Γin and Γout are as defined below.
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Figure 1.1. Water-oil reservoir simulation in porous media.

Equations (1.1)–(1.3) represent a simplified model for an incompressible flow in some
porous medium, analogous to the Buckley-Leverett model used in oil reservoir simula-
tions [9]. In this context, the system represents a water-oil displacement model, that is,
oil trapped in Ω is pushed towards Γout by injection of water at Γin, see Figure 1.1. In our
case, the variable u represents the saturation of the water phase, the vector V is the total
flux density of the two fluids, and p is the pressure. See next paragraph for the derivation
of the model.

The functions f and m are nonlinear functions of u. A typical representation of the
fractional flow function f , which characterizes the relative permeability of the fluids, is
given for some α > 0 by

f (u)= λuα

λuα + (1−u)α
(1.6)

(see Figure 1.2). In the above formula, λ is the viscosity ratio of the two fluids (λ= µo/µw).
Note that such an f , which is obtained by considering a relative permeability of the poly-
nomial form uα, is an increasing function but which may change concavity. As concerning
the function m, it will be supposed to be positive, bounded, that is, there exist m0 and m1

such that

0 <m0 ≤m(u)≤m1 <∞ (1.7)

for u∈ [0,1]. More precisely, m, which represents the total mobility of the two fluids, is
given by

m(u)= uα

µw
+

(1−u)α

µo
= λuα + (1−u)α

λµw
. (1.8)

Multiphase flows in porous media are inherently nonlinear and often numerical sim-
ulations happen to be the only practical way to understand their qualitative behaviour.
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Figure 1.2. Typical profile of the fractional flow function f .

Even for simplified systems analogous to (1.1)-(1.2), usually named the Buckley-Leverett
model, there is no general result concerning the existence and uniqueness of a global solu-
tion of such a system, see, for example, the book of Gagneux et al. [14]. This hyperbolic-
elliptic-type model results by neglecting gravity and capillary forces in the generalized
Darcy’s law which is usually used for the expression of the velocity in the case of two im-
miscible fluids sharing a porous medium (cf. [2, 5, 10, 14]). This leads to the expression
(1.2) in our case. The consideration of the capillary forces would result in a parabolic-
elliptic version studied by various authors, see, for example, [13, 14]. As for the hyper-
bolic case, results which exist concern essentially treatment of particular boundary con-
ditions. For example, in [14], the mobility m is taken to be a constant which comes to
solving−∆p = 0 for the elliptic part. This together with convenient boundary conditions
of Neumann type on Γin and Robin-type condition on Γout ensures a unique solution in
C([0,T];L1(Ω)) for all T > 0. In their paper, Schroll and Tveito [27] are interested in the
local existence and stability of solutions of such a system. With Neumann conditions on
the whole boundary and appropriate regularity hypotheses, they indeed obtain a classical
but local in time solution.

In this paper, we propose to study the well-posedness of the system (1.1)–(1.5) and to
construct a weak entropy solution in the pseudo-2D case (i.e., when Γin and Γout are the
lateral sides of the rectangular domain) via the resolution of an auxiliary 1D problem of
Riemann type.

We start by describing the simplications called for in the physical problem which led
to our model by departing from the theory of mixtures, see, for example, [2, 25]. Then
in Section 3 we define an entropy solution of (1.1)–(1.5), and we verify that the problem
is well-posed in the sense of Bardos-LeRoux-Nédélec (BLN) [6]. In Section 4, we solve
the corresponding one-dimensional problem which in turn allows us to give an entropy
solution in the pseudo-2D case. In the last section, some numerical results are presented,
to corroborate the theoretical ones, by using a scheme of Harten type.
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2. Derivation of the model

2.1. The theory of mixtures. As we said in the introduction, the system (1.1)–(1.5) rep-
resents a simplified water-oil displacement model used in oil reservoir simulations for
enhanced oil recovery. The latter consists in injecting water at a well (Γin) in order to
push the oil trapped in the porous rock (Ω) towards the production well (Γout).

A complete theoretical model must therefore be able to take into account the various
physical characteristics and any eventual interactions of the three phases in presence: the
two fluids oil (o) and water (w) and the solid rock (r). The so-called theory of mixtures
provides such a framework as it presents a systematic methodology to derive equations of
problems such as flow through a porous medium. For an overview of models concerning
multiphase flows, we refer to the book on Mechanics of Mixture by Rajagopal and Tao
[25], and among other papers those of Atkin and Craine [4], Bowen [8], Truesdell [28],
and Allen [2].

Let p be the index which denotes the phase (in our case p = o, w, or r) and let φp, ρp,
and vp represent, respectively, the volume fraction, the mass density, and the velocity of
the phase p. Then the porosity of the medium is given by

φ= 1−φr
(= φw +φo

)
. (2.1)

The saturation Sp of the fluid phase p is then defined by

Sp =
φp

φ
, p = o,w, (2.2)

subject of course to the constraint

Sw + So = 1. (2.3)

The governing equations of an isothermal flow will be obtained by writing the mass
and momentum balance equations for the three phases. As in our case there is supposed
to be no interphase mass transfer and, in particular, the rock is chemically inert, the mass
conservation for any phase p will read

∂
(
φpρp

)
∂t

+∇· (φpρpvp
)= 0, p = o,w,r. (2.4)

The velocity field of the rock can be reasonably taken as zero (up to fixing a coordinate
system in which vr = 0). In particular, we neglect any deformation which could have
been caused by the water injection. As concerning the velocity fields of the fluids, they are
obtained via the momentum balance equations which for Newtonian fluids are given by

φpρp
Dvp
Dt

=−∇Pp + ρpg∇z+mp, p = o,w, (2.5)

where Pp is the mechanical pressure in the fluid p, g the gravitational acceleration, z
some depth, and mp the momentum exchange from other phases. This latter quantity is
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commonly assumed to take the form

Λpmp = φp
(
vr − vα

)
, (2.6)

where Λp is the mobility tensor of the phase p. If we further assume that the inertial
effects in the fluids are negligible (i.e., Dvp/Dt = 0), (2.5) yields the so-called Darcy’s law

φpvp =Λp
(−∇Pp + ρpg∇z

)
. (2.7)

Constitutive laws for mobility are largely phenomenological, the most common versions
having the form

Λp =
kKrp

µp
, (2.8)

where µp is the dynamic viscosity of fluid phase p, k is the permeability tensor, and the
relative permeability Krp is a coefficient describing the effects of the other fluid in ob-
structing the flow of fluid p. For a two-fluid system with no interphase mass transfer as
in our case, Krp is typically a function of the saturation Sp.

2.2. The Buckley-Leverett model. The Buckley-Leverett model [9] is a simplified model
of two phase flows in porous media but which is of particular relevance in the petroleum
industry for enhanced oil recovery. This model is based on some basic assumptions,
namely, the incompressibility of the solid and the fluids and the fact that the effects of
capillary pressure gradients on the flow fields are negligible as compared to the pressure
gradients applied through pumping.

The incompressibility assumption implies that φ is constant in time and that the fluids
densities are constant in space and time. One can then simplify the continuity equation
(2.4) by ρp and it becomes

∂φp

∂t
+∇· (φpvp

)= 0, p = o,w. (2.9)

If we introduce the flux function Vp defined by

Vp = φpvp (2.10)

and use (2.2), we get

φ
∂Sp
∂t

+∇·Vp = 0, p = o,w. (2.11)

By summing the equations for the two fluids and using the fact that So + Sw = 1, we then
have the system

φ
∂
(
Sw
)

∂t
+ divVw = 0,

divVT = 0
(2.12)
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with VT =Vo +Vw, the total flux given by, due to (2.7),

VT =Λw
(−∇Pw + ρwg∇z

)
+Λo

(−∇Po + ρog∇z
)
. (2.13)

In practice, the interface tension, which occurs due to the difference of pressures of
the two fluids, leads to capillary effects. In our two-phase system, there will be a single
capillary pressure Pc given by

Pc = Po−Pw. (2.14)

Now we invoke the assumption of the Buckley-Leverett model corresponding to the
fact that capillarity has negligible effects on the flow field-wide, that is, gradPc � 0 so that

∇Pw =∇Po (=∇P). (2.15)

Finally assuming that gravity effects are absent as in the 1D case, the expression of VT

collapses to

VT =−
(
Λw +Λo

)∇P. (2.16)

Now define the fractional flow of water, f = f (Sw), by

f = Λw

Λo +Λw
. (2.17)

By noting that Vw =VT f , we thus end up with the hyperbolic-type equation

φ
∂Sw
∂t

+ div
(
VT f

)= 0 (2.18)

coupled to

divVT = 0 (2.19)

with VT given by (2.16). If we now define the total mobility by m, that is,

m=Λw +Λo, (2.20)

then one sees that it suffices to replace in the above equations the porosity φ by ε, the
unknown Sw by u, and the total flux function VT by V to get (1.1)-(1.2).

The fractional flow f , which is clearly nonlinear through its dependence on the un-
known Sw, has typically an “S-shaped” profile such as the one depicted in (1.6). As con-
cerning the total mobility function m, due to (2.8), it is given by

m= k

(
Kro

µo
+
Krw

µw

)
. (2.21)

The expression (1.8) considered in this paper is thus obtained by considering an identity
permeability tensor k (which comes to assuming that the rock is homogeneous without
any particular isotropy) and a polynomial form of the relative permeability, Krw = Sαw.
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Let us finally remark that not neglecting the capillary forces would lead to completely
different models on a mathematical basis. Usually one ends up with quasilinear parabolic
degenerate equations instead of hyperbolic ones—see, for example, Chavent and Jaffre
[10] where a fictitious global pressure is introduced as a new unknown to weaken the
coupling between S and P.

3. Definition and well-posedness

Let us first say a few words on the boundary conditions. Notice that the boundary con-
dition for u is given only at Γin. In fact, as we will see further, this is sufficient for the
well-posedness of the problem in the sense of BLN [6]. As concerning the boundary con-
ditions on p, we have p = 1 at Γout corresponding to an atmospheric pressure, which is
physically meaningful. But without loss of generality for the analysis, we will consider
from now on p = 0 at Γout. The condition on the rest of the boundary is

−m(u)
∂p

∂n
= g on ∂Ω \Γout, (3.1)

n being the outward unit normal. As for g, it will be taken as follows:

g =

−q on Γin,

0 elsewhere
(3.2)

with some positive constant q. In this context, q represents the injection speed of the
water at Γin, the rest of the boundary being impermeable except of course for Γout. Let us
note that such a boundary condition is indeed not a regular one (g is not continuous)
and the latter could have been regularized but we will not do so as regularity results are
not our aim here. Instead we prefer a context which physically makes sense and deals with
the weak formulation below.

Define Q =Ω×]0,T[ for some time T > 0 and let BV be the space of functions which
have bounded variations. Consider then the following problem for a given u in L∞ ∩
BV(Q) and t ∈]0,T[: find p(·, t) ∈ � = {v ∈ H1(Ω), v = 0 on Γout} such that for all
ϕ∈�,

∫
Ω
m
(
u(·, t))∇p∇ϕdxdy =

∫
Γin

qϕds. (3.3)

Of course, such a p will depend on t via the function u(·, t). Note that as u ∈ BV(Q),
u(·, t) can be defined for all t > 0 in the sense of trace.

Proposition 3.1. Let mes(Γin) > 0 and mes(Γout) > 0. Then for any given u(·, t) ∈ L∞ ∩
BV(Ω), the problem (3.3) admits a unique solution p in �. Moreover, this solution is positive
a.e. in Ω.
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Proof. Set

a(p,ϕ)=
∫
Ω
m(u)∇p∇ϕdxdy. (3.4)

Then denoting by | · |1,Ω (resp., ‖ · ‖1,Ω) the seminorm (resp., the norm) on H1(Ω), we
have, for v ∈�,

a(v,v)≥m0|v|21,Ω (3.5)

and, as m0 > 0, Poincaré’s inequality which holds on � leads to

a(v,v)≥ C1‖v‖2
1,Ω. (3.6)

We then conclude by Lax-Milgram for the existence and uniqueness of p.
Let then

p = p+− p−, (3.7)

where p− = sup(−p,0). By taking ϕ = p− as the test function in the problem (3.3), we
have

a
(
p, p−

)=
∫
Ω
m(u)∇p+∇p−dxdy−

∫
Ω
m(u)

∣∣∇p−
∣∣dxdy

=−
∫
Ω
m(u)

∣∣∇p−
∣∣dxdy ≤ 0.

(3.8)

On the other hand,

a
(
p, p−

)=
∫
Γin

qp−|Γin
dy ≥ 0. (3.9)

Thus we have

∫
Ω
m(u)

∣∣∇p−
∣∣dxdy = 0, (3.10)

which leads to the fact that p− is almost everywhere constant on Ω. And, as p−|Γout
= 0, we

finally have p ≥ 0 a.e. on Ω. �

Note that, as p can only be decreasing across Γout, the above proposition ensures that it
suffices to impose a boundary condition for u only on Γin for the problem to be well-posed
in the sense of BLN [6]. Indeed the correct way to prescribe the boundary conditions for
the hyperbolic part in our case happens to be

min
k∈(γ(u),1)

{
sg
(
γ(u)− 1

)[
f
(
γ(u)

)− f (k)
]�V ·�n}= 0. (3.11)
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As f is increasing, (3.11) is equivalent to

min
k∈(γ(u),1)

{∣∣ f (γ(u)
)− f (k)

∣∣�V ·�n}= 0. (3.12)

This last equality will always hold if we impose γ(u) = 1 on the part of the boundary

where �V ·�n < 0, that is, on Γin.
We now proceed by giving the definition of a solution of (1.1)–(1.5). For this sake and

without loss of generality, we will shift to homogeneous Dirichlet boundary conditions
for the hyperbolic part which is obtained by considering the unknown (u− 1) instead of
u. Define then the function h by

h(z)=−1
ε
m(z+ 1) f (z+ 1). (3.13)

Definition 3.2. Given u0 ∈ BV(Ω)∩ L∞(Ω), the pair (u, p) will be called an entropy so-
lution of (1.1)–(1.5) if

(i) u∈ BV(Q)∩L∞(Q) satisfies the entropy inequality

(
Pu
)




∀φ ∈D
(
Ω̄× [0,T[

)
, φ≥ 0, ∀k ∈R,

∫
Q

{
|u− k|∂φ

∂t
+ sg(u− k)

[
h(u)∇p−h(k)∇pk

]∇φ}dxdydt
−
∫
Q

sg(u− k)div
(
h(k)∇pk

)
φdxdydt

+
∫ T

0

∫
Γ

{
sg(k)

[
h
(
γ(u)

)∇p−h(k)∇pk
] ·�n}φ dσdt

+
∫
Ω

∣∣u0− k
∣∣φ(·,0)dxdy ≥ 0,

(3.14)

(ii) p ∈ L∞(0,T ;�) satisfies the weak formulation (3.3) for almost all t ∈]0,T[.

In the above definition, pk is the unique solution of (3.3) when u is replaced by the
constant k and γ(u) represents the trace of u in L∞(∂Ω×]0,T[) and in L∞(Ω) for t = 0.
This trace is well defined for BV functions (cf. LeRoux [20]). And finally sg is the usual
sign function.

This definition is inspired by that of BLN [6] where it is given for a general flux func-
tion f = f (x,u, t). In our case, the corresponding flux is h(u)∇p and by taking the en-
tropy pair (U ,F) as

U(u)= |u− k|, F(u)= sg(u− k)
(
h(u)∇p−h(k)∇pk

)
, (3.15)
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we recover the definition of [6] with h(u)∇p replaced by f (x,u, t). Also in the same con-
text of a porous medium flow, a definition is given for such a function in [14] but where
m is taken as a constant. Consequently this simplication led to the decoupling of the
problem Pu from the problem (3.3).

4. A 1D Riemann problem

A first simplification in the 1D case is that the incompressibility condition divV = 0 im-
plies the independence of V with respect to the space variable x so that we have

V(x, t)=V(0, t), ∀t > 0. (4.1)

As the total velocity at x = 0 is equal to q, we therefore end up with

V(x, t)= q, ∀x ≥ 0, t ≥ 0. (4.2)

Let us then consider the scalar conservation equation

ut +
q

ε
f (u)x = 0, x ∈R, (4.3)

with an initial condition of Riemann type

u(x,0)=

1, x < 0,

0, x > 0.
(4.4)

The pressure p is then obtained by solving

−m(u)
∂p

∂x
= q. (4.5)

Let us point out that equations of type (4.3)-(4.4) can be completely solved by us-
ing hyperbolic techniques (cf., e.g., [15]). But before doing so, let us recall the following
results.

Proposition 4.1. Equations (4.3)-(4.4) admit a unique entropy solution in L∞(R×(0,T)),
for all T > 0. This solution can only be discontinuous along lines of equations x/t = constant.
Moreover, |u(·, t)|L∞(R) ≤ 1 a.e.

In fact, the resolution depends on the profile of the fractional flow f . In our case, we
have the following.

Proposition 4.2. Let α > 0. Then f which is given by (1.6), that is,

f (u)= λuα

λuα + (1−u)α
, (4.6)

is either affine (α= 1, λ= 1), strictly convex (α= 1, λ < 1), strictly concave (α= 1, λ > 1),
or admits at most one inflexion point in the interval (0,1).
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The proof is omitted as it results from tedious but straightforward calculations. In
fact, if α < 1, then f changes concavity from concave to convex whereas for α > 1, f is
first convex before becoming concave as we go from u= 0 to u= 1.

Now let
∑

be a line of discontinuity (a shock). Denote by u+ (resp., u−) the value of
the solution on the right (resp., left) of

∑
. Then the speed (c) of the shock is given by the

Rankine-Hugoniot conditions:

c = f
(
u+
)− f

(
u−
)

u+−u−
. (4.7)

We then have the following.

Proposition 4.3 (Oleinik). u is an entropy solution of (2.16)–(2.18) if and only if one of
the following three conditions is verified.

(a) For all k ∈ (u−,u+), c ≥ ( f (u+)− f (k))/(u+− k).
(b) For all k ∈ (u−,u+), c ≤ ( f (u−)− f (k))/(u− − k).
(c) Let β ∈ [0,1].

If u+ > u−, then f (βu− + (1−β)u+)≥ β f (u−) + (1−β) f (u+).
If u− > u+, then f (βu− + (1−β)u+)≤ β f (u−) + (1−β) f (u+).

Note that if f is strictly convex, u will be an entropy solution if and only if the shock
is decreasing, that is, u+ < u−. Now we solve for the different cases.

(i) α= 1, λ≤ 1. In that case, f is affine or strictly convex. Note that the initial disconti-
nuity is admissible and it propagates with speed c (cf. (4.7)) given in our case by

c = q

ε
. (4.8)

The corresponding solution, at time t > 0, is then given by

u(x, t)=

1, x < ct,

0, x > ct.
(4.9)

(ii) α = 1, λ > 1. The flow function f being strictly concave, the initial discontinuity is
not admissible, so that u− and u+ will be connected by a rarefaction wave. The solution
at some time t > 0 is given by

u(x, t)=




1,
x

t
≤ f ′

(
u−
)= q

λε
,

(
f ′
)−1

(
x

t

)
,

q

λε
≤ x

t
≤ λq

ε
,

0,
x

t
≥ f ′

(
u+
)= λq

ε
.

(4.10)

(iii) α > 1. When α > 1, f admits one inflexion point. We will therefore expect at most
one shock. By considering the upper concave envelope of f , we define the point u∗



652 A two-phase interface in a porous medium

u(·, t)

1

u∗

0 ct x

Figure 4.1. A rarefaction wave followed by the interface discontinuity.

(cf. Figure 1.2), given by

f ′
(
u∗
)= f

(
u∗
)

u∗
. (4.11)

The saturation u∗, which corresponds to the point of change of concavity of the flow
function f , is known as the Welge saturation in oil reservoir simulations. In the interval
(u∗,1), f is strictly concave so that two states u∗ and 1 can be connected by a rarefaction
wave

u(x, t)= ( f ′)−1
(
x

t

)
, 0 < x <

q

ε
f ′
(
u∗
)
t, (4.12)

whereas the states u∗ and 0 will be connected by a shock wave (Proposition 4.3) which
propagates with speed

c = q

ε

f
(
u∗
)

u∗
. (4.13)

We therefore end up with a rarefaction wave followed by a shock (cf. Figure 4.1).

(iv) α < 1. And finally the last case corresponds to a function f which is concave then
becomes convex. By again considering the upper concave envelope, we define u∗ which
satisfies

f ′
(
u∗
)= 1− f

(
u∗
)

1−u∗
. (4.14)

Then the states 1 and u∗ can be connected by a shock (Proposition 4.3) at x = f ′(u∗)t
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followed by a rarefaction wave given by

u(x, t)= ( f ′)−1
(
x

t

)
, f ′

(
u∗
)
t ≤ x ≤ f ′(0)t. (4.15)

This completes the resolution in the 1D case.
Note that the value α > 1 seems to be the most realistic one. In that case, we end up

with the following result concerning the speed of the oil-water interface.

Theorem 4.4. Let the flow function f be given by

f (u)= λuα

λuα + (1−u)α
(4.16)

with α > 1. Define u∗ ∈ [0,1] which solves

λuα + (1−u)α−α(1−u)α−1 = 0. (4.17)

Then the water saturation is given by the profile of Figure 4.1 and the speed of the oil-water
interface is a constant given by

c = q

ε

λuα−1∗
λuα∗ +

(
1−u∗

)α . (4.18)

For example, when α = 2 (a value typically considered for models with a nonlinear perme-
ability), the speed is given by

c = q

ε

1 +
√

1 + λ

2
. (4.19)

In fact, we use the previous resolution for the case α > 1 where u∗, given by (4.11),
can be explicitly computed and is found to verify (4.17). The discontinuity in our case
happens to be the oil-water interface so that the latter propagates with the speed c given
by the Rankine-Hugoniot condition and the proof is done.

The profile of p. Recall that the pressure p is given for any time t = t∗ by

∂p

∂x

(
x, t∗

)= −q
m
(
u
(
x, t∗

)) , x > 0. (4.20)

Its regularity therefore depends on that of the function x→m(u(x, t∗)) which may be
discontinuous at the shock point x = x∗. Thus p is a decreasing function and has a C1

regularity except at most at the shock point x = x∗ where the post- and preshock values
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Figure 4.2. Graph of the pressure for λ= 4.

of the derivative are given, respectively, by

∂p

∂x

(
x∗+ , t∗

)= −q
m(0)

,

∂p

∂x

(
x∗− , t∗

)= −q
m
(
u∗
) ,

(4.21)

where u∗ is as defined by (4.17).
For example, for α= 2, we have

u∗ = 1√
1 + λ

, (4.22)

so that one has m(u∗) =m(0) if λ = 3. And for λ greater (resp., less) than 3, m(u∗) is
greater (resp., less) than m(0). Thus, for λ = 3, p happens to be a smooth decreasing
function in the x variable. Figure 4.2 shows a typical profile for the pressure for some
time t > 0.

5. The pseudo-2D case

Consider now a rectangular domain Ω= (0,X)× (0,Y) with

Γin = {0}× (0,Y), Γout = {X}× (0,Y), (5.1)

which comes to injecting water on the whole left boundary and recovering the oil on the
whole right boundary. We call this configuration the pseudo-2D case because it can be
assimilated to a one-dimensional flow as is stated in the following result.
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Theorem 5.1. Given λ > 0 and q > 0, let u1 be the restriction to (0,X) of the solution of the
1D Riemann problem (3.1)-(3.2). Set, for t > 0,

p1(x, y, t)=
∫ X

x

q

m
(
u1(s, t)

)ds, (x, y)∈Ω. (5.2)

Then (u1, p1) is a solution of the system (1.1)–(1.5) in the sense of the definition (2.1) in the
pseudo-2D case.

Proof. Let us first remark that, for u = u1, p1 defined by (5.2) is the unique solution of
the problem (3.3). Indeed, for ϕ∈�, we have

a
(
p1,ϕ

)=
∫
Ω
m
(
u1
)∇p1∇ϕdxdy

=−
∫
Ω
q
∂ϕ

∂x
dxdy =

∫
Γin

qϕdy.
(5.3)

Note also that as u is the solution obtained in the previous section by solving the
problem (4.3), we have, for all t > 0,

u(0, t)= 1 (5.4)

and as q > 0 and f is an increasing function, it suffices to impose a boundary condition
for entering data only, that is, at x = 0. Thus v1 = u1− 1, where u1 is the restriction of u
on (0,X), is the entropy solution of the initial boundary value problem

(P)



εut + q f (u+ 1)x = 0, x ∈ (0,X), t ∈ (0,T),

u(0, t)= 0, t > 0,

u(x,0)=−1, x ∈ (0,X).

(5.5)

Now it suffices to check that (v1, p1) satisfies the inequality of the problem (Pu). Let
k ∈R and φ ∈D(Ω̄× [0,T[), φ ≥ 0. Define

pk(x)=
∫ X

x

q

m(k+ 1)
= q(X − x)m(k+ 1) (5.6)

and define also the function

φy : (x, t)−→ φy(x, t)= φ(x, y, t) (5.7)

for all y ∈ [0,Y], x ∈ [0,X], and t ∈ [0,T[. Such a function φy is in D([0,X]× [0,T[).
Now as v1 is an entropy solution of the problem (5.5), it satisfies the entropy inequality
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in the 1D case (cf., e.g., [6]), that is,

∫ T

0

∫ X

0

{∣∣v1− k
∣∣∂φy

∂t
+ sg

(
v1− k

)[
q f
(
v1 + 1

)− q f (k+ 1)
]∂φy

∂x

}
dxdt

+
∫ T

0
sg(k)q

[(
f
(
γ
(
v1 + 1

))− f (k+ 1)
)
φy
]X

0 dt

+
∫ X

0

∣∣u0− k
∣∣φy(x,0)dx ≥ 0.

(5.8)

We now subtract the null quantity

∫ T

0

∫ X

0
sg
(
v1− k

) ∂

∂x

(
−m(k+ 1)

∂pk(x)
∂x

)
f (k+ 1)φydxdt (5.9)

and then replace q by −m(v1 + 1)(∂p1/∂x) or by −m(k + 1)(∂pk/∂x). Finally integrating
in y over (0,Y), one obtains

∫
Q

{∣∣v1− k
∣∣φt + sg

(
v1− k

)[
h
(
v1
)∂p1

∂x
−h(k)

∂pk
∂x

f (k)
]
∂φ

∂x

}
dxdydt

−
∫
Q

sg
(
v1− k

)
div

(
h(k)∇pk

)
φdxdydt

+
∫ T

0

∫ Y

0
sg(k)

[(
h
(
v1
)∂p1

∂x
−h(k)

∂pk
∂x

)
φ
]X

0
dydt

+
∫
Ω

∣∣u0− k
∣∣φ(x, y,0)dxdy ≥ 0.

(5.10)

Now it suffices to note that the third integral can be rewritten as

∫ T

0

∫
Γin∪Γout

sg(k)
(
h
(
γ
(
v1
))∇p1−h(k)∇pk ·�n

)
φdσ dt (5.11)

with �n= (−1,0) on Γin and (1,0) on Γout. And as

∇p1 ·�n=∇pk ·�n= 0 (5.12)

on the rest of the boundary, the above integral can be rewritten on the whole boundary
and the proof is done. �

6. Numerical simulations

In this section, we present some numerical simulations concerning the 2D problem by us-
ing a nonconservative scheme of Harten type (cf. [1]) for the resolution of the hyperbolic
problem

ut + div
(
V f (u)

)= 0, (x, y)∈Ω, t > 0. (6.1)
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Table 6.1

µw µw k ε q

1.10−3 4.10−3 2.10−13 0.225 3.510−7

A better resolution of the shock, that is, of the oil-water interface is expected with
this scheme because no interpolation is needed for the velocity terms as is the case in
the conservative Harten scheme. Indeed, in the latter case, we need to have the values of
the velocity terms at the points where the values of u are calculated—for example, at the
center of the grids—whereas they are computed at the interfaces of the grids. So some
interpolation is necessary. The nonconservative scheme proposed calls for the values of
the velocities (V), of the saturation (u), and of the pressure (p) where they are calculated,
that is, at the interfaces for V and at the centre of the grids for u and p.

Let uni, j be the approximation of u at (x = iδx, y = jδy, t = nδt). Define the difference
operator ∆ of type

∆i+(1/2), j(v)= vi+1, j − vi, j , (6.2)

then the proposed scheme reads as follows:

un+1
i, j = uni, j +

1
2

(
C+
i+(1/2), j∆i+(1/2), j

(
un
)−C−i−(1/2), j∆i−(1/2), j

(
un
))

+
1
2

(
C+
i, j+(1/2)∆i, j+(1/2)

(
un
)−C−i, j−(1/2)∆i, j−(1/2)

(
un
)) (6.3)

with the functions C defined as

C+̄
i+(1/2), j =

1
2

[∣∣νi+(1/2), j + γi+(1/2), j
∣∣± (νi+(1/2), j + γi+(1/2), j

)]
. (6.4)

It is formulated just as the second-order Harten scheme (cf. [18]) but with the functions
ν and γ defined differently. In fact, here we have

νi+(1/2), j =Vx,i+(1/2), jλx
∆i+(1/2), j

(
f (u)

)
∆i+(1/2), ju

(6.5)

with Vx the horizontal component of V and λx = δt/δx. The same type of modification
applies to the second-order terms γ. One can refer to [1] for the details concerning the
derivation of the above scheme and some properties in view of its convergence.

Figure 6.1 shows the profile of the saturation obtained in the pseudo-2D case for the
standard set of data given in Table 6.1.

We notice the good resolution for the interface and the fact that the flow is inde-
pendent of the y− variable so that it can be assimilated to a 1D flow. For this sake,
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Figure 6.1. A 2D plot of the water saturation computed with the 2D scheme.
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Figure 6.2. Comparison of the 2D numerical and the exact 1D profile.

in Figure 6.2, we compare the saturation profile computed for any given y with the ex-
act 1D solution obtained by the resolution of the corresponding Riemann problem. The
results are in good agreement.

Figure 6.3 shows the profile of the oil-water interface in time. The observed linear
profile enables us to compute the constant numerical speed which is given by

cnum = slope× tref = 0.33× 7.12× 10−6 = 2.5× 10−6 m/s (6.6)
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Figure 6.3. Position of the oil-water interface in time.
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Figure 6.4. The interface speed with respect to the inflow speed q.

whereas the analytical value, obtained by (4.19), is

c = q

ε

1 +
√

1 + λ

2
= 2,51× 10−6 m/s. (6.7)

Other comparisons can be done to show the concordance of the numerical results
obtained with the analytical ones. We end up with two profiles for the interface speed
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Figure 6.5. The interface speed as a function of the porosity for λ= 4.

with respect to the inflow speed q (Figure 6.4) and the porosity ε (Figure 6.5). In the two
cases, the computed values coincide with those expected according to the formula (4.19).
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